Skip to main content
Log in

A critical review on tool wear mechanism and surface integrity aspects of SiCp/Al MMCs during turning: prospects and challenges

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Among several kinds of metal matrix composite materials (MMCs), such as silicon-based reinforced aluminum matrix (SiCp/Al) composites have become the most valuable composite material due to their various applications in industries, sports equipment, electrons, and automotive. Due to the presence of hard ceramic reinforcements, the SiCp/Al composite is considered a difficult-to-cut material, which leads to significant hindrances in machining operations together with increased tool wear, cutting force, and degradation of machined surface quality. The present review is focused on the recent advancements in turning process of metal matrix composites. An attempt is made to comprehensively analyze and identify the influencing factors on the machinability of metal matrix composites (MMCs). The main purpose of this review is to cover the topics such as the recent trends in turning and hybrid turning processes of MMCs, tool wear and its mechanisms, tool selection, the effect of cutting parameters, surface integrity, SiCp/Al composite properties and reinforcement effect, chip formation mechanisms, and different modeling approaches used in particle-reinforced MMCs machining process. Finally, some research gaps and future directions are suggested that could lead to efficient machining of particle-reinforced MMCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Kim D-Y, Choi H-J (2020) Recent developments towards commercialization of metal matrix composites. Materials (Basel) 13(12):2828. https://doi.org/10.3390/ma13122828

    Article  Google Scholar 

  2. Chawla KK, Chawla N (2014) Metal matrix composites: automotive applications, in Encyclopedia of Automotive Engineering, Chichester: John Wiley & Sons, Ltd, pp. 1–6

  3. Reddy PV, Kumar GS, Krishnudu DM, Rao HR (2020) Mechanical and wear performances of aluminium-based metal matrix composites: a review. J Bio- Tribo-Corrosion 6(3):83. https://doi.org/10.1007/s40735-020-00379-2

    Article  Google Scholar 

  4. Mavhungu ST, Akinlabi ET, Onitiri MA, Varachia FM (2017) Aluminum matrix composites for industrial use: advances and trends. Procedia Manuf 7:178–182. https://doi.org/10.1016/j.promfg.2016.12.045

    Article  Google Scholar 

  5. Macke A, Schultz BF, Rohatgi P (2012) Metal matrix composites. Adv Mater Processes 170(3):19–23

  6. Davim JP (2011) Machining of hard materials – definitions and industrial applications. Springer, London, London

    Book  Google Scholar 

  7. Bharat N, Bose PS (2021) An overview of production technologies and its application of metal matrix composites. Adv Mater Process Technol 1–17. https://doi.org/10.1080/2374068X.2021.1878707

  8. Sujith SV, Mulik RS (2022) Surface integrity and flank wear response under pure coconut oil-Al2O3 nano minimum quantity lubrication turning of Al-7079/7 wt%-TiC in situ metal matrix composites. J Tribol 144(5). https://doi.org/10.1115/1.4051863

  9. González-Doncel G (2022) An overview of metal matrix composites, MMCs, and future perspectives, in Encyclopedia of Materials: Metals and Allloys, Elsevier, pp. 141–146

  10. Liang J, Sun J, Wei W, Laghari R (2021) Dynamic constitutive analysis of aluminum alloy materials commonly used in railway vehicles big data and its application in LS-DYNA, ICST Trans Scalable Inf Syst 171169. https://doi.org/10.4108/eai.28-9-2021.171169

  11. Ge YF, Xu JH, Yang H (2009) Experiments of ultra-precision turning of SiCp/Al composites. Optics and Precision Engineering 17(07):1621–1629

    Google Scholar 

  12. Wang T, Wu X, Zhang G, Dai Y, Xu B, Ruan S (2020) An experimental study on single-point diamond turning of a 55 vol% SiCp/Al composite below the ductile brittle transition depth of SiC. Int J Adv Manuf Technol 108(7–8). https://doi.org/10.1007/s00170-020-05550-0

  13. Wang J, Pan L, Xing D, Ding H (2020) Multi-objective optimization of cutting parameters on turning SiCp/Al composites based on energy efficiency, Zhongnan Daxue Xuebao (Ziran Kexue Ban)/Journal Cent. South Univ Sci Technol 51(6). https://doi.org/10.11817/j.issn.1672-7207.2020.06.011

  14. Xavior MA, Kumar JA (2017) Machinability of hybrid metal matrix composite-A review. Procedia Eng 174:1110–1118

    Article  Google Scholar 

  15. Sun W, Duan C, Yin W (2021) Modeling of force and temperature in cutting of particle reinforced metal matrix composites considering particle effects. J Mater Process Technol 290:116991. https://doi.org/10.1016/j.jmatprotec.2020.116991

    Article  Google Scholar 

  16. Şap E, Usca UA, Gupta MK, Kuntoğlu M (2021) Tool wear and machinability investigations in dry turning of Cu/Mo-SiCp hybrid composites. Int J Adv Manuf Technol 114(1–2). https://doi.org/10.1007/s00170-021-06889-8

  17. Sarıkaya M et al (2021) A state-of-the-art review on tool wear and surface integrity characteristics in machining of superalloys. CIRP J Manuf Sci Technol 35. https://doi.org/10.1016/j.cirpj.2021.08.005

  18. Wan M, Li SE, Yuan H, Zhang WH (2019) Cutting force modelling in machining of fiber-reinforced polymer matrix composites (PMCs): a review. Compos A: Appl Sci Manuf 34–55. https://doi.org/10.1016/j.compositesa.2018.11.003

  19. Dabade UA, Joshi SS (2009) Analysis of chip formation mechanism in machining of Al/SiCp metal matrix composites. J Mater Process Technol 209(10):4704–4710. https://doi.org/10.1016/j.jmatprotec.2008.10.057

    Article  Google Scholar 

  20. Jeyakumar S, Marimuthu K, Ramachandran T (2013) Prediction of cutting force, tool wear and surface roughness of Al6061/SiC composite for end milling operations using RSM. J Mech Sci Technol 27(9):2813–2822. https://doi.org/10.1007/s12206-013-0729-z

    Article  Google Scholar 

  21. Yousefi R, Kouchakzadeh MA, Rahiminasab J, Kadivar MA (2011) The influence of SiC particles on tool wear in machining of Al/SiC metal matrix composites produced by powder extrusion. Adv Mater Res 325:393–399. https://doi.org/10.4028/www.scientific.net/AMR.325.393

    Article  Google Scholar 

  22. Wu Q, Xu W, Zhang L (2019) Machining of particulate-reinforced metal matrix composites: an investigation into the chip formation and subsurface damage. J Mater Process Technol 274:116315. https://doi.org/10.1016/j.jmatprotec.2019.116315

    Article  Google Scholar 

  23. Muguthu JN, Dong G, Ikua BW (2015) Optimization of machining parameters influencing machinability of Al2124SiCp (45%wt) metal matrix composite. J Compos Mater 49(2):217–229. https://doi.org/10.1177/0021998313516141

    Article  Google Scholar 

  24. Chou YK, Liu J (2005) CVD diamond tool performance in metal matrix composite machining. Surf Coatings Technol 200(5–6):1872–1878. https://doi.org/10.1016/j.surfcoat.2005.08.094

    Article  Google Scholar 

  25. Njuguna MJ, Gao D, Hao Z (2013) Tool wear, surface integrity and dimensional accuracy in turning Al2124SiCp (45%wt) metal matrix composite using CBN and PCD tools. Res J Appl Sci Eng Technol 6(22):4138–4144. https://doi.org/10.19026/rjaset.6.3523

    Article  Google Scholar 

  26. Polini R, Casadei F, D’Antonio P, Traversa E (2003) Dry turning of alumina/aluminum composites with CVD diamond coated co-cemented tungsten carbide tools. Surf Coatings Technol 166(2–3):127–134. https://doi.org/10.1016/S0257-8972(02)00775-2

    Article  Google Scholar 

  27. Vishwas CJ et al (2019) Study on surface roughness in minimum quantity lubrication turning of Al-6082/SiC metal matrix composites. Appl Mech Mater 895:127–133. https://doi.org/10.4028/www.scientific.net/AMM.895.127

    Article  Google Scholar 

  28. Zhai C et al (2020) The study on surface integrity on laser-assisted turning of SiCp/2024Al. Int J Optomechatronics 14(1). https://doi.org/10.1080/15599612.2020.1789251

  29. Das D, Chaubey AK, Nayak BB, Mishra PC, Samal C (2018) Investigation on cutting tool wear in turning Al 7075/SiCp metal matrix composite, in IOP Conference Series: Materials Science and Engineering 377(1). https://doi.org/10.1088/1757-899X/377/1/012110

  30. Liu HZ, Zong WJ (2019) Prediction model of tool wear volume in precision turning of ceramic particle reinforced aluminum matrix composites. Int J Adv Manuf Technol 100(9–12). https://doi.org/10.1007/s00170-018-2853-5

  31. Thirumoorthy A, Arjunan TV, Arulraj M, Kumaravelan R, Dinesh TCR (2020) Parametric optimisation of high speed turning operation of hybrid aluminium composites using Taguchi-based grey relational analysis. Int J Comput Mater Sci Surf Eng 9(4):261. https://doi.org/10.1504/IJCMSSE.2020.112733

    Article  Google Scholar 

  32. Wang Y, Liao W, Yang K, Teng X, Chen W (2019) Simulation and experimental investigation on the cutting mechanism and surface generation in machining SiCp/Al MMCs. Int J Adv Manuf Technol 100(5–8):1393–1404. https://doi.org/10.1007/s00170-018-2769-0

    Article  Google Scholar 

  33. Laghari RA, Li J, Mia M (2020) Effects of turning parameters and parametric optimization of the cutting forces in machining SiCp/Al 45 wt% composite. Metals (Basel) 10(6):840. https://doi.org/10.3390/met10060840

    Article  Google Scholar 

  34. Sahoo AK, Pradhan S, Rout AK (2013) Development and machinability assessment in turning Al/SiCp-metal matrix composite with multilayer coated carbide insert using Taguchi and statistical techniques. Arch Civ Mech Eng 13(1):27–35. https://doi.org/10.1016/j.acme.2012.11.005

    Article  Google Scholar 

  35. Setia S, Chauhan SR (2020) Comparative analysis and optimization of FEM and RSM based regression model with experimental results for the dry turning of SiCp- Al7075 composite. SILICON. https://doi.org/10.1007/s12633-020-00711-y

    Article  Google Scholar 

  36. Yang Z, Fan J, Liu Y, Nie J, Yang Z, Kang Y (2021) Strengthening and weakening effects of particles on strength and ductility of SiC particle reinforced Al-Cu-Mg alloys matrix composites. Materials (Basel) 14(5):1219. https://doi.org/10.3390/ma14051219

    Article  Google Scholar 

  37. Cao C, Zhang X, Chen T, Chen Y (2017) Effects of processing parameters on microstructure and mechanical properties of powder-thixoforged SiC p /6061 Al composite. Mater Res 20(1):236–248. https://doi.org/10.1590/1980-5373-mr-2016-0466

    Article  Google Scholar 

  38. Paknia A, Pramanik A, Dixit AR, Chattopadhyaya S (2016) Effect of size, content and shape of reinforcements on the behavior of metal matrix composites (MMCs) under tension. J Mater Eng Perform 25(10):4444–4459. https://doi.org/10.1007/s11665-016-2307-x

    Article  Google Scholar 

  39. Wang YJ, Pan MQ, Chen T, Chen LG (2013) The forming mechanism of surface defects on machined surface in high-speed cutting of SiCp/Al composites. Key Eng Mater 579–580:171–176. https://doi.org/10.4028/www.scientific.net/KEM.579-580.171

    Article  Google Scholar 

  40. Allison JE, Cole GS (1993) Metal-matrix composites in the automotive industry: opportunities and challenges. JOM 45(1):19–24. https://doi.org/10.1007/BF03223361

    Article  Google Scholar 

  41. Kainer KU (2006) Basics of metal matrix composites, in Metal Matrix Composites, Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, pp. 1–54

  42. Hao S, Xie J (2013) Tensile properties and strengthening mechanisms of SiC p -reinforced aluminum matrix composites as a function of relative particle size ratio. J Mater Res 28(15):2047–2055. https://doi.org/10.1557/jmr.2013.202

    Article  Google Scholar 

  43. Zhang XZ, Chen TJ, Qin YH (2016) Effects of solution treatment on tensile properties and strengthening mechanisms of SiCp/6061Al composites fabricated by powder thixoforming. Mater Des 99:182–192. https://doi.org/10.1016/j.matdes.2016.03.068

    Article  Google Scholar 

  44. Laghari RA, Li J, Laghari AA, Wang S (2020) A review on application of soft computing techniques in machining of particle reinforcement metal matrix composites. Arch Comput Methods Eng 27(5):1363–1377. https://doi.org/10.1007/s11831-019-09340-0

    Article  Google Scholar 

  45. Wang J, Zuo J, Shang Z, Fan X (2019) Modeling of cutting force prediction in machining high-volume SiCp/Al composites. Appl Math Model 70:1–17. https://doi.org/10.1016/j.apm.2019.01.015

    Article  Google Scholar 

  46. Zhou J, Lin J, Lu M, Jing X, Jin Y, Song D (2021) Analyzing the effect of particle shape on deformation mechanism during cutting simulation of SiC P/Al composites. Micromachines 12(8):953. https://doi.org/10.3390/mi12080953

    Article  Google Scholar 

  47. Wang T, Zhang L, Wang X, Xie L, Xu W (2015) A Microstructure-based finite element modelling of the surface defect formation in the cutting of SiCp/Al composites. In: Proceedings of International Conference on Leading Edge Manufacturing in 21st century: LEM21 2015.8. The Japan Society of Mechanical Engineers, pp 0515-1

  48. Srivastava AK, Dixit AR, Tiwari S (2018) A review on the intensification of metal matrix composites and its nonconventional machining. IEEE J Sel Top Quantum Electron 25(2):213–228. https://doi.org/10.1515/secm-2015-0287

    Article  Google Scholar 

  49. Nicholls CJ, Boswell B, Davies IJ, Islam MN (2017) Review of machining metal matrix composites. Int J Adv Manuf Technol 90(9–12):2429–2441. https://doi.org/10.1007/s00170-016-9558-4

    Article  Google Scholar 

  50. Hung NP, Zhong CH (1996) Cumulative tool wear in machining metal matrix composites. Part I: Modelling. J Mater Process Technol 58(1):109–113. https://doi.org/10.1016/0924-0136(95)02114-0

    Article  Google Scholar 

  51. Wang Y, Liao W, Yang K, Chen W, Liu T (2019) Investigation on cutting mechanism of SiC p /Al composites in precision turning. Int J Adv Manuf Technol 100(1–4):963–972. https://doi.org/10.1007/s00170-018-2650-1

    Article  Google Scholar 

  52. Marigoudar RN, Sadashivappa K (2014) Comparison of tool life and surface characteristics of uncoated, coated carbide and ceramic tools during machining of SiC reinforced ZA43 alloy MMC. Mater Sci Technol (United Kingdom) 30(8). https://doi.org/10.1179/1743284713Y.0000000484

  53. Rawal SP (2001) Metal-matrix composites for space applications. JOM 53(4):14–17. https://doi.org/10.1007/s11837-001-0139-z

    Article  Google Scholar 

  54. Sunil Kumar Reddy K, Kannan M, Karthikeyan R, Prashanth S, Rohith Reddy B (2020) A review on mechanical and thermal properties of aluminum metal matrix composites. E3S Web Conf 184:01033. https://doi.org/10.1051/e3sconf/202018401033

    Article  Google Scholar 

  55. Kareem A, Qudeiri JA, Abdudeen A, Ahammed T, Ziout A (2021) A review on AA 6061 metal matrix composites produced by stir casting. Materials (Basel) 14(1):175. https://doi.org/10.3390/ma14010175

    Article  Google Scholar 

  56. Chandramohan D, Murali B (2014) Machining of composites - a review. Acad J Manuf Eng 12(3):67–71

    Google Scholar 

  57. Rajesh S (2014) Processing, performance and machining studies on red mud reinforced aluminum metal matrix composites. Kalasalingam University

  58. Kar KK (2017) Composite materials. Springer Berlin Heidelberg, Berlin, Heidelberg

    Book  Google Scholar 

  59. Venkatesan K, Ramanujam R, Kuppan P (2014) A review on conventional and laser assisted machining of aluminium based metal matrix composites. Eng Rev 34(2):75–84

    Google Scholar 

  60. Composite MM, Composite MM (1994) Turning of metal matrix composite (MMC), in Advances In Manufacturing Technology VIII, CRC Press, pp. 815–822

  61. Ghani JA, Rizal M, Nuawi MZ, Ghazali MJ, Haron CHC (2011) Monitoring online cutting tool wear using low-cost technique and user-friendly GUI. Wear 271(9–10):2619–2624. https://doi.org/10.1016/j.wear.2011.01.038

    Article  Google Scholar 

  62. Tomac N, Tannessen K, Rasch FO (1992) Machinability of particulate aluminium matrix composites. CIRP Ann - Manuf Technol 41(1):55–58. https://doi.org/10.1016/S0007-8506(07)61151-2

    Article  Google Scholar 

  63. Lu S et al (2021) Cutting path-dependent machinability of SiCp/Al composite under multi-step ultra-precision diamond cutting. Chinese J Aeronaut 34(4):241–252. https://doi.org/10.1016/j.cja.2020.07.039

    Article  Google Scholar 

  64. Kesarwani S, Niranjan MS, Singh V (2020) To study the effect of different reinforcements on various parameters in aluminium matrix composite during CNC turning. Compos Commun 22:100504. https://doi.org/10.1016/j.coco.2020.100504

    Article  Google Scholar 

  65. Tripathy SK, Senapati AK (2020) A review on turning analysis of industrial waste reinforced aluminum metal matrix composite. Mater Today Proc 33:5740–5745. https://doi.org/10.1016/j.matpr.2020.05.731

    Article  Google Scholar 

  66. Devaraj S, Malkapuram R, Singaravel B (2021) Performance analysis of micro textured cutting insert design parameters on machining of Al-MMC in turning process. Int J Light Mater Manuf 4(2):210–217. https://doi.org/10.1016/j.ijlmm.2020.11.003

    Article  Google Scholar 

  67. Hira J, Manna A, Gera P, Sharma R, Kumar V (2021) Effect of machining parameters on average surface roughness Ra while turning hybrid Mg-MMC-An experimental approach. J Phys Conf Ser 1854(1):012044. https://doi.org/10.1088/1742-6596/1854/1/012044

    Article  Google Scholar 

  68. Nataraj M, Balasubramanian K (2017) Parametric optimization of CNC turning process for hybrid metal matrix composite. Int J Adv Manuf Technol 93(1–4):215–224. https://doi.org/10.1007/s00170-016-8780-4

    Article  Google Scholar 

  69. Bai W, Roy A, Sun R, Silberschmidt VV (2019) Enhanced machinability of SiC-reinforced metal-matrix composite with hybrid turning. J Mater Process Technol 268:149–161. https://doi.org/10.1016/j.jmatprotec.2019.01.017

    Article  Google Scholar 

  70. Davim JP, Silva J, Baptista AM (2007) Experimental cutting model of metal matrix composites (MMCs). J Mater Process Technol 183(2–3):358–362. https://doi.org/10.1016/j.jmatprotec.2006.10.025

    Article  Google Scholar 

  71. Pathapalli VR, Reddigari MR, Anna EK, Srinivasa Rao P, Ramana Reddy DV (2021) Modeling of the machining parameters in turning of Al-5052/TiC/SiC composites: a statistical modeling approach using grey relational analysis (GRA) and response surface methodology (RSM). Multidiscip Model Mater Struct 17(5):990–1006. https://doi.org/10.1108/MMMS-01-2021-0017

    Article  Google Scholar 

  72. Das D, Pradhan SK, Sahoo AK, Panda A, Satpathy MP, Samal C (2020) Tool wear and cutting force investigations during turning 15 wt% SiCp-Al 7075 metal matrix composite. Mater Today Proc 26:854–859. https://doi.org/10.1016/j.matpr.2020.01.053

    Article  Google Scholar 

  73. Balasubramanian K, Nataraj M, Duraisamy P (2019) Machinability analysis and application of response surface approach on CNC turning of LM6/SiCp composites. Mater Manuf Process 34(12):1389–1400. https://doi.org/10.1080/10426914.2019.1660787

    Article  Google Scholar 

  74. Antić A, Šimunović G, Šarić T, Milošević M, Ficko M (2013) A model of tool wear monitoring system for turning. Teh Vjesn 20(2):247–254

    Google Scholar 

  75. Srinivasa Rohit V, Anne VG, Ramakrishna L (2020) Dynamic force signal analysis in dry finish turning of aluminium metal matrix composites. E3S Web Conf 184:01072. https://doi.org/10.1051/e3sconf/202018401072

    Article  Google Scholar 

  76. Safavi M, Balazinski M, Mehmanparast H, Niknam SA (2020) Experimental characterization of tool wear morphology and cutting force profile in dry and wet turning of titanium metal matrix composites (Ti-MMCs). Metals (Basel) 10(11):1459. https://doi.org/10.3390/met10111459

    Article  Google Scholar 

  77. Kuntoğlu M et al (2020) A review of indirect tool condition monitoring systems and decision-making methods in turning: critical analysis and trends. Sensors 21(1):108. https://doi.org/10.3390/s21010108

    Article  Google Scholar 

  78. Kannan VV, Kannan V, Sundararajan D, Uday Kumar B, Anvesh D, Akhil V (2019) Experimental investigation on turning characteristics of TiC/MoS 2 nanoparticles reinforced Al7075 using TiN coated cutting tool, in SAE Technical Papers (October). https://doi.org/10.4271/2019-28-0165

  79. Swain PK, Das Mohapatra K, Das R, Sahoo AK, Panda A (2020) Experimental investigation into characterization and machining of Al + SiCp nano-composites using coated carbide tool. Mech Ind 21(3):307. https://doi.org/10.1051/meca/2020015

    Article  Google Scholar 

  80. Kim J, Bai W, Roy A, Jones LCR, Ayvar-Soberanis S, Silberschmidt VV (2019) Hybrid machining of metal-matrix composite. Procedia CIRP 82:184–189. https://doi.org/10.1016/j.procir.2019.04.162

    Article  Google Scholar 

  81. Nestler A, Schubert A (2014) Surface properties in ultrasonic vibration assisted turning of particle reinforced aluminium matrix composites. Procedia CIRP 13:125–130. https://doi.org/10.1016/j.procir.2014.04.022

    Article  Google Scholar 

  82. Dong G, Zhang H, Zhou M, Zhang Y (2012) Experimental investigation on ultrasonic vibration assisted turning of Sicp/Al composites. Mater Manuf Process 28(9):120813105547003. https://doi.org/10.1080/10426914.2012.709338

    Article  Google Scholar 

  83. Kim J et al (2022) Ultrasonically assisted turning of micro-SiCp/Al 2124 composite. Procedia Struct Integr 37(C):282–291. https://doi.org/10.1016/j.prostr.2022.01.086

    Article  Google Scholar 

  84. Liu C, Zhao B, Gao G, Jiao F (2002) Research on the characteristics of the cutting force in the vibration cutting of a particle-reinforced metal matrix composites SiCp/Al. J Mater Process Technol 129(1–3):196–199. https://doi.org/10.1016/S0924-0136(02)00649-0

    Article  Google Scholar 

  85. Przestacki D (2014) Conventional and laser assisted machining of composite A359/20SiCp. Procedia CIRP 14:229–233. https://doi.org/10.1016/j.procir.2014.03.029

    Article  Google Scholar 

  86. Wei C et al (2020) High speed, high power density laser-assisted machining of Al-SiC metal matrix composite with significant increase in productivity and surface quality. J Mater Process Technol 285:116784. https://doi.org/10.1016/j.jmatprotec.2020.116784

    Article  Google Scholar 

  87. Kong X, Yang L, Zhang H, Chi G, Wang Y (2017) Optimization of surface roughness in laser-assisted machining of metal matrix composites using Taguchi method. Int J Adv Manuf Technol 89(1–4):529–542. https://doi.org/10.1007/s00170-016-9115-1

    Article  Google Scholar 

  88. Jiao KR, Huang ST, Xu LF (2014) Experimental study on surface quality at different milling speed of high volume fraction SiCp/Al thin walled test-piece. Mater Sci Forum 800–801:15–19. https://doi.org/10.4028/www.scientific.net/MSF.800-801.15

    Article  Google Scholar 

  89. El-Gallab M, Sklad M (1998) Machining of Al/SiC particulate metal-matrix composites part I: tool performance. J Mater Process Technol 83(1–3):151–158. https://doi.org/10.1016/S0924-0136(98)00054-5

    Article  Google Scholar 

  90. Pramanik A, Zhang LC, Arsecularatne JA (2006) Prediction of cutting forces in machining of metal matrix composites. Int J Mach Tools Manuf 46(14):1795–1803. https://doi.org/10.1016/j.ijmachtools.2005.11.012

    Article  Google Scholar 

  91. Lin JT, Bhattacharyya D, Lane C (1995) Machinability of a silicon carbide reinforced aluminium metal matrix composite. Wear 181–183:883–888. https://doi.org/10.1016/0043-1648(95)90211-2

    Article  Google Scholar 

  92. Manna A, Bhattacharayya B (2003) A study on machinability of Al/SiC-MMC. J Mater Process Technol 140(1–3 SPEC):711–716. https://doi.org/10.1016/S0924-0136(03)00905-1

    Article  Google Scholar 

  93. Chambers AR (1996) The machinability of light alloy MMCs. Compos Part A Appl Sci Manuf 27(2):143–147. https://doi.org/10.1016/1359-835X(95)00001-I

    Article  Google Scholar 

  94. El-gallab MS (1999) Machining of particulate metal matrix composites

  95. Kılıckap E, Cakır O, Aksoy M, Inan A (2005) Study of tool wear and surface roughness in machining of homogenised SiC-p reinforced aluminium metal matrix composite. J Mater Process Technol 164:862–867. https://doi.org/10.1016/j.jmatprotec.2005.02.109

    Article  Google Scholar 

  96. Bhushan RK (2013) Optimization of cutting parameters for minimizing power consumption and maximizing tool life during machining of Al alloy SiC particle composites. J Clean Prod 39:242–254. https://doi.org/10.1016/j.jclepro.2012.08.008

    Article  Google Scholar 

  97. Bhushan RK, Kumar S, Das S (2010) Effect of machining parameters on surface roughness and tool wear for 7075 Al alloy SiC composite. Int J Adv Manuf Technol 50(5–8):459–469. https://doi.org/10.1007/s00170-010-2529-2

    Article  Google Scholar 

  98. Tamang S, Chandrasekaran M (2014) Experimental investigation and development of multi response ANN modeling in turning Al-SiCp MMC using polycrystalline diamond tool. Int J CurrEngTechnol 2:1–8

    Google Scholar 

  99. Laghari RA, Li J, Mia M (2020) Effects of turning parameters and parametric optimization of the cutting forces in machining SiCp/Al 45 wt% composite. Metals (Basel) 10(6):840. https://doi.org/10.3390/met10060840

    Article  Google Scholar 

  100. Chandrasekaran M, Tamang S (2014) Desirability analysis and genetic algorithm approaches to optimize single and multi response characteristics in machining Al-SiCp MMC, in 5th International & 26th All India Manufacturing Technology, Design and Research Conference (AIMTDR 2014) December 12th–14th, 2014, IIT Guwahati, Assam, India, (Aimtdr), pp. 1–6

  101. Laghari RA, Li J (2021) Modeling and optimization of cutting forces and effect of turning parameters on SiCp/Al 45% vs SiCp/Al 50% metal matrix composites: a comparative study. SN Appl Sci 3(7):706. https://doi.org/10.1007/s42452-021-04689-z

    Article  Google Scholar 

  102. Laghari RA, Munish Kumar Gupta JL (2020) Evolutionary algorithm for the prediction and optimization of SiCp/Al metal matrix composite machining. J Prod Syst Manuf Sci 2(1):59–69

    Google Scholar 

  103. Kumar R, Chauhan S (2015) Study on surface roughness measurement for turning of Al 7075/10/SiCp and Al 7075 hybrid composites by using response surface methodology (RSM) and artificial neural networking (ANN). Measurement 65:166–180. https://doi.org/10.1016/j.measurement.2015.01.003

    Article  Google Scholar 

  104. Laghari RA, Li J, Xie Z, Wang S-Q (2018) Modeling and optimization of tool wear and surface roughness in turning of Al/SiCp using response surface methodology. 3D Res 9(4):46. https://doi.org/10.1007/s13319-018-0199-2

    Article  Google Scholar 

  105. Laghari RA, Li J, Wu Y (2020) Study of machining process of SiCp/Al particle reinforced metal matrix composite using finite element analysis and experimental verification. Materials (Basel) 13(23):5524. https://doi.org/10.3390/ma13235524

    Article  Google Scholar 

  106. Bhushan RK, Kumar S, Das S (2013) Machining performance of 7075 al alloy SiC metal matrix composite with HSS and carbide tool. J Manuf Technol Res 5(1–2)

  107. Kannan S, Kishawy HA, Deiab I (2009) Cutting forces and TEM analysis of the generated surface during machining metal matrix composites. J Mater Process Technol 209(5):2260–2269. https://doi.org/10.1016/j.jmatprotec.2008.05.025

    Article  Google Scholar 

  108. Kannan S, Kishawy HA (2006) Surface characteristics of machined aluminium metal matrix composites. Int J Mach Tools Manuf 46(15):2017–2025. https://doi.org/10.1016/j.ijmachtools.2006.01.003

    Article  Google Scholar 

  109. Davim JP (2008) Machining. Springer, London, London

    Google Scholar 

  110. An Q, Chen J, Ming W, Chen M (2021) Machining of SiC ceramic matrix composites: a review. Chinese J Aeronaut 34(4):540–567. https://doi.org/10.1016/j.cja.2020.08.001

    Article  Google Scholar 

  111. Di Ilio A, Paoletti A (2012) Machinability aspects of metal matrix composites, in Machining of Metal Matrix Composites, London: Springer London, pp. 63–77

  112. Teti R (2002) Machining of composite materials. CIRP Ann - Manuf Technol 51(2):611–634. https://doi.org/10.1016/S0007-8506(07)61703-X

    Article  Google Scholar 

  113. Narutaki N (1996) Machining of MMC, pp. 359–370

  114. Jani D (2014) Machining of Sic—metal matrix composite (MMC) by polycrystalline diamond (PCD) tools and effect on quality of surface by changing machining parameters. Int J Sci Res Dev 2:106–108

    Google Scholar 

  115. Rajabi A, Ghazali MJ, Syarif J, Daud AR (2014) Development and application of tool wear: a review of the characterization of TiC-based cermets with different binders. Chem Eng J 255:445–452. https://doi.org/10.1016/j.cej.2014.06.078

    Article  Google Scholar 

  116. Muthukrishnan N, Davim JP (2011) An investigation of the effect of work piece reinforcing percentage on the machinability of Al-SiC metal matrix composites. J Mech Eng Res 3(January):15–24

    Google Scholar 

  117. Ozben T, Kilickap E, Çakır O (2008) Investigation of mechanical and machinability properties of SiC particle reinforced Al-MMC. J Mater Process Technol 198(1–3):220–225. https://doi.org/10.1016/j.jmatprotec.2007.06.082

    Article  Google Scholar 

  118. Manna A, Bhattacharyya B (2002) A study on different tooling systems during machining of Al/SiC-MMC. J Mater Process Technol 123(3):476–482. https://doi.org/10.1016/S0924-0136(02)00127-9

    Article  Google Scholar 

  119. Manna A, Bhattacharyya B (2004) Investigation for optimal parametric combination for achieving better surface finish during turning of Al/SiC-MMC. Int J Adv Manuf Technol 23(9–10):658–665. https://doi.org/10.1007/s00170-003-1624-z

    Article  Google Scholar 

  120. Alpas AT, Bhattacharya S, Hutchings IM (2018) 45 wear of particulate metal matrix composites, in Comprehensive Composite Materials II, vol. 4, Elsevier, pp. 137–172

  121. Ding X, Liew WYH, Liu XD (2005) Evaluation of machining performance of MMC with PCBN and PCD tools. Wear 259(7–12):1225–1234. https://doi.org/10.1016/j.wear.2005.02.094

    Article  Google Scholar 

  122. Manna A, Bhattacharayya B (2005) Influence of machining parameters on the machinability of particulate reinforced Al/SiC-MMC. Int J Adv Manuf Technol 25(9–10):850–856. https://doi.org/10.1007/s00170-003-1917-2

    Article  Google Scholar 

  123. Kremer A, Devillez A, Dominiak S, Dudzinski D, El Mansori M (2008) Machinability of Al/SiC particulate metal-matrix composites under dry conditions with CVD diamond-coated carbide tools. Mach Sci Technol 12(2):214–233. https://doi.org/10.1080/10910340802067494

    Article  Google Scholar 

  124. Dabade UA, Joshi SS (2009) Analysis of chip formation mechanism in machining of Al/SiCp metal matrix composites. J Mater Process Technol 209(10):4704–4710. https://doi.org/10.1016/j.jmatprotec.2008.10.057

    Article  Google Scholar 

  125. Kannan S, Kishawy HA, Balazinski M (2013) Analysis of two- and three-body abrasive wear during machining of aluminium-based metal matrix composite. Int J Mater Prod Technol 46(1):81–94. https://doi.org/10.1504/IJMPT.2013.052793

    Article  Google Scholar 

  126. Wang T, Xie L, Wang X, Ding Z (2015) PCD tool performance in high-speed milling of high volume fraction SiCp/Al composites. Int J Adv Manuf Technol 78(9–12):1445–1453. https://doi.org/10.1007/s00170-014-6740-4

    Article  Google Scholar 

  127. Weinert K, König W (1993) A consideration of tool wear mechanism when machining metal matrix composites (MMC). CIRP Ann - Manuf Technol 42(1):95–98. https://doi.org/10.1016/S0007-8506(07)62400-7

    Article  Google Scholar 

  128. Rathod BS, Pandey B (2017) Effect of turning parameters on aluminium metal matrix composites -a review. IOP Conf Ser Mater Sci Eng 225:012276. https://doi.org/10.1088/1757-899X/225/1/012276

    Article  Google Scholar 

  129. Cook MW (1998) Machining MMC engineering components with polycrystalline diamond and diamond grinding. Mater Sci Technol 14(9–10):892–895. https://doi.org/10.1179/mst.1998.14.9-10.892

    Article  Google Scholar 

  130. Repeto D, Fernández-Vidal SR, Mayuet PF, Salguero J, Batista M (2020) On the machinability of an Al-63%SiC metal matrix composite. Materials (Basel) 13(5):1186. https://doi.org/10.3390/ma13051186

    Article  Google Scholar 

  131. Kishawy HA, Kannan S, Balazinski M (2004) An energy based analytical force model for orthogonal cutting of metal matrix composites. CIRP Ann - Manuf Technol 53(1):91–94. https://doi.org/10.1016/S0007-8506(07)60652-0

    Article  Google Scholar 

  132. Hakami F, Pramanik A, Basak AK (2017) Tool wear and surface quality of metal matrix composites due to machining: a review. Proc Inst Mech Eng B: J Eng Manuf 231(5):739–752. https://doi.org/10.1177/0954405416667402

    Article  Google Scholar 

  133. Bushlya V et al (2017) Performance and wear mechanisms of novel superhard diamond and boron nitride based tools in machining Al-SiCp metal matrix composite. Wear 376–377:152–164. https://doi.org/10.1016/j.wear.2017.01.036

    Article  Google Scholar 

  134. Gao L, Liu C, Hou Z, Li C, Shen R, Yang T (2022) Dry turning of SiCp/Al matrix composites with a wide range of particle volume fractions: tool wear characteristics analysis of multi-coated tool. Int J Adv Manuf Technol 121(7–8):5343–5359. https://doi.org/10.1007/s00170-022-09727-7

    Article  Google Scholar 

  135. Kannan A, Mohan R, Viswanathan R, Sivashankar N (2020) Experimental investigation on surface roughness, tool wear and cutting force in turning of hybrid (Al7075 + SiC + Gr) metal matrix composites. J Mater Res Technol 9(6):16529–16540. https://doi.org/10.1016/j.jmrt.2020.11.074

    Article  Google Scholar 

  136. Olortegui-Yume JA, Kwon PY (2007) Tool wear mechanisms in machining. Int J Mach Mach Mater 2(3–4):316–334. https://doi.org/10.1504/ijmmm.2007.015469

    Article  Google Scholar 

  137. Wang YJ, Chen T, Pan MQ, Liu JZ, Chen LG, Sun LN (2013) The evaluation of tool wears in machining of SiCp/Al composites. Adv Mater Res 764:61–64. https://doi.org/10.4028/www.scientific.net/AMR.764.61

    Article  Google Scholar 

  138. Wang X, Popov VL, Yu Z, Li Y, Xu J, Yu H (2022) Study on cutting performance of SiCp/Al composite using textured YG8 carbide tool. Int J Adv Manuf Technol 119(3–4):2213–2222. https://doi.org/10.1007/s00170-021-08353-z

    Article  Google Scholar 

  139. Akhyar Ibrahim G, Che Haron CH, Abdul Ghani J, Said AYM, Abu Yazid MZ (2011) Performance of PVD-coated carbide tools when turning Inconel 718 in dry machining. Adv Mech Eng 3:790975. https://doi.org/10.1155/2011/790975

    Article  Google Scholar 

  140. Yume JAO, Kwon PY (2007) Tool wear mechanisms in machining. Int J Mach Mach Mater 2(3/4):316. https://doi.org/10.1504/IJMMM.2007.015469

    Article  Google Scholar 

  141. Ciftci I, Turker M, Seker U (2004) CBN cutting tool wear during machining of particulate reinforced MMCs. Wear 257(9–10):1041–1046. https://doi.org/10.1016/j.wear.2004.07.005

    Article  Google Scholar 

  142. de Godoy VAA, Diniz AE (2011) Turning of interrupted and continuous hardened steel surfaces using ceramic and CBN cutting tools. J Mater Process Technol 211(6):1014–1025. https://doi.org/10.1016/j.jmatprotec.2011.01.002

    Article  Google Scholar 

  143. Patil RY (2010) Cutting tool wear-mechanisms. J Sci Engg Tech Mgt 2(1):38–42

    Google Scholar 

  144. Yingfei G, Jiuhua X, Hui Y (2010) Diamond tools wear and their applicability when ultra-precision turning of SiCp/2009Al matrix composite. Wear 269(11–12):699–708. https://doi.org/10.1016/j.wear.2009.09.002

    Article  Google Scholar 

  145. Wang Z, Yu B, Liu K, Yin Z, Yuan J, Zhu Y (2020) Performance and wear mechanism of spark plasma sintered WC-Based ultrafine cemented carbides tools in dry turning of Ti–6Al–4V. Ceram Int 46(12):20207–20214. https://doi.org/10.1016/j.ceramint.2020.05.101

    Article  Google Scholar 

  146. Öpöz TT, Chen X (2016) Chip formation mechanism using finite element simulation. Strojniški Vestn - J Mech Eng 62(11):636–646. https://doi.org/10.5545/sv-jme.2016.3523

    Article  Google Scholar 

  147. Haddag B, Atlati S, Nouari M, Barlier C, Zenasni M (2012) Analysis of the cutting parameters influence during machining aluminium alloy a2024-t351 with uncoated carbide inserts. Eng Trans 60(1)

  148. Lin JT, Bhattacharyya D, Ferguson WG (1998) Chip formation in the machining of SiC-particle-reinforced aluminium-matrix composites. Compos Sci Technol 58(2):285–291. https://doi.org/10.1016/S0266-3538(97)00126-7

    Article  Google Scholar 

  149. Fang N (2002) Machining with tool–chip contact on the tool secondary rake face—part I: a new slip-line model. Int J Mech Sci 44(11):2337–2354. https://doi.org/10.1016/S0020-7403(02)00185-6

    Article  MATH  Google Scholar 

  150. Mabrouki T et al (2016) Some insights on the modelling of chip formation and its morphology during metal cutting operations. Comptes Rendus Mécanique 344(4–5):335–354. https://doi.org/10.1016/j.crme.2016.02.003

    Article  Google Scholar 

  151. Joshi S, Ramakrishnan N, Ramakrishnan P (1999) Analysis of chip breaking during orthogonal machining of Al/SiCp composites. J Mater Process Technol 88(1–3):90–96. https://doi.org/10.1016/S0924-0136(98)00379-3

    Article  Google Scholar 

  152. Ozcatalbas Y (2003) Chip and built-up edge formation in the machining of in situ Al4C3–Al composite. Mater Des 24(3):215–221. https://doi.org/10.1016/S0261-3069(02)00146-2

    Article  Google Scholar 

  153. Patten JA, Williams A (2007) Numerical simulations of vibration assisted machining, in Proceedings - ASPE Spring Topical Meeting on Vibration Assisted Machining Technology, ASPE 2007, 40, pp. 27–31

  154. Haider J, Hashmi MSJ (2014) Health and environmental impacts in metal machining processes, in Comprehensive Materials Processing 8, Elsevier, pp. 7–33

  155. Nithiya Sandhiya YJ, Thamizharasan MM, Ajay Subramanyam BV, Vijay Sekar KS, Suresh Kumar S (2018) Finite element analysis of tool particle interaction, particle volume fraction, size, shape and distribution in machining of A356/SiCp, in Materials Today: Proceedings 5(8): 16800–16806. https://doi.org/10.1016/j.matpr.2018.06.006

  156. Fang Y, Wang Y, Zhang P, Luo H (2021) Research on chip formation mechanism and surface morphology of particle-reinforced metal matrix composites. Int J Adv Manuf Technol 117(11–12):3793–3804. https://doi.org/10.1007/s00170-021-07921-7

    Article  Google Scholar 

  157. Lu S et al (2020) Finite element investigation of the influence of SiC particle distribution on diamond cutting of SiCp/Al composites. Nanomanufacturing Metrol 3(4):251–259. https://doi.org/10.1007/s41871-020-00074-3

    Article  MathSciNet  Google Scholar 

  158. Fathipour M, Hamedi M, Yousefi R (2013) Numerical and experimental analysis of machining of Al (20 vol% SiC) composite by the use of ABAQUS software. Materwiss Werksttech 44(1):14–20. https://doi.org/10.1002/mawe.201300959

    Article  Google Scholar 

  159. Pramanik A, Zhang LC, Arsecularatne JA (2008) Machining of metal matrix composites: effect of ceramic particles on residual stress, surface roughness and chip formation. Int J Mach Tools Manuf 48(15):1613–1625. https://doi.org/10.1016/j.ijmachtools.2008.07.008

    Article  Google Scholar 

  160. Duan C, Sun W, Fu C, Zhang F (2018) Modeling and simulation of tool-chip interface friction in cutting Al/SiCp composites based on a three-phase friction model. Int J Mech Sci 142–143:384–396. https://doi.org/10.1016/j.ijmecsci.2018.05.014

    Article  Google Scholar 

  161. Fnides B, Yallese MA, Mabrouki T, Rigal J-F (2011) Application of response surface methodology for determining cutting force model in turning hardened AISI H11 hot work tool steel. Sadhana - Acad Proc Eng Sci 36(1):109

    Google Scholar 

  162. Srinivasan A, Arunachalam RM, Ramesh S, Senthilkumaar JS (2012) Machining performance study on metal matrix composites-a response surface methodology approach. Am J Appl Sci 9(4):478–483. https://doi.org/10.3844/ajassp.2012.478.483

    Article  Google Scholar 

  163. Muthusamy Subramanian AV, Nachimuthu MDG, Cinnasamy V (2017) Assessment of cutting force and surface roughness in LM6/SiCp using response surface methodology. J Appl Res Technol 15(3):283–296. https://doi.org/10.1016/j.jart.2017.01.013

    Article  Google Scholar 

  164. Dabade UA, Sonawane HA, Joshi SS (2010) Cutting forces and surface roughness in machining Al/SiCp composites of varying composition. Mach Sci Technol 14(2):258–279. https://doi.org/10.1080/10910344.2010.500950

    Article  Google Scholar 

  165. Shoba C, Ramanaiah N, Nageswara Rao D (2015) Effect of reinforcement on the cutting forces while machining metal matrix composites–an experimental approach. Eng Sci Technol Int J 18(4):658–663. https://doi.org/10.1016/j.jestch.2015.03.013

    Article  Google Scholar 

  166. Morin E, Masounave J, Laufer EE (1995) Effect of drill wear on cutting forces in the drilling of metal-matrix composites. Wear 184(1):11–16. https://doi.org/10.1016/0043-1648(94)06541-1

    Article  Google Scholar 

  167. Kannan S, Kishawy HA (2008) Effect of tool wear progression on cutting forces and surface quality during cutting metal matrix composites. Int J Mach Mach Mater 3(3/4):241. https://doi.org/10.1504/IJMMM.2008.020961

    Article  Google Scholar 

  168. Bansal P, Upadhyay L (2016) Effect of turning parameters on tool wear, surface roughness and metal removal rate of alumina reinforced aluminum composite. Procedia Technol 23:304–310. https://doi.org/10.1016/j.protcy.2016.03.031

    Article  Google Scholar 

  169. El-Gallab M, Sklad M (1998) Machining of Al/SiC particulate metal matrix composites part II: workpiece surface integrity. J Mater Process Technol 83(1–3):277–285. https://doi.org/10.1016/S0924-0136(98)00072-7

    Article  Google Scholar 

  170. Iuliano L, Settineri L, Gatto A (1998) High-speed turning experiments on metal matrix composites. Compos Part A Appl Sci Manuf 29(12):1501–1509. https://doi.org/10.1016/S1359-835X(98)00105-5

    Article  Google Scholar 

  171. Sikder S, Kishawy HA (2012) Analytical model for force prediction when machining metal matrix composite. Int J Mech Sci 59(1):95–103. https://doi.org/10.1016/j.ijmecsci.2012.03.010

    Article  Google Scholar 

  172. Lin JT, Bhattacharyya D, Lane C (1995) Machinability of a silicon carbide reinforced aluminium metal matrix composite. Wear 181–183(PART 2):883–888. https://doi.org/10.1016/0043-1648(95)90211-2

    Article  Google Scholar 

  173. Jomaa W, Songmene V, Bocher P, Gakwaya A (2017) FEA-based comparative investigation on high speed machining of aluminum alloys AA6061-T6 and AA7075-T651. Solid State Phenom 261:347–353. https://doi.org/10.4028/www.scientific.net/SSP.261.347

    Article  Google Scholar 

  174. Sai Venkatesh S, Ram Kumar TA, Blalakumhren AP, Saimurugan M, Marimuthu KP (2019) Finite element simulation and experimental validation of the effect of tool wear on cutting forces in turning operation. Mech Mech Eng 23(1):297–302. https://doi.org/10.2478/mme-2019-0040

    Article  Google Scholar 

  175. Gad SI, Attia MA, Hassan MA, El-Shafei AG (2021) A random microstructure-based model to study the effect of the shape of reinforcement particles on the damage of elastoplastic particulate metal matrix composites. Ceram Int 47(3):3444–3461. https://doi.org/10.1016/j.ceramint.2020.09.189

    Article  Google Scholar 

  176. Gad SI, Attia MA, Hassan MA, El-Shafei AG (2021) Predictive computational model for damage behavior of metal-matrix composites emphasizing the effect of particle size and volume fraction. Materials (Basel) 14(9):2143. https://doi.org/10.3390/ma14092143

    Article  Google Scholar 

  177. Shalimov AS, Tashkinov MA (2020) Modeling of deformation and fracture of porous media taking into account their morphological composition. PNRPU Mech Bull 2020(4):175–187. https://doi.org/10.15593/perm.mech/2020.4.15

    Article  Google Scholar 

  178. Shui XJ, Du Zhang Y, Wu Q (2014) Mesoscopic model for SiCP/Al composites and simulation on the cutting process. Appl Mech Mater 487:189–194. https://doi.org/10.4028/www.scientific.net/AMM.487.189

    Article  Google Scholar 

  179. Ghandehariun A, Kishawy HA, Umer U, Hussein HM (2016) Analysis of tool-particle interactions during cutting process of metal matrix composites. Int J Adv Manuf Technol 82(1–4):143–152. https://doi.org/10.1007/s00170-015-7346-1

    Article  Google Scholar 

  180. Kaselouris E, Papadoulis T, Variantza E, Baroutsos A, Dimitriou V (2017) A study of explicit numerical simulations in orthogonal metal cutting. Solid State Phenom 261:339–346. https://doi.org/10.4028/www.scientific.net/SSP.261.339

    Article  Google Scholar 

  181. Majumdar P, Jayaramachandran R, Ganesan S (2005) Finite element analysis of temperature rise in metal cutting processes. Appl Therm Eng 25(14–15):2152–2168. https://doi.org/10.1016/j.applthermaleng.2005.01.006

    Article  Google Scholar 

  182. Necpal M, Pokorný P, Kuruc M (2017) Finite element analysis of tool stresses, temperature and prediction of cutting forces in turning process, in Solid State Phenomena 261 SSP. https://doi.org/10.4028/www.scientific.net/SSP.261.354

  183. Xiang J, Xie L, Gao F (2021) Modeling high-speed cutting of SiCp/Al composites using a semi-phenomenologically based damage model. Chinese J Aeronaut 34(8). https://doi.org/10.1016/j.cja.2020.09.001

  184. Xiang J, Xie L, Hu X, Huo S, Pang S, Wang X (2019) Simulation and experimental research on ultra-precision turning of SiCp/Al composites. Xiyou Jinshu Cailiao Yu Gongcheng/Rare Met Mater Eng 48(5)

  185. Kishawy HA (2012) Turning processes for metal matrix composites, in Machining Technology for Composite Materials, Elsevier, pp. 3–16

  186. Pramanik A, Zhang LC, Arsecularatne JA (2007) An FEM investigation into the behavior of metal matrix composites: tool-particle interaction during orthogonal cutting. Int J Mach Tools Manuf 47(10):1497–1506. https://doi.org/10.1016/j.ijmachtools.2006.12.004

    Article  Google Scholar 

  187. Capello E (2005) Residual stresses in turning. J Mater Process Technol 160(2):221–228. https://doi.org/10.1016/j.jmatprotec.2004.06.012

    Article  Google Scholar 

  188. Bao Y, Zhang X, Lu S, Zhang H (2021) Investigation on the removal characteristics of single-point cutting high-volume fraction SiCp/Al composites. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-021-07977-5

    Article  Google Scholar 

  189. Wu Q, Zhang L (2020) Microstructure-based three-dimensional characterization of chip formation and surface generation in the machining of particulate-reinforced metal matrix composites. Int J Extrem Manuf 2(4):045103. https://doi.org/10.1088/2631-7990/abab4b

    Article  Google Scholar 

  190. Dandekar CR, Shin YC (2009) Multi-step 3-D finite element modeling of subsurface damage in machining particulate reinforced metal matrix composites. Compos Part A Appl Sci Manuf 40(8):1231–1239. https://doi.org/10.1016/j.compositesa.2009.05.017

    Article  Google Scholar 

  191. Przestacki D, Szymanski P, Wojciechowski S (2016) Formation of surface layer in metal matrix composite A359/20SiCP during laser assisted turning. Compos Part A Appl Sci Manuf 91:370–379. https://doi.org/10.1016/j.compositesa.2016.10.026

    Article  Google Scholar 

  192. Wang Y, Yang LJ, Wang NJ (2002) An investigation of laser-assisted machining of Al2O3 particle reinforced aluminum matrix composite, in J Mater Process Technol 129(1–3). https://doi.org/10.1016/S0924-0136(02)00616-7

  193. Kremer A, El Mansori M (2009) Influence of nanostructured CVD diamond coatings on dust emission and machinability of SiC particle-reinforced metal matrix composite. Surf Coatings Technol 204(6–7). https://doi.org/10.1016/j.surfcoat.2009.06.012

Download references

Acknowledgements

The authors acknowledge partial support of the Interdisciplinary Research Center for Intelligent Manufacturing and Robotics at King Fahd University of Petroleum and Minerals in Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

Rashid Ali Laghari: writing original draft, design and conceptualization, validation, and project administration.

Muhammad Jamil: editing and writing—original draft; review of the original draft.

Asif Ali Laghari: drawing and designing figures and conceptualization, review of draft, and validation.

Aqib Mashood Khan: data curation; writing—original draft; and validation.

Syed Sohail Akhtar: data curation; formal analysis; visualization; and writing—original draft.

Samir Mekid: data curation; formal analysis; software; and writing—original draft.

Corresponding authors

Correspondence to Rashid Ali Laghari or Syed Sohail Akhtar.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laghari, R.A., Jamil, M., Laghari, A.A. et al. A critical review on tool wear mechanism and surface integrity aspects of SiCp/Al MMCs during turning: prospects and challenges. Int J Adv Manuf Technol 126, 2825–2862 (2023). https://doi.org/10.1007/s00170-023-11178-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-11178-7

Keywords

Navigation