Skip to main content
Log in

Development of sustainable antibacterial coatings based on electrophoretic deposition of multilayers: gentamicin-loaded chitosan/gelatin/bioactive glass deposition on PEEK/bioactive glass layer

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Developing non-toxic, bioactive, and antibacterial implant devices is an urgent demand in the biomedical field. Here, the antibacterial behaviour and bioactivity of the polyetheretherketone (PEEK)-based coating was enhanced via multi-layer coating approach. This paper presents a study on antibacterial efficiency and in vitro bioactivity of electrophoretically deposited biodegradable gentamicin sulphate (GS)-loaded chitosan (CS)/gelatin (GT)/bioactive glass (BG) layers on PEEK/BG coatings. As a first layer, PEEK/BG layer was utilized to provide long term stability of the implant and to be a potential reservoir for sustainable drug release. Initially, a Taguchi design of experiment (DoE) approach was adopted to optimize EPD process of CS/GT/BG coatings on 316L stainless steel (316L SS) substrates. Later, CS/GT/BG coatings including GS particles were produced first on the bare 316L SS and then on the PEEK/BG layer. The multi-layered coatings were analysed through morphological, chemical composition, antibacterial activity, drug release capacity, and in vitro bioactivity. The GS was released from the coatings in the controlled manner and minimum inhibitory concentration was maintained even after 3 weeks of incubation. The agar disc diffusion tests confirmed that sustained release of GS provided an antibacterial result against Escherichia coli (E. coli) and Staphylococcus carnosus (S. carnosus). Acellular in vitro analysis demonstrated the bioactive nature of the multi-layered coatings by forming an apatite-like layer on the surface of the coatings after 72 h immersion in the simulated body fluid (SBF). Furthermore, the non-toxic behaviour of the multi-layered coatings was confirmed by in vitro cellular studies.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of data and materials

The data presented and/or analysed during the current study are available from the corresponding author on request.

References

  1. Montgomery M, Ahadian S, Davenport Huyer L, Lo Rito M, Civitarese RA, Vanderlaan RD, Wu J, Reis LA, Momen A, Akbari S, Pahnke A, Li RK, Caldarone CA, Radisic M (2017) Flexible shape-memory scaffold for minimally invasive delivery of functional tissues. Nat Mater. https://doi.org/10.1038/nmat4956

  2. Barrère F, Mahmood TA, de Groot K, van Blitterswijk CA (2008) Advanced biomaterials for skeletal tissue regeneration: instructive and smart functions. Mater Sci Eng R Reports 59:38–71. https://doi.org/10.1016/j.mser.2007.12.001

    Article  Google Scholar 

  3. Kim S (2008) Changes in surgical loads and economic burden of hip and knee replacements in the US: 1997–2004. Arthritis Care Res 59:481–488. https://doi.org/10.1002/art.23525

    Article  Google Scholar 

  4. Paital SR, Dahotre NB (2009) Calcium phosphate coatings for bio-implant applications: materials, performance factors, and methodologies. Mater Sci Eng R Reports 66:1–70. https://doi.org/10.1016/j.mser.2009.05.001

    Article  Google Scholar 

  5. Hench LL (2005) Repair of skeletal tissues. Biomater Artif Organs Tissue Eng 119–128. https://doi.org/10.1533/9781845690861.3.119

  6. Park JB (1992) Orthopedic prosthesis fixation. Ann Biomed Eng 583–594. https://doi.org/10.1007/BF02368607

  7. Kitsugi T, Nakamura T, Oka M, Yan WQ, Goto T, Shibuya T, Kokubo T, Miyaji S (1996) Bone bonding behavior of titanium and its alloys when coated with titanium oxide (TiO2) and titanium silicate (Ti5Si3). J Biomed Mater Res 32:149–156. https://doi.org/10.1002/(SICI)1097-4636(199610)32:2%3c149::AID-JBM1%3e3.0.CO;2-T

    Article  Google Scholar 

  8. Anthony PP, Gie GA, Howie CR, Ling RS (1990) Localised endosteal bone lysis in relation to the femoral components of cemented total hip arthroplasties. J Bone Joint Surg Br 72:971–979. http://www.ncbi.nlm.nih.gov/pubmed/2246300

  9. Geetha M, Singh AK, Asokamani R, Gogia AK (2009) Ti based biomaterials, the ultimate choice for orthopaedic implants - a review. Prog Mater Sci 54:397–425. https://doi.org/10.1016/j.pmatsci.2008.06.004

    Article  Google Scholar 

  10. Torkaman R, Darvishi S, Jokar M, Kharaziha M, Karbasi M (2017) Electrochemical and in vitro bioactivity of nanocomposite gelatin-forsterite coatings on AISI 316 L stainless steel. Prog Org Coatings 103:40–47. https://doi.org/10.1016/j.porgcoat.2016.11.029

    Article  Google Scholar 

  11. Jones JR (2015) Reprint of: review of bioactive glass: from Hench to hybrids. Acta Biomater 23:S53–S82. https://doi.org/10.1016/j.actbio.2015.07.019

    Article  Google Scholar 

  12. Hench LL, Day DE, Höland W, Rheinberger VM (2010) Glass and medicine. Int J Appl Glas Sci 1:104–117. https://doi.org/10.1111/j.2041-1294.2010.00001.x

    Article  Google Scholar 

  13. Hench LL, Jones JR (2015) Bioactive glasses: frontiers and challenges, Front. Bioeng. Biotechnol 3:1–12. https://doi.org/10.3389/fbioe.2015.00194

    Article  Google Scholar 

  14. Boccaccini AR, Peters C, Roether JA, Eifler D, Misra SK, Minay EJ (2006) Electrophoretic deposition of polyetheretherketone (PEEK) and PEEK/Bioglass® coatings on NiTi shape memory alloy wires. J Mater Sci 41:8152–8159. https://doi.org/10.1007/s10853-006-0556-z

    Article  Google Scholar 

  15. Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27:3413–3431. https://doi.org/10.1016/j.biomaterials.2006.01.039

    Article  Google Scholar 

  16. Baino F, Verne E (2017) Glass-based coatings on biomedical implants: a state-of-the-art review. Biomed Glas 3:1–17. https://doi.org/10.1515/bglass-2017-0001

    Article  Google Scholar 

  17. Bellucci D, Sola A, Gentile P, Ciardelli G, Cannillo V (2012) Biomimetic coating on bioactive glass-derived scaffolds mimicking bone tissue. J Biomed Mater Res Part A 100(A):3259–3266. https://doi.org/10.1002/jbm.a.34271

  18. Peter M, Binulal NS, Nair SV, Selvamurugan N, Tamura H, Jayakumar R (2010) Novel biodegradable chitosan-gelatin/nano-bioactive glass ceramic composite scaffolds for alveolar bone tissue engineering. Chem Eng J 158:353–361. https://doi.org/10.1016/j.cej.2010.02.003

    Article  Google Scholar 

  19. Kumar MNVR (2000) A review of chitin and chitosan applications. React Funct Polym 46:1–27. https://doi.org/10.1016/S1381-5148(00)00038-9

  20. Agnihotri SA, Mallikarjuna NN, Aminabhavi TM (2004) Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J Control Release 100:5–28. https://doi.org/10.1016/j.jconrel.2004.08.010

    Article  Google Scholar 

  21. Grigore A, Sarker B, Fabry B, Boccaccini AR, Detsch R (2014) Behavior of encapsulated MG-63 cells in RGD and gelatine-modified alginate hydrogels. Tissue Eng Part A 20:2140–2150. https://doi.org/10.1089/ten.tea.2013.0416

    Article  Google Scholar 

  22. Chollet C, Chanseau C, Remy M, Guignandon A, Bareille R, Labrugère C, Bordenave L, Durrieu M-C (2009) The effect of RGD density on osteoblast and endothelial cell behavior on RGD-grafted polyethylene terephthalate surfaces. Biomaterials 30:711–720. https://doi.org/10.1016/j.biomaterials.2008.10.033

    Article  Google Scholar 

  23. Boccaccini AR, Keim S, Ma R, Li Y, Zhitomirsky I (2010) Electrophoretic deposition of biomaterials. J R Soc Interface 7(Suppl 5):S581–S613. https://doi.org/10.1098/rsif.2010.0156.focus

  24. Besra L, Liu M (2007) A review on fundamentals and applications of electrophoretic deposition (EPD). Prog Mater Sci 52:1–61. https://doi.org/10.1016/j.pmatsci.2006.07.001

    Article  Google Scholar 

  25. Clifford A, Luo D, Zhitomirsky I (2017) Colloids and surfaces A : physicochemical and engineering aspects colloidal strategies for electrophoretic deposition of organic-inorganic composites for biomedical applications. Colloids Surfaces A Physicochem Eng Asp 516:219–225. https://doi.org/10.1016/j.colsurfa.2016.12.039

    Article  Google Scholar 

  26. Patel KD, Singh RK, Lee EJ, Han CM, Won JE, Knowles JC, Kim HW (2014) Tailoring solubility and drug release from electrophoretic deposited chitosan–gelatin films on titanium. https://doi.org/10.1016/j.surfcoat.2013.11.049

  27. Jiang T, Zhang Z, Zhou Y, Liu Y, Wang Z, Tong H, Shen X, Wang Y (2010) Surface functionalization of titanium with chitosan/gelatin via electrophoretic deposition: characterization and cell behavior. Biomacromol 11:1254–1260. https://doi.org/10.1021/bm100050d

    Article  Google Scholar 

  28. Keenan TR (2012) Gelatin. Polym Sci A Compr Ref 237–247. https://doi.org/10.1016/B978-0-444-53349-4.00265-X

  29. Simchi A, Tamjid E, Pishbin F, Boccaccini AR (2011) Recent progress in inorganic and composite coatings with bactericidal capability for orthopaedic applications. Nanomed Nanotechnol Biol Med 7:22–39. https://doi.org/10.1016/j.nano.2010.10.005

    Article  Google Scholar 

  30. Cai X, Ma K, Zhou Y, Jiang T, Wang Y (2016) Surface functionalization of titanium with tetracycline loaded chitosan-gelatin nanosphere coatings via EPD: fabrication, characterization and mechanism. RSC Adv 6:7674–7682. https://doi.org/10.1039/C5RA17109A

    Article  Google Scholar 

  31. Mouriño V, Boccaccini AR (2010) Bone tissue engineering therapeutics: controlled drug delivery in three-dimensional scaffolds. J R Soc Interface 7:209–227. https://doi.org/10.1098/rsif.2009.0379

    Article  Google Scholar 

  32. Zilberman M, Elsner JJ (2008) Antibiotic-eluting medical devices for various applications. J Control Release 130:202–215. https://doi.org/10.1016/j.jconrel.2008.05.020

    Article  Google Scholar 

  33. Pilawa B, Ramos P, Krzton A, Liszka B (2012) Free radicals in the thermally sterilized aminoglycoside antibiotics. Pharm Anal Acta 03. https://doi.org/10.4172/2153-2435.1000193

  34. Stallmann HP, Faber C, Bronckers AL, Nieuw Amerongen AV, Wuisman PI (2006) In vitro gentamicin release from commercially available calcium-phosphate bone substitutes influence of carrier type on duration of the release profile. BMC Musculoskelet Disord 7:18. https://doi.org/10.1186/1471-2474-7-18

  35. Doadrio AL, Sousa EMB, Doadrio JC, Pariente JP, Izquierdo-Barba I, Vallet-Regí M (2004) Mesoporous SBA-15 HPLC evaluation for controlled gentamicin drug delivery. J. Control Release 97:125–132. https://doi.org/10.1016/j.jconrel.2004.03.005

  36. Azi ML, Kfuri Junior M, Martinez R, Paccola CAJ (2010) Bone cement and gentamicin in the treatment of bone infection. Background and in vitro study. Acta Ortopédica Bras 18:31–34. https://doi.org/10.1590/S1413-78522010000100006

  37. Li XD, Hu YY (2001) The treatment of osteomyelitis with gentamicin-reconstituted bone xenograft-composite. J Bone Joint Surg Br 83:1063–1068. https://doi.org/10.1302/0301-620X.83B7.11271

    Article  Google Scholar 

  38. Hetrick EM, Schoenfisch MH (2006) Reducing implant-related infections: active release strategies. Chem Soc Rev 35:780–789. https://doi.org/10.1039/b515219b

    Article  Google Scholar 

  39. Pishbin F, Mouriño V, Flor S, Kreppel S, Salih V, Ryan MP, Boccaccini AR, Mourino V, Flor S, Kreppel S, Salih V, Ryan MP, Boccaccini AR, Mouriño V, Flor S, Kreppel S, Salih V, Ryan MP, Boccaccini AR (2014) Electrophoretic deposition of gentamicin-loaded bioactive glass/chitosan composite coatings for orthopaedic implants. ACS Appl Mater Interfaces 6:8796–8806. https://doi.org/10.1021/am5014166

    Article  Google Scholar 

  40. Zhang J, Wen Z, Zhao M, Li G, Dai C (2016) Effect of the addition CNTs on performance of CaP/chitosan/coating deposited on magnesium alloy by electrophoretic deposition. Mater Sci Eng C 58:992–1000. https://doi.org/10.1016/j.msec.2015.09.050

    Article  Google Scholar 

  41. Rehman MAU, Bastan FE, Nawaz A, Nawaz Q, Wadood A (2020) Electrophoretic deposition of PEEK/bioactive glass composite coatings on stainless steel for orthopedic applications: an optimization for in vitro bioactivity and adhesion strength. Int J Adv Manuf Technol 108:1849–1862. https://doi.org/10.1007/s00170-020-05456-x

  42. Atiq M, Rehman U, Azeem M, Schubert DW, Boccaccini AR (2019) Electrophoretic deposition of chitosan / gelatin / bioactive glass composite coatings on 316L stainless steel : a design of experiment study. Surf Coat Technol 358:976–986. https://doi.org/10.1016/j.surfcoat.2018.12.013

    Article  Google Scholar 

  43. Nawaz A, Bano SSS, Yasir M, Wadood A, Rehman MAU (2020) Ag and Mn-doped mesoporous bioactive glass nanoparticles incorporated into the chitosan/gelatin coatings deposited on PEEK/bioactive glass layers for favorable osteogenic differentiation and antibacterial activity. Mater Adv 1:1273–1284. https://doi.org/10.1039/D0MA00325E

  44. Rehman MAU, Bastan FE, Haider B, Boccaccini AR (2017) Electrophoretic deposition of PEEK/bioactive glass composite coatings for orthopedic implants: a design of experiments (DoE) study. Mater Des 130:223–230. https://doi.org/10.1016/j.matdes.2017.05.045

  45. Hench LL (1998) Bioceramics. J Am Ceram Soc 28:1705–1728. https://doi.org/10.1111/j.1151-2916.1998.tb02540.x

    Article  Google Scholar 

  46. Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27:2907–2915. https://doi.org/10.1016/j.biomaterials.2006.01.017

    Article  Google Scholar 

  47. Zhang Z, Cheng X, Yao Y, Luo J, Tang Q, Wu H, Lin S, Han C, Wei Q, Chen L (2016) Electrophoretic deposition of chitosan/gelatin coatings with controlled porous surface topography to enhance initial osteoblast adhesive responses. J Mater Chem B 4:7584–7595. https://doi.org/10.1039/C6TB02122K

    Article  Google Scholar 

  48. Gupta AN, Bohidar HB (2007) Surface patch binding induced intermolecular complexation and phase separation in aqueous solutions of similarly charged gelatin - chitosan molecules 10137–10145

  49. Cai X, Cai J, Ma K, Huang P, Gong L, Huang D, Jiang T, Wang Y (2016) Fabrication and characterization of Mg-doped chitosan–gelatin nanocompound coatings for titanium surface functionalization. J Biomater Sci Polym Ed 27:954–971. https://doi.org/10.1080/09205063.2016.1170416

    Article  Google Scholar 

  50. Voron’ko NG, Derkach SR, Kuchina YA, Sokolan NI (2016) The chitosan-gelatin (bio)polyelectrolyte complexes formation in an acidic medium. Carbohydr Polym 138:265–272. https://doi.org/10.1016/j.carbpol.2015.11.059

  51. Motas JG, Gorji NE, Nedelcu D, Brabazon D, Quadrini F (2021) XPS, SEM, DSC and nanoindentation characterization of silver nanoparticle-coated biopolymer pellets. Appl Sci 11. https://doi.org/10.3390/app11167706

  52. Rajeswari D, Gopi D, Ramya S, Kavitha L (2014) Investigation of anticorrosive, antibacterial and in vitro biological properties of a sulphonated poly(etheretherketone)/strontium, cerium co-substituted hydroxyapatite composite coating developed on surface treated surgical grade stainless steel for orth. RSC Adv 4:61525–61536. https://doi.org/10.1039/c4ra12207k

    Article  Google Scholar 

  53. Pishbin F, Mouriño V, Gilchrist JBB, McComb DWW, Kreppel S, Salih V, Ryan MPP, Boccaccini ARR (2013) Single-step electrochemical deposition of antimicrobial orthopaedic coatings based on a bioactive glass/chitosan/nano-silver composite system. Acta Biomater 9:7469–7479. https://doi.org/10.1016/j.actbio.2013.03.006

    Article  Google Scholar 

  54. Wang Y, Guo X, Pan R, Han D, Chen T, Geng Z, Xiong Y, Chen Y (2015) Electrodeposition of chitosan/gelatin/nanosilver: a new method for constructing biopolymer/nanoparticle composite films with conductivity and antibacterial activity. Mater Sci Eng C 53:222–228. https://doi.org/10.1016/j.msec.2015.04.031

    Article  Google Scholar 

  55. Pishbin F, Mouriño V, Flor S, Kreppel S, Salih V, Ryan MP, Boccaccini AR (2014) Electrophoretic deposition of gentamicin-loaded bioactive glass/chitosan composite coatings for orthopaedic implants. ACS Appl Mater Interfaces 6:8796–8806. https://doi.org/10.1021/am5014166

    Article  Google Scholar 

  56. Canal C, Pastorino D, Mestres G, Schuler P, Ginebra MP (2013) Relevance of microstructure for the early antibiotic release of fresh and pre-set calcium phosphate cements. Acta Biomater 9:8403–8412. https://doi.org/10.1016/j.actbio.2013.05.016

    Article  Google Scholar 

  57. Hixson AW, Crowell JH (1931) Dependence of reaction velocity upon surface and agitation. Ind Eng Chem 23:1160–1168. https://doi.org/10.1021/ie50262a025

    Article  Google Scholar 

  58. Kopcha M, Lordi NG, Tojo KJ (1991) Evaluation of release from selected thermosoftening vehicles. J Pharm Pharmacol 43:382–387. https://doi.org/10.1111/j.2042-7158.1991.tb03493.x

    Article  Google Scholar 

  59. Hahn FE, Sarre SG (1969) Mechanism of action of gentamicin. J Infect Dis 119(4/5):364–369

  60. Andrews JM, Andrews JM (2001) Determination of minimum inhibitory concentrations. J Antimicrob Chemother 48(Suppl 1):5–16. https://doi.org/10.1093/jac/48.suppl_1.5

    Article  Google Scholar 

  61. Qu Z, Yan J, Li B, Zhuang J, Huang Y (2010) Improving bone marrow stromal cell attachment on chitosan/hydroxyapatite scaffolds by an immobilized RGD peptide. Biomed Mater 5. https://doi.org/10.1088/1748-6041/5/6/065001

  62. Bagherifard S, Hickey DJ, de Luca AC, Malheiro VN, Markaki AE, Guagliano M, Webster TJ (2015) The influence of nanostructured features on bacterial adhesion and bone cell functions on severely shot peened 316L stainless steel. Biomaterials 73:185–197. https://doi.org/10.1016/j.biomaterials.2015.09.019

    Article  Google Scholar 

  63. Yoda I, Koseki H, Tomita M, Shida T, Horiuchi H, Sakoda H, Osaki M (2014) Effect of surface roughness of biomaterials on Staphylococcus epidermidis adhesion. BMC Microbiol 14:234. https://doi.org/10.1186/s12866-014-0234-2

    Article  Google Scholar 

  64. Zamin H, Yabutsuka T, Takai S, Sakaguchi H (2020) Role of magnesium and the effect of surface roughness on the hydroxyapatite-forming ability of zirconia induced by biomimetic aqueous solution treatment. Mater (Basel, Switzerland). 13:3045. https://doi.org/10.3390/ma13143045

  65. Mehdipour M, Afshar A (2012) A study of the electrophoretic deposition of bioactive glass–chitosan composite coating. Ceram Int 38:471–476. https://doi.org/10.1016/j.ceramint.2011.07.029

    Article  Google Scholar 

  66. Stoch A, Jastrzębski W, Brożek A, Trybalska B, Cichocińska M, Szarawara E (1999) FTIR monitoring of the growth of the carbonate containing apatite layers from simulated and natural body fluids. J Mol Struct 511:287–294. https://doi.org/10.1016/S0022-2860(99)00170-2

    Article  Google Scholar 

  67. Seuss S, Lehmann M, Boccaccini AR (2014) Alternating current electrophoretic deposition of antibacterial bioactive glass-chitosan composite coatings. Int J Mol Sci 15:12231–12242. https://doi.org/10.3390/ijms150712231

    Article  Google Scholar 

  68. Kim JH, Kim SH, Kim HK, Akaike T, Kim SC (2002) Synthesis and characterization of hydroxyapatite crystals: a review study on the analytical methods. J Biomed Mater Res 62:600–612. https://doi.org/10.1002/jbm.10280

    Article  Google Scholar 

  69. Ma K, Cai X, Zhou Y, Zhang Z, Jiang T, Wang Y (2014) Osteogenetic property of a biodegradable three-dimensional macroporous hydrogel coating on titanium implants fabricated via EPD. Biomed Mater 9:15008. https://doi.org/10.1088/1748-6041/9/1/015008

    Article  Google Scholar 

  70. Kim HK, Jang JW, Lee CH (2004) Surface modification of implant materials and its effect on attachment and proliferation of bone cells. J Mater Sci Mater Med 15:825–830. https://doi.org/10.1023/B:JMSM.0000032824.62866.a1

    Article  Google Scholar 

  71. Radda’a NS, Goldmann WH, Detsch R, Roether JA, Cordero-Arias L, Virtanen S, Moskalewicz T, Boccaccini AR (2017) Electrophoretic deposition of tetracycline hydrochloride loaded halloysite nanotubes chitosan/bioactive glass composite coatings for orthopedic implants. Surf Coatings Technol 327:146–157. https://doi.org/10.1016/j.surfcoat.2017.07.048

  72. Sarker B, Zehnder T, Rath SN, Horch RE, Kneser U, Detsch R, Boccaccini AR (2017) Oxidized alginate-gelatin hydrogel: a favorable matrix for growth and osteogenic differentiation of adipose-derived stem cells in 3D. ACS Biomater Sci Eng 3:1730–1737. https://doi.org/10.1021/acsbiomaterials.7b00188

    Article  Google Scholar 

  73. Sarker B, Papageorgiou DG, Silva R, Zehnder T, Gul-E-Noor F, Bertmer M, Kaschta J, Chrissafis K, Detsch R, Boccaccini AR (2014) Fabrication of alginate–gelatin crosslinked hydrogel microcapsules and evaluation of the microstructure and physico-chemical properties. J Mater Chem B 2:1470. https://doi.org/10.1039/c3tb21509a

    Article  Google Scholar 

  74. Chen Q, Garcia RP, Munoz J, Pérez De Larraya U, Garmendia N, Yao Q, Boccaccini AR (2015) Cellulose nanocrystals-bioactive glass hybrid coating as bone substitutes by electrophoretic co-deposition: in situ control of mineralization of bioactive glass and enhancement of osteoblastic performance. ACS Appl Mater Interfaces 7:24715–24725. https://doi.org/10.1021/acsami.5b07294

    Article  Google Scholar 

  75. Hassan W, Dong Y, Wang W (2013) Encapsulation and 3D culture of human adipose-derived stem cells in an in-situ crosslinked hybrid hydrogel composed of PEG-based hyperbranched copolymer and hyaluronic acid. Stem Cell Res Ther 4:1. https://doi.org/10.1186/scrt182

    Article  Google Scholar 

  76. Shin H, Zygourakis K, Farach-Carson MC, Yaszemski MJ, Mikos AG (2004) Modulation of differentiation and mineralization of marrow stromal cells cultured on biomimetic hydrogels modified with Arg-Gly-Asp containing peptides. J Biomed Mater Res 69A:535–543. https://doi.org/10.1002/jbm.a.30027

    Article  Google Scholar 

  77. Sarker B, Singh R, Silva R, Roether JA, Kaschta J, Detsch R, Schubert DW, Cicha I, Boccaccini AR (2014) Evaluation of fibroblasts adhesion and proliferation on alginate-gelatin crosslinked hydrogel. PLoS One 9:1–12. https://doi.org/10.1371/journal.pone.0107952

    Article  Google Scholar 

  78. Rosellini E, Cristallini C, Barbani N, Vozzi G, Giusti P (2009) Preparation and characterization of alginate/gelatin blend films for cardiac tissue engineering. J Biomed Mater Res - Part A 91:447–453. https://doi.org/10.1002/jbm.a.32216

    Article  Google Scholar 

Download references

Acknowledgements

MAUR is thankful to Prof. Aldo R. Boccaccini and Institute of Biomaterials (WW7) at FAU Erlangen, Germany for the free provision to the lab and material characterization tools.

Funding

This research work is partially funded by the British Council, Pakistan.

Author information

Authors and Affiliations

Authors

Contributions

The authors’ contributions are as follows: MAUR conceptualized, planned, and carried out the experiments. SAB contributed to the analysis and interpretation of results, and preparing the figure sets.

Corresponding author

Correspondence to Muhammad Atiq Ur Rehman.

Ethics declarations

Ethics approval

All authors confirm that they follow all ethical guidelines. All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Consent to participate

The authors agree with the participation.

Consent for publication

The authors agree with the publication.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rehman, M.A.U., Batool, S.A. Development of sustainable antibacterial coatings based on electrophoretic deposition of multilayers: gentamicin-loaded chitosan/gelatin/bioactive glass deposition on PEEK/bioactive glass layer. Int J Adv Manuf Technol 120, 3885–3900 (2022). https://doi.org/10.1007/s00170-022-09024-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-022-09024-3

Keywords

Navigation