Skip to main content
Log in

Isogeometric topology optimization of compliant mechanisms using transformable triangular mesh (TTM) algorithm

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

This paper presents a unique solution to the problem of planar compliant mechanism design by means of geometric morphing technology and isogeometric analysis (IGA). A new transformable triangular mesh (TTM) component is developed based on geometric morphing technology, which can generate the required topology with different feature sets from a surface that has zero boundary component (interior hole) under the control of Laplace energy and mesh operations. Such flexible TTM component is helpful in overcoming the initial dependency of conventional topology optimization methods in which the layout of parameterized components often affects final optimized results. As the high-order continuity between the grids of IGA can improve calculation accuracy and numerical stability, IGA is combined with the presented TTM algorithm to establish a two-layer computational model so as to identify the optimal compliant mechanism topology within a given design domain and given displacements of input and output ports. In the upper layer of the model, the compliant limbs are characterized explicitly by triangular grids. By moving, splitting, and refining these triangular grids, the generated shape will then be projected onto the lower layer which is discretized using NURBS elements so as to calculate structural sensitivity for driving new iteration. To demonstrate the benefits provided by such method for compliant mechanism design, several numerical studies are tested, in which the geometry freely evolves along the optimization procedure, resulting in more efficient non-trivial topologies with desired kinematic behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Alexa M, Cohen-Or D, Levin D (2000) As-rigid-as-possible shape interpolation. //Proceedings of the 27th annual conference on Computer graphics and interactive techniques. ACM Press/Addison-Wesley Publishing Co.: 157-164

  • Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194(1):363–393

    Article  MathSciNet  Google Scholar 

  • Ananthasuresh GK, Kota S, Gianchandani Y (1994) A methodical approach to the design of compliant micromechanisms. Solid-State Sensor and Actuator Workshop:189–192

  • Areias P, Reinoso J, Camanho PP, César de Sá J, Rabczuk T (2018) Effective 2D and 3D crack propagation with local mesh refinement and the screened Poisson equation. Eng Fract Mech 189:339–360

  • Bendsøe MP (1989) Optimal shape design as a material distribution problem. Structural Optimization 1(4):193–202

    Article  Google Scholar 

  • Bendsøe MP, Sigmund O (2013) Topology optimization: theory, methods, and applications. Springer Science & Business Media

  • Campagna S, Kobbelt L, Seidel HP (1998) Directed edges—a scalable representation for triangle meshes. J Graph Tools 3(4):1–11

    Article  Google Scholar 

  • Cao L, Dolovich AT, Chen A, Zhang W (2018) Topology optimization of efficient and strong hybrid compliant mechanisms using a mixed mesh of beams and flexure hinges with strength control. Mech Mach Theory 121:213–227

  • Chen W, Zhang X, Li H, Wei J, Fatikow S (2017) Nonlinear analysis and optimal design of a novel piezoelectric-driven compliant microgripper. Mech Machine Theor 118:32–52

  • Chen Q, Zhang X, Zhu B (2018) A 213-line topology optimization code for geometrically nonlinear structures. Struct Multidiscip Optim 59(1)

  • da Silva GA, Beck AT, Sigmund O (2019) Topology optimization of compliant mechanisms with stress constraints and manufacturing error robustness. Comput Methods Appl Mech Eng 354:397–421

    Article  MathSciNet  Google Scholar 

  • Dearden J, Grames C, Orr J, Jensen BD, Magleby SP, Howell LL (2017) Cylindrical cross-axis flexural pivots. Precis Eng 51:604–613

  • Dorn W, Gomory R, Greenberg H (1964) Automatic design of optimal structures. Journal de mecanique 3:25–52

    Google Scholar 

  • Emmendoerfer Hélio (2018) Silva, Emílio Carlos Nelli, Fancello E A. Stress-constrained level set topology optimization for design-dependent pressure load problems. Computer Methods in Applied Mechanics & Engineering

  • Gandhi I, Zhou H (2018) Synthesizing constant torque compliant mechanisms using precompressed beams. J Mech Des:141(1)

  • Guo X, Zhang W, Zhong W (2014) Doing topology optimization explicitly and geometrically—a new moving morphable components based framework. J Appl Mech 81(8):081009

    Article  Google Scholar 

  • Guo X, Zhang W, Zhang J, Yuan J (2016) Explicit structural topology optimization based on moving morphable components (MMC) with curved skeletons. Comput Methods Appl Mech Eng 310:711–748

  • Hongzhe Z, Shusheng B, Bo P (2015) Dynamic analysis and experiment of a novel ultra-precision compliant linear-motion mechanism. Precis Eng 42:352–359

    Article  Google Scholar 

  • Hopkins JB, Panas RM (2013) Design of flexure-based precision transmission mechanisms using screw theory. Precis Eng 37(2):299–307

    Article  Google Scholar 

  • Howell LL (2001) Compliant mechanisms, John Wiley&Sons

  • Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194(39-41):4135–4195

    Article  MathSciNet  Google Scholar 

  • Jin M, Zhang X, Yang Z, Zhu B (2018) Jacobian-based topology optimization method using an improved stiffness evaluation. J Mech Des 140(1):011402. https://doi.org/10.1115/1.4038332

  • Kovacs D, Bisceglio J, Zorin D (2015) Dyadic T-mesh subdivision. ACM Transactions on Graphics (TOG) 34(4):143

    Article  Google Scholar 

  • Krishnan G, Kim C, Kota S (2011) An intrinsic geometric framework for the building block synthesis of single point compliant mechanisms. J Mech Robot 3(1)

  • Li L, Zhu X (2019) Design of compliant revolute joints based on mechanism stiffness matrix through topology optimization using a parameterization level set method. Struct Multidiscip Optim 60(4):1475–1489

    Article  MathSciNet  Google Scholar 

  • Li B, Tang W, Ding S, Hong J (2020) A generative design method for structural topology optimization via transformable triangular mesh (TTM) algorithm. Struct Multidiscip Optim 62:1159–1183

  • Nguyen VP, Anitescu C, Bordas SPA, Rabczuk T (2015a) Isogeometric analysis: an overview and computer implementation aspects. Math Comput Simul 117:89–116

  • Nguyen VP, Anitescu C, Bordas SPA, Rabczuk T (2015b) Isogeometric analysis: an overview and computer implementation aspects. Math Comput Simul 117:89–116

  • Nishiwaki S, Frecker MI, Min S, Kikuchi N (1998) Topology optimization of compliant mechanisms using the homogenization method. Int J Numer Methods Eng 42(3):535–559

    Article  MathSciNet  Google Scholar 

  • Norato J, Haber R, Tortorelli D, Bendsøe MP (2004) A geometry projection method for shape optimization. Int J Numer Methods Eng 60(14):2289–2312

  • Oswald P, Schröder P (2003) Composite primal/dual 3-subdivision schemes. Computer Aided Geometric Design 20(3):135–164

    Article  MathSciNet  Google Scholar 

  • Pedersen CBW, Buhl T, Sigmund O (2001) Topology synthesis of large-displacement compliant mechanisms. International Journal for Numerical Methods in Engineering. https://doi.org/10.1002/nme.148

  • Puri S, Prasad SK (2015) A parallel algorithm for clipping polygons with improved bounds and a distributed overlay processing system using mpi //2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing. IEEE:576–585

  • Reddy A R (2008) Feature-based image metamorphosis. National Conference on Advanced trends in Information Technology", S.J.B.I.T. March 26, 2008, Bangalore

  • Rossignac J (1999) Edgebreaker: Connectivity compression for triangle meshes. IEEE Trans Vis Comput Graph 5(1):47–61

    Article  MathSciNet  Google Scholar 

  • Sanò P, Verotti M, Bosetti P, Belfiore NP (2018) Kinematic synthesis of a D-drive MEMS device with rigid-body replacement method. J Mech Des 140(7):075001

  • Sederberg T W, Greenwood E (1992) A physically based approach to 2–D shape blending//Proceedings of the 19th annual conference on Computer graphics and interactive techniques: 25-34

  • Sederberg TW, Gao P, Wang G, Mu H (1993a) 2-D shape blending: an intrinsic solution to the vertex path problem// Conference on Computer Graphics & Interactive Techniques. ACM

  • Sederberg TW, Gao P, Wang G, Mu H (1993b) 2-D shape blending: an intrinsic solution to the vertex path problem//Proceedings of the 20th annual conference on Computer graphics and interactive techniques: 15-18

  • Sigmund O (1997) On the design of compliant mechanisms using topology optimization*. Mech Struct Mach 25(4):493–524

    Article  Google Scholar 

  • Sigmund O, Maute K (2013) Topology optimization approaches. Struct Multidiscip Optim 48(6):1031–1055

    Article  MathSciNet  Google Scholar 

  • Sorkine O, Alexa M (2007) As-rigid-as-possible surface modeling// Proceedings of the Fifth Eurographics Symposium on Geometry Processing. Barcelona, Spain, July 4-6

  • Stanford B, Beran P (2011) Conceptual design of compliant mechanisms for flapping wings with topology optimization. AIAA J 49(4):855–867

    Article  Google Scholar 

  • Wang R, Zhu B, Zhang X, Zhang X, Chen Q (2018) Topology optimization of compliant mechanisms using moving morphable components with flexure hinge characteristic//2018 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS). IEEE:1–6. https://doi.org/10.1109/MARSS.2018.8481175.

  • Wang R, Zhang X, Zhu B (2019) Imposing minimum length scale in moving morphable component (MMC)-based topology optimization using an effective connection status (ECS) control method. Comput Methods Appl Mech Eng 351:667–693

    Article  MathSciNet  Google Scholar 

  • Xia Q, Shi T (2015) Constraints of distance from boundary to skeleton: for the control of length scale in level set based structural topology optimization. Comput Methods Appl Mech Eng 295:525–542

  • Xie X, Wang S, Xu M, Wang Y (2018) A new isogeometric topology optimization using moving morphable components based on R-functions and collocation schemes. Comput Methods Appl Mech Eng 339:61–90

  • Yulin M, Xiaoming W (2004) A level set method for structural topology optimization and its applications. Adv Eng Softw 35(7):415–441

    Article  Google Scholar 

  • Zhang X, Xu Q (2019) Design and analysis of a 2-DOF compliant gripper with constant-force flexure mechanism. Journal of Micro-Bio Robotics

  • Zhang X, Zhu B (2018) Topology optimization of compliant mechanisms. Springer, Singapore

  • Zhang W, Yuan J, Zhang J, Guo Xl (2016a) A new topology optimization approach based on moving morphable components (MMC) and the ersatz material model. Struct Multidiscip Optim 53(6):1243–1260

  • Zhang W, Li D, Zhang J, Guo X (2016b) Minimum length scale control in structural topology optimization based on the moving morphable components (MMC) approach. Comput Methods Appl Mech Eng 311:327–355

  • Zhang W, Liu Y, Du Z, Zhu Y, Guo X (2018) A moving morphable component based topology optimization approach for rib-stiffened structures considering buckling constraints. J Mech Des 140(11):111404

  • Zheng S, Tang W, Li B (2020) A new topology optimization framework for stiffness design of beam structures based on the transformable triangular mesh algorithm. Thin-Walled Struct 154:106831

    Article  Google Scholar 

  • Zhu B, Chen Q, Jin M, Zhang X (2018) Design of fully decoupled compliant mechanisms with multiple degrees of freedom using topology optimization. Mech Mach Theory 126:413–428

Download references

Funding

The work reported in this paper is supported by the National Natural Science Foundation of China [51822507] and [U1913213].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baotong Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Replication of results

The results presented in the paper can be reproduced. We do not want to public the codes. But readers can contact us to get the codes by E-mail: baotong.me@xjtu.edu.cn, zhiz2005@163.com

Additional information

Responsible Editor: Shikui Chen

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

For the ith interior non-control vertex, its Laplacian energy can be expressed:

$$ {\displaystyle \begin{array}{c}{E}_i=\sum \limits_{j\in N}{w}_{ij}{||\left({\boldsymbol{v}}_i^{\prime }-{\boldsymbol{v}}_j^{\prime}\right)-{\boldsymbol{R}}_i\left({\boldsymbol{v}}_i-{\boldsymbol{v}}_j\right)||}^2\\ {}\kern1.4em =\sum \limits_{j\in N}{w}_{ij}{\left({\boldsymbol{e}}_{ij}^{\prime }-{\boldsymbol{R}}_i{\boldsymbol{e}}_{ij}\right)}^{\mathrm{T}}\left({\boldsymbol{e}}_{ij}^{\prime }-{\boldsymbol{R}}_i{\boldsymbol{e}}_{ij}\right)\\ {}\kern1.4em =\sum \limits_{j\in N}{w}_{ij}\left({{\boldsymbol{e}}^{\prime}}_{ij}^{\mathrm{T}}{\boldsymbol{e}}_{ij}^{\prime }-2{{\boldsymbol{e}}^{\prime}}_{ij}^{\mathrm{T}}{\boldsymbol{R}}_i{\boldsymbol{e}}_{ij}+{\boldsymbol{e}}_{ij}^{\mathrm{T}}{\boldsymbol{e}}_{ij}\right)\end{array}} $$
(33)

In order to minimize energy function Ei, we only need to minimize the non-constant terms with Ri in Ei. Thus, the minimization of the Eq. (33) can be written as:

$$ {\displaystyle \begin{array}{c}\underset{{\boldsymbol{R}}_i}{\mathrm{argmin}}\sum \limits_{j\in N}-{w}_{ij}2{{\boldsymbol{e}}^{\prime}}_{ij}^{\mathrm{T}}{\boldsymbol{R}}_i{\boldsymbol{e}}_{ij}=\underset{{\boldsymbol{R}}_i}{\mathrm{argmax}}\kern0.3em \sum \limits_{j\in N}{w}_{ij}{{\boldsymbol{e}}^{\prime}}_{ij}^{\mathrm{T}}{\boldsymbol{R}}_i{\boldsymbol{e}}_{ij}\\ {}\kern4.399998em =\underset{{\boldsymbol{R}}_i}{\mathrm{argmax}}\kern0.5em Tr\left(\sum \limits_{j\in N}{w}_{ij}{\boldsymbol{R}}_i{\boldsymbol{e}}_{ij}{{\boldsymbol{e}}^{\prime}}_{ij}^{\mathrm{T}}\right)\\ {}\kern4.399998em =\underset{{\boldsymbol{R}}_i}{\mathrm{argmax}}\kern0.5em Tr\left({\boldsymbol{R}}_i\sum \limits_{j\in N}{w}_{ij}{\boldsymbol{e}}_{ij}{{\boldsymbol{e}}^{\prime}}_{ij}^{\mathrm{T}}\right)\end{array}} $$
(34)

Furthermore, we introduce the covariance matrix:

$$ {\boldsymbol{S}}_i=\sum \limits_{j\in N}{w}_{ij}{\boldsymbol{e}}_{ij}{{\boldsymbol{e}}^{\prime}}_{ij}^{\mathrm{T}}={\boldsymbol{P}}_i{\boldsymbol{D}}_i{{\boldsymbol{P}}^{\prime}}_i^{\mathrm{T}} $$
(35)

where Di is a diagonal matrix that contains the weights wij. Pi is a 2 × N(j) matrix containing eij’s as its columns, and it is similar for Pi. When RiSi is symmetric positive semi-definite, the rotation matrix Ri that maximizes Tr (RiSi) can be obtained. Ri can be derived from the singular value decomposition (SVD) of \( {\boldsymbol{S}}_i={\boldsymbol{U}}_i{\Sigma}_i{\boldsymbol{V}}_i^{\mathrm{T}} \):

$$ {\boldsymbol{R}}_i={\boldsymbol{V}}_i{\boldsymbol{U}}_i^{\mathrm{T}} $$
(36)

up to changing the sign of the column of Ui that corresponds to the smallest singular value ensuring det (Ri) > 0.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, S., Li, B., Chen, G. et al. Isogeometric topology optimization of compliant mechanisms using transformable triangular mesh (TTM) algorithm. Struct Multidisc Optim 64, 2553–2576 (2021). https://doi.org/10.1007/s00158-021-03008-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-021-03008-9

Keywords

Navigation