Skip to main content
Log in

Influence of carbon content on the martensitic transformation of titanium stabilized austenitic stainless steels

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Austenitic stainless steels (ASS) are corrosion resistant alloys in which the desirable mechanical properties may be attained by cold working in the final stages of the fabrication process. This manufacturing process may induce martensitic transformation from the austenitic phase, where the chemical composition plays an important role as it influences the stacking fault energy (SFE). Therefore, this work evaluated the influence of carbon content on martensitic transformation of Ti stabilized ASS. Thus, the austenite transformed into martensite by cold rolling was observed by Light Optical Microscopy (LOM) and quantified by Vibrating Sample Magnetometer (VSM), and X-Ray Diffraction (XRD) for Ti stabilized ASS with different carbon contents. The experimental results about the martensitic transformation behavior for each alloy were compared with previous results on other ASS and Duplex Stainless Steel (DSS), tested in similar conditions, verifying a high correlation with a sigmoidal model previously applied in these alloys. Additionally, it was carried out a SFE analysis, estimated by thermodynamic model, corroborating that the alloy’s carbon content has a strong influence on the material’s stability. Finally, it was observed a sudden increase in microhardness value as a consequence of the high amount of austenite transformed into martensite at very low strains that might affect the steels performance in several applications.

Cold rolling of AISI 321 showing characterization techniques to evaluate martensitic transformation

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Nayyar ML (2000) Piping Handbook, 7th Ed. McGraw Hill, New York

  2. Wright RN (2011) Other metallurgical systems for wire technology. Wire Technol:229–243. https://doi.org/10.1016/B978-0-12-382092-1.00015-4

  3. Moss DR (1997) Pressure vessel design manual: Illustrated Procedures for Solving Major Pressure Vessel Design Problems

  4. Hedayati A, Najafizadeh A, Kermanpur A, Forouzan F (2010) The effect of cold rolling regime on microstructure and mechanical properties of AISI 304L stainless steel. J Mater Process Technol 210:1017–1022. https://doi.org/10.1016/j.jmatprotec.2010.02.010

    Article  Google Scholar 

  5. Ishimaru E, Hamasaki H, Yoshida F (2015) Deformation-induced martensitic transformation behavior of type 304 stainless steel sheet in draw-bending process. Journal of Mater Process Tech 223:34–38

    Article  Google Scholar 

  6. Lu YQ, Hui H (2015) Investigation on mechanical behaviors of cold stretched and cryogenic stretched austenitic stainless steel pressure vessels. Procedia Eng 130:628–637. https://doi.org/10.1016/j.proeng.2015.12.282

    Article  Google Scholar 

  7. Raj AK (2015) Formability: metastable austenitic stainless steels

  8. Jha AK, Sivakumar D, Sreekumar K, Mittal MC (2008) Role of transformed martensite in the cracking of stainless steel plumbing lines. Eng Fail Anal 15:1042–1051. https://doi.org/10.1016/j.engfailanal.2007.11.012

    Article  Google Scholar 

  9. Gomes da Silva MJ, Fragoso HAP, Barrio RCAG, Cardoso JL (2019) Stress corrosion of an austenitic stainless steel expansion joint, a case study. Eng Fail Anal 97:300–310. https://doi.org/10.1016/j.engfailanal.2019.01.021

    Article  Google Scholar 

  10. Tiamiyu AA, Eskandari M, Nezakat M, et al. (2016) A comparative study of the compressive behaviour of AISI 321 austenitic stainless steel under quasi-static and dynamic shock loading. Mater Des 112:309–319. https://doi.org/10.1016/j.matdes.2016.09.087

    Article  Google Scholar 

  11. Abreu HFGDH, Silva MMJG Da, Herculano LFG, Bhadeshia H (2009) Texture analysis of deformation induced martensite in an AISI 301L stainless steel: microtexture and macrotexture aspects. Mater Res 12:291–297. https://doi.org/10.1590/S1516-14392009000300008

    Article  Google Scholar 

  12. Talonen J, Hanninen H (2007) Formation of shear bands and strain-induced martensite during plastic deformation of metastable austenitic stainless steels. Acta Mater 55:6108–6118. https://doi.org/10.1016/j.actamat.2007.07.015

    Article  Google Scholar 

  13. Fargas G, Zapata A, Roa JJ, et al. (2015) Correlation between microstructure and mechanical properties before and after reversion of metastable austenitic stainless steels. Metall Mater Trans A 46:5697–5707. https://doi.org/10.1007/s11661-015-3178-8

    Article  Google Scholar 

  14. Hadji M, Badji R (2002) Microstructure and mechanical properties of austenitic stainless steels after cold rolling. J Mater Eng Perform 11:145–151. https://doi.org/10.1361/105994902770344204

    Article  Google Scholar 

  15. Behjati P, Najafizadeh A (2011) Role of chemical driving force in martensitic transformations of high-purity Fe-Cr-Ni alloys. Metall Mater Trans A Phys Metall Mater Sci 42:3752–3760. https://doi.org/10.1007/s11661-011-0769-x

    Article  Google Scholar 

  16. Schramm RE, Reed RP (1975) Stacking fault energies of seven commercial austenitic stainless steels. Metall Trans A 6:1345–1351. https://doi.org/10.1007/BF02641927

    Article  Google Scholar 

  17. Reed RP, Horiuchi T (1983) Austenitic steels at low temperatures. Springer, Boston

    Book  Google Scholar 

  18. Das A (2016) Revisiting stacking fault energy of steels. Metall Mater Trans A Phys Metall Mater Sci 47:748–768. https://doi.org/10.1007/s11661-015-326

    Article  Google Scholar 

  19. Yang SW, Spruiell JE (1982) Cold-worked state and annealing behaviour of austenitic stainless steel. J Mater Sci 17:677–690. https://doi.org/10.1007/BF00540364

    Article  Google Scholar 

  20. Tsuchida N, Morimoto Y, Okamoto S, et al. (2008) Role of stress-induced martensitic transformation in TRIP effect of metastable austenitic stainless steels. Nippon Kinzoku Gakkaishi/Journal Japan Inst Met 72:769–775. https://doi.org/10.2320/jinstmet.72.769

    Article  Google Scholar 

  21. Kang JH, Noh HS, Kim KM, et al. (2017) Modified Ni equivalent for evaluating hydrogen susceptibility of Cr-Ni based austenitic stainless steels. J Alloys Compd 696:869–874. https://doi.org/10.1016/j.jallcom.2016.12.061

    Article  Google Scholar 

  22. Krupp U, Roth I, Christ HJ (2010) In situ SEM observation and analysis of martensitic transformation during short fatigue crack propagation in Metastable austenitic steel. Adv Eng Mater. https://doi.org/10.1002/adem.200900337

  23. Moallemi M, Kermanpur A, Naja A, et al. (2016) Deformation-induced martensitic transformation in a 201 austenitic steel : the synergy of stacking fault energy and chemical driving force. Mater Sci Eng A 653:147–152

    Article  Google Scholar 

  24. Saeedipour S, Kermanpur A, Najafizadeh A (2016) Effect of N on phase transformations during martensite thermomechanical processing of the nano/ultrafine-grained 201L steel. J Mater Eng Perform 25:5502–5512. https://doi.org/10.1007/s11665-016-2387-7

    Article  Google Scholar 

  25. Curtze S, Kuokkala VT, Oikari A, et al. (2011) Thermodynamic modeling of the stacking fault energy of austenitic steels. Acta Mater 59:1068–1076. https://doi.org/10.1016/j.actamat.2010.10.037

    Article  Google Scholar 

  26. de Dafe SSF, Sicupira FL, Matos FCS, et al. (2013) Effect of cooling rate on (𝜖, α) martensite formation in twinning/transformation-induced plasticity Fe-17Mn-0.06C steel. Mater Res 16:1229–1236. https://doi.org/10.1590/S1516-14392013005000129

  27. Das A (2016) Revisiting stacking fault energy of steels. Metall Mater Trans A Phys Metall Mater Sci 47:748–768. https://doi.org/10.1007/s11661-015-3266-9

    Article  Google Scholar 

  28. Ogawa T, Koyama M, Tasan CC, et al. (2017) Effects of martensitic transformability and dynamic strain age hardenability on plasticity in metastable austenitic steels containing carbon. J Mater Sci 52:7868–7882. https://doi.org/10.1007/s10853-017-1052-3

    Article  Google Scholar 

  29. Beese AM, Mohr D (2011) Identification of the direction-dependency of the martensitic transformation in stainless steel using in situ magnetic permeability measurements. Exp Mech 51:667–676. https://doi.org/10.1007/s11340-010-9374-y

    Article  Google Scholar 

  30. Shirdel M, Mirzadeh H, Parsa MH (2015) Estimation of the kinetics of martensitic transformation in austenitic stainless steels by conventional and novel approaches. Mater Sci Eng A 624:256–260. https://doi.org/10.1016/j.msea.2014.11.087

    Article  Google Scholar 

  31. Tavares SSM, da Silva MR, Pardal JM, et al. (2006) Microstructural changes produced by plastic deformation in the UNS s31803 duplex stainless steel. J Mater Process Technol 180:318–322. https://doi.org/10.1016/j.jmatprotec.2006.07.008

    Article  Google Scholar 

  32. Tavares SSM, Neto JM, da Silva MR, et al. (2008) Magnetic properties and α martensite quantification in an AISI 301LN stainless steel deformed by cold rolling. Mater Charact 59:901–904. https://doi.org/10.1016/j.matchar.2007.07.007

    Article  Google Scholar 

  33. Tavares SSM, Pardal JM, da Silva MJG, et al. (2009) Deformation induced martensitic transformation in a 201 modified austenitic stainless steel. Mater Charact 60:907–911. https://doi.org/10.1016/j.matchar.2009.02.001

    Article  Google Scholar 

  34. Tavares SSM, Pardal JM, da Silva MR, de Oliveira CAS (2014) Martensitic transformation induced by cold deformation of lean duplex stainless steel UNS s32304. Mater Res 17:381–385. https://doi.org/10.1590/S1516-14392013005000157

  35. Khatak HS (2002) 8 – Applications of fracture mechanics in stress corrosion cracking and introduction to life prediction approaches. In: Corrosion of Austenitic Stainless Steels. pp 190–217

  36. Jafari E (2010) Corrosion behaviors of two types of commercial stainless steel after plastic deformation. J Mater Sci Technol 26:833–838. https://doi.org/10.1016/S1005-0302(10)60133-8

    Article  Google Scholar 

  37. Moura V, Kina AY, Tavares SSM, et al. (2008) Influence of stabilization heat treatments on microstructure, hardness and intergranular corrosion resistance of the AISI 321 stainless steel. J Mater Sci 43:536–540. https://doi.org/10.1007/s10853-007-1785-5

    Article  Google Scholar 

  38. Abedi F, Serajzadeh S (2018) Mechanical properties and strain-induced martensite transformation in cold rolling of 304L stainless steel plate. J Mater Eng Perform 27:6155–6165. https://doi.org/10.1007/s11665-018-3643-9

    Article  Google Scholar 

  39. Jenkins R, Snyder RL, Robert L (1996) Introduction to X-ray powder diffractometry

  40. Beese AM (2008) Quantification of phase transformation in stainless steel 301LN sheets. Massachusetts Institute of Technology

  41. Cullity BD, Graham CD (2008) Introduction to magnetic materials. Wiley, Hoboken

    Book  Google Scholar 

  42. Talonen J, Aspegren P, Hanninen H (2004) Comparison of different methods for measuring strain induced α-martensite content in austenitic steels. Mater Sci Technol 20:1506–1512. https://doi.org/10.1179/026708304X4367

    Article  Google Scholar 

  43. Rodríguez-Carvajal J (2001) Recent developments of the program FULLPROF. Int Union Crystallogr Newsl:12–19. https://doi.org/10.1007/s00603-013-0527-z

  44. Belkly A, Helderman M, Karen VL, Ulkch P (2002) New developments in the inorganic Crystal Structure Database (ICSD): accessibility in support of materials research and design. Acta Crystallogr Sect B Struct Sci 58:364–369. https://doi.org/10.1107/S0108768102006948

    Article  Google Scholar 

  45. Haušild P, Davydov V, Drahokoupil J (2010) Characterization of strain-induced martensitic transformation in a metastable austenitic stainless steel. Mater Des 31:1821–1827. https://doi.org/10.1016/j.matdes.2009.11.008

    Article  Google Scholar 

  46. Plaut RL, Herrera C, Escriba DM (2007) A Short review on wrought austenitic stainless steels at high temperatures: processing, microstructure, properties and performance. Mater Res 10:453–460. https://doi.org/10.1590/S1516-14392007000400021

    Article  Google Scholar 

Download references

Funding

This study financially supported by the Brazilian research agencies CAPES, CNPq, and FAPERJ .

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Manuel Pardal.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pardal, J.M., Tavares, S.S.M., Tavares, M.T. et al. Influence of carbon content on the martensitic transformation of titanium stabilized austenitic stainless steels. Int J Adv Manuf Technol 108, 345–356 (2020). https://doi.org/10.1007/s00170-020-05138-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-05138-8

Keywords

Navigation