Skip to main content

Advertisement

Log in

Transcriptome and metabolome analyses reveal the interweaving of immune response and metabolic regulation in pelvic organ prolapse

  • Original Article
  • Published:
International Urogynecology Journal Aims and scope Submit manuscript

Abstract

Introduction and hypothesis

The pathogenesis of pelvic organ prolapse (POP) remains unknown. Herein, we aim to reveal the molecular profile of POP by transcriptomic and metabolomic analysis.

Methods

We selected 12 samples of uterosacral ligaments (USLs) from 6 POP patients and 6 controls for transcriptomic and metabolomic analyses. Differentially expressed genes (DEGs) were identified using the R package edgeR. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed using clusterProfiler, and a protein–protein interaction (PPI) network was constructed using STRING and visualized in Cytoscape. Metabolomic profiling was performed by a liquid chromatography–tandem mass spectrometry system.

Results

Transcriptomic analysis identified 487 DEGs between the POP and control groups. Functional enrichment analysis revealed that they were mostly related to immune response terms, including “adaptive immune response,” “T cell differentiation,” and “T cell activation.” In addition, PTPRC, LCK, CD247, IL2RB, CD2, CXR5, JUN, CD3E, IL2RG, and PRF1 were the 10 nodes with the highest node degrees in the PPI network. Metabolomic profiling revealed 290 differentially expressed metabolites, which significantly enriched in “glycerophospholipid metabolism,” “nicotinate and nicotinamide metabolism,” “glycine, serine, and threonine metabolism,” “arginine and proline metabolism,” “pyrimidine metabolism,” and “purine metabolism.” Finally, integrated analysis revealed that the DEGs involved in these significantly enriched metabolic pathways included NT5C1A, GMPR, SDS, ALAS2, CARNS1, PYCR1, P4HA3, PGS1, and NMRK2.

Conclusions

Our findings demonstrate that the immune response and metabolic regulatory pathways are intertwined in POP and might provide new therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

DEG:

Differentially expressed gene

ECM:

Extracellular matrix

FC:

Fold change

GO:

Gene Ontology

KEGG:

Kyoto Encyclopedia of Genes and Genomes

POP:

Pelvic organ prolapse

PPI:

Protein–protein interaction

USL:

Uterosacral ligament

References

  1. Kindie W, Yiheyis A, Aragaw A, Wudineh KG, Miskir D. Quality of life among women with a diagnosis of pelvic organ prolapse at Felege Hiwot Comprehensive Specialized Hospital, Bahir Dar, Northwest Ethiopia: an institutional based cross-sectional study. Int Urogynecol J. 2022. https://doi.org/10.1007/s00192-022-05209-2.

    Article  PubMed  Google Scholar 

  2. Hendrix SL, Clark A, Nygaard I, Aragaki A, Barnabei V, McTiernan A. Pelvic organ prolapse in the Women's Health Initiative: gravity and gravidity. Am J Obstet Gynecol. 2002;186:1160–6. https://doi.org/10.1067/mob.2002.123819.

    Article  PubMed  Google Scholar 

  3. Kahn B, Varner RE, Murphy M, Sand P, Thomas S, Lipetskaia L, et al. Transvaginal mesh compared with native tissue repair for pelvic organ prolapse. Obstet Gynecol. 2022;139:975–85. https://doi.org/10.1097/AOG.0000000000004794.

    Article  PubMed  Google Scholar 

  4. Nussler E, Granasen G, Bixo M, Lofgren M. Long-term outcome after routine surgery for pelvic organ prolapse—A national register-based cohort study. Int Urogynecol J. 2022;33:1863–73. https://doi.org/10.1007/s00192-022-05156-y.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zhao Y, Xia Z, Lin T, Yin Y. Significance of hub genes and immune cell infiltration identified by bioinformatics analysis in pelvic organ prolapse. PeerJ. 2020;8:e9773. https://doi.org/10.7717/peerj.9773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Xie R, Xu Y, Fan S, Song Y. Identification of differentially expressed genes in pelvic organ prolapse by RNA-Seq. Med Sci Monit. 2016;22:4218–25. https://doi.org/10.12659/msm.900224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Deng W, Rao J, Chen X, Li D, Zhang Z, Liu D, et al. Metabolomics study of serum and urine samples reveals metabolic pathways and biomarkers associated with pelvic organ prolapse. J Chromatogr B Analyt Technol Biomed Life Sci. 2020;1136:121882. https://doi.org/10.1016/j.jchromb.2019.121882.

    Article  CAS  PubMed  Google Scholar 

  8. Kieserman-Shmokler C, Swenson CW, Chen L, Desmond LM, Ashton-Miller JA, DeLancey JO. From molecular to macro: the key role of the apical ligaments in uterovaginal support. Am J Obstet Gynecol. 2020;222:427–36. https://doi.org/10.1016/j.ajog.2019.10.006.

    Article  PubMed  Google Scholar 

  9. Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34:i884–90. https://doi.org/10.1093/bioinformatics/bty560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9. https://doi.org/10.1038/nmeth.1923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14:R36. https://doi.org/10.1186/gb-2013-14-4-r36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol. 2015;33:290–5. https://doi.org/10.1038/nbt.3122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Afiqah-Aleng N, Mohamed-Hussein ZA. Construction of protein expression network. Methods Mol Biol. 2021;2189:119–32. https://doi.org/10.1007/978-1-0716-0822-7_10.

    Article  CAS  PubMed  Google Scholar 

  14. Zhang Q, Chang X, Wang X, Zhan H, Gao Q, Yang M, et al. A metabolomic-based study on disturbance of bile acids metabolism induced by intratracheal instillation of nickel oxide nanoparticles in rats. Toxicol Res (Camb). 2021;10:579–91. https://doi.org/10.1093/toxres/tfab039.

    Article  PubMed  Google Scholar 

  15. Donaldson K, Huntington A, De Vita R. Mechanics of uterosacral ligaments: current knowledge, existing gaps, and future directions. Ann Biomed Eng. 2021;49:1788–804. https://doi.org/10.1007/s10439-021-02755-6.

    Article  PubMed  Google Scholar 

  16. Jin J, Li X, Hu B, Kim C, Cao W, Zhang H, et al. FOXO1 deficiency impairs proteostasis in aged T cells. Sci Adv. 2020;6:eaba1808. https://doi.org/10.1126/sciadv.aba1808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wu BG, Sulaiman I, Tsay JJ, Perez L, Franca B, Li Y, et al. Episodic aspiration with oral commensals induces a MyD88-dependent, pulmonary T-helper cell type 17 response that mitigates susceptibility to Streptococcus pneumoniae. Am J Respir Crit Care Med. 2021;203:1099–111. https://doi.org/10.1164/rccm.202005-1596OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Orlicky DJ, Guess MK, Bales ES, Rascoff LG, Arruda JS, Hutchinson-Colas JA, et al. Using the novel pelvic organ prolapse histologic quantification system to identify phenotypes in uterosacral ligaments in women with pelvic organ prolapse. Am J Obstet Gynecol. 2021;224(67):e1–e18. https://doi.org/10.1016/j.ajog.2020.10.040.

    Article  Google Scholar 

  19. Deprest JA, Cartwright R, Dietz HP, Brito LGO, Koch M, Allen-Brady K, et al. International Urogynecological Consultation (IUC): pathophysiology of pelvic organ prolapse (POP). Int Urogynecol J. 2022;33(7):1699–1710. https://doi.org/10.1007/s00192-022-05081-0.

    Article  PubMed  Google Scholar 

  20. Pedley AM, Benkovic SJ. A new view into the regulation of purine metabolism: the purinosome. Trends Biochem Sci. 2017;42:141–54. https://doi.org/10.1016/j.tibs.2016.09.009.

    Article  CAS  PubMed  Google Scholar 

  21. Siddiqui A, Ceppi P. A non-proliferative role of pyrimidine metabolism in cancer. Mol Metab. 2020;35:100962. https://doi.org/10.1016/j.molmet.2020.02.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li Y, Li C, Xiong Y, Fang B, Lin X, Huang Q. Didymin ameliorates liver fibrosis by alleviating endoplasmic reticulum stress and glycerophospholipid metabolism: based on transcriptomics and metabolomics. Drug Des Devel Ther. 2022;16:1713–29. https://doi.org/10.2147/DDDT.S351092.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Li Y, Zhang QY, Sun BF, Ma Y, Zhang Y, Wang M, et al. Single-cell transcriptome profiling of the vaginal wall in women with severe anterior vaginal prolapse. Nat Commun. 2021;12:87. https://doi.org/10.1038/s41467-020-20358-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hong ZC, Cai Q, Duan XY, Yang YF, Wu HZ, Jiang N, et al. Effect of compound Sophorae decoction in the treatment of ulcerative colitis by tissue extract metabolomics approach. J Tradit Chin Med. 2021;41:414–23. https://doi.org/10.19852/j.cnki.jtcm.2021.03.009.

    Article  PubMed  Google Scholar 

  25. Gu X, Wang B, Zhu H, Zhou Y, Horning AM, Huang TH, et al. Age-associated genes in human mammary gland drive human breast cancer progression. Breast Cancer Res. 2020;22:64. https://doi.org/10.1186/s13058-020-01299-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all the participants, as well as all the volunteers who helped us to collect samples. We thank Nature Research Editing Service for English-language editing.

Funding

This project was supported by the Natural Science Foundation of Sichuan Province [grant number 2022NSFSC0815], the Yingcai Scheme, the Chengdu Women's and Children's Central Hospital [grant number YC2021004], the Youth Innovation Foundation of Sichuan Provincial Medical [grant number Q21060], and the Chengdu High-level Key Clinical Specialty Construction Project.

Author information

Authors and Affiliations

Authors

Contributions

Z.L. Yang, Y.H. Lin: project development, management data analysis; X. Yu, Y. Chen: manuscript writing, statistical analysis; L. He, H. Liu: data collection.

Corresponding authors

Correspondence to Zhenglin Yang or Yonghong Lin.

Ethics declarations

Conflicts of interest

None.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 215 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, X., Chen, Y., He, L. et al. Transcriptome and metabolome analyses reveal the interweaving of immune response and metabolic regulation in pelvic organ prolapse. Int Urogynecol J 34, 1395–1403 (2023). https://doi.org/10.1007/s00192-022-05357-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00192-022-05357-5

Keywords

Navigation