Skip to main content
Log in

Genetic analysis and exploration of major effect QTLs underlying oil content in peanut

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

AhyHOF1, likely encoding a WRI1 transcription factor, plays critical roles in peanut oil synthesis.

Abstract

Although increasing the oil content of peanut to meet growing demand has long been a primary aim of breeding programs worldwide, the mining of genetic resources to achieve this objective has obviously lagged behind that of other oil crops. In the present study, we developed an advanced recombinant inbred line population containing 192 F9:11 families derived from parents JH5 and KX01-6. We then constructed a high-resolution genetic map covering 3,706.382 cM, with an average length of 185.32 cM per linkage group, using 2840 polymorphic SNPs. Two stable QTLs, qCOA08_1 and qCOA08_2 having the highest contributions to genetic variation (16.1% and 20.7%, respectively), were simultaneously detected in multiple environments and closely mapped within physical intervals of approximately 2.9 Mb and 1.7 Mb, respectively, on chromosome A08. In addition, combined analysis of whole-genome and transcriptome resequencing data uncovered a strong candidate gene encoding a WRI1 transcription factor and differentially expressed between the two parents. This gene, designated as High Oil Favorable gene 1 in Arachis hypogaea (AhyHOF1), was hypothesized to play roles in oil accumulation. Examination of near-inbred lines of #AhyHOF1/#Ahyhof1 provided further evidence that AhyHOF1 increases oil content, mainly by affecting the contents of several fatty acids. Taken together, our results provide valuable information for cloning the favorable allele for oil content in peanut. In addition, the closely linked polymorphic SNP markers within qCOA08_1 and qCOA08_2 loci may be useful for accelerating marker-assisted selection breeding of peanut.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All of the original re-sequencing data used in this study have been submitted to the public database of GSA (Genome Sequence Archive) with GSA accessions numbers CRA007578 and CRA007525, respectively.

References

  • Akond M, Liu S, Boney M, Kantartzi SK, Meksem K, Bellaloui N, Lightfoot DA, Kassem MA (2014) Identification of quantitative trait loci (QTL) underlying protein, oil, and five major fatty acids’ contents in soybean. Am J Plant Sci 5(1):158–167

    CAS  Google Scholar 

  • Baring MR, Wilson JN, Burow MD, Simpson CE, Ayers JL, Cason JM (2013) Variability of total oil content in peanut across the state of texas. J Crop Improv 27:125–136

    CAS  Google Scholar 

  • Barkley NA, Chamberlin KDC, Wang ML, Pittman RN (2010) Development of a real-time PCR genotyping assay to identify high oleic acid peanuts (Arachis hypogaea L.). Mol Breed 25(3):541–548

    CAS  Google Scholar 

  • Baud S, Mendoza MS, To A, Harscoet E, Lepiniec L, Dubreucq B (2007) WRINKLED1 specifies the regulatory action of LEAFY COTYLEDON2 towards fatty acid metabolism during seed maturation in Arabidopsis. Plant J 50:825–838

    CAS  PubMed  Google Scholar 

  • Baud S, Wuilleme S, To A, Rochat C, Lepiniec L (2009) Role of WRINKLED1 in the transcriptional regulation of glycolytic and fatty acid biosynthetic genes in Arabidopsis. Plant J 60:933–947

    CAS  PubMed  Google Scholar 

  • Cernac A, Benning C (2004) WRINKLED1 encodes an AP2/EREB domain protein involved in the control of storage compound biosynthesis in Arabidopsis. Plant J 40:575–585

    CAS  PubMed  Google Scholar 

  • Chen SL, Cheng ZS, Song YH, Wang J, Li YR (2019a) Leaf photosynthesis and matter production dynamic characteristics of peanut varieties with high yield and high oil content. Acta Agron Sin 45(2):276

    Google Scholar 

  • Chen Y, Wang Z, Ren X, Huang L, Guo J, Zhao J, Zhou X, Yan L, Luo H, Liu N, Chen W, Wan L, Lei Y, Liao B, Huai D, Jiang H (2019) Identification of major QTL for seed number per pod on chromosome A05 of tetraploid peanut (Arachis hypogaea L.). Crop J 7(2):114–124

    Google Scholar 

  • Chen S, Tian Y, Li Z, LiZ LY, Wang L, Li L, Pang Z, Yang C, Wang Q, Shao G (2022) Construction of a high-density genetic linkage map and QTL mapping for growth traits in hybrid Epinephelus fuscoguttatus (♀) and Epinephelus tukula (♂) progeny. Aquaculture 551:737921

    CAS  Google Scholar 

  • Clevenger J, Ye C, Chavarro C, Agarwal G, Bertioli DJ, Leal-Bertioli SCM, Pandey MK, Vaughn J, Abernathy B, Barkley NA (2017) Genome-wide SNP genotyping resolves signatures of selection and tetrasomic recombination in peanut. Mol Plant 10(2):309–322

    CAS  PubMed  Google Scholar 

  • Cui B, Chen L, Yang Y, Liao H (2020) Genetic analysis and map-based delimitation of a major locus qSS3 for seed size in soybean. Plant Breed 139(6):1145–1157

    CAS  Google Scholar 

  • Doyle J (1991) DNA Protocols for Plants. Mol Tech Taxon 57:283–293

    CAS  Google Scholar 

  • FAOSTAT (2020) Statistical database FAOSTAT. http://faostat3.fao.org

  • Focks N, Benning C (1998) wrinkled1: A novel, low-seed-oil mutant of Arabidopsis with a deficiency in the seed-specific regulation of carbohydrate metabolism. Plant Physiol 118:91–101

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gray CD, Kinnear PR (2012) IBM SPSS statistics 19 made simple. Psychology Press, London

    Google Scholar 

  • Hu XH, Zhang SZ, Miao HR, Cui FG, Shen Y, Yang WQ, Xu TT, Chen N, Chi XY, ZhangChen ZMJ (2018) High-density genetic map construction and identification of QTLs controlling oleic and linoleic acid in peanut using SLAF-seq and SSRs. Sci Rep 8(1):5479

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang L, Jiang HF, Ren XP, Chen YN, Xiao YJ, Zhao XY, Tang M, Huang JQ, Upadhyaya HD, Liao BS (2012) Abundant microsatellite diversity and oil content in wild Arachis species. PLoS ONE 7:e50002

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang L, He HY, Chen WG, Ren XP, Chen YN, Zhou XJ, Xia YL, Wang XL, Jiang XG, Liao BS (2015) Quantitative trait locus analysis of agronomic and quality-related traits in cultivated peanut (Arachis hypogaea L.). Theor Appl Genet 128:1103–1115

    PubMed  PubMed Central  Google Scholar 

  • Hulsekemp AM, Ashrafi H, Zheng X, Wang F, Hoegenauer KA, Maeda AB, Yang S, Stoffel K, Matvienko M, Clemons K, Udall JA, Deynze AV, Jones DC, Stelly DM (2014) Development and bin mapping of gene-associated interspecific SNPs for cotton (Gossypium hirsutum L.) introgression breeding efforts. BMC Genomics 15:945. https://doi.org/10.1186/1471-2164-15-945

    Article  PubMed  Google Scholar 

  • Karikari B, Li S, Bhat J, Cao Y, Kong J, Yang J, Gai J, Zhao T (2019) Genome-wide detection of major and epistatic effect QTLs for seed protein and oil content in soybean under multiple environments using high-density bin Map. Int J Mol Sci 20:979

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12(4):357

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kochert G, Stalker HT, Gimenes MA, Galgaro ML, Lopes CR, Moore K (1996) RFLP and cytogenetic evidence on the origin and evolution of allotetraploid domesticated peanut, Arachis hypogaea (Leguminosae). Am J Bot 83:1282–1291

    CAS  Google Scholar 

  • Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform 12:323

    CAS  Google Scholar 

  • Li L, Yang X, Cui S, Meng X, Mu G, Hou M, He M, Zhang H, Liu L, Chen CY (2019) Construction of high-density genetic map and mapping quantitative traitloci for growth habit-related traits of peanut (Arachis hypogaea L.). Front Plant Sci 10:745

    PubMed  PubMed Central  Google Scholar 

  • Liu J, Hua W, Zhan G, Wei F, Wang X, Liu G, Wang H (2010) Increasing seed mass and oil content in transgenic Arabidopsis by the overexpression of wri1-like gene from Brassica napus. Plant Physiol Biochem 48:9–15

    CAS  PubMed  Google Scholar 

  • Liu N, Guo J, Zhou X, Wu B, Huang L, Luo H, Chen Y, Chen W, LeiY HY, Liao B, Jiang H (2020) High-resolution mapping of a major and consensus quantitative trait locus for oil content to a ~ 0.8-Mb region on chromosome A08 in peanut (Arachis hypogaea L.). Theor Appl Genet 133:37–49

    CAS  PubMed  Google Scholar 

  • Liu S, Fan L, Liu Z, Yang X, Zhang Z, Duan Z, Liang Q, Imran M, Zhang M, Tian Z (2021) A Pd1-Ps-P1 feedback loop controls pubescence density in soybean. Mol Plant 13(12):1768–1783

    Google Scholar 

  • Lu S, Zhao X, Hu Y, Hu Y, Liu S, Nan H, Li X, Fang C, Cao D, Shi X, Kong L, Su T, Zhang F, Li S, Wang Z, Yuan X, Cober ER, Weller JL, Liu B, Hou X, Tian Z, Kong F (2017) Natural variation at the soybean J locus improves adaptation to the tropics and enhances yield. Nat Genet 49(5):773–779

    CAS  PubMed  Google Scholar 

  • Luo H, Pandey MK, Khan AW, Guo J, Wu B, Cai Y, Huang L, Zhou X, Chen Y, Chen W (2019) Discovery of genomic regions and candidate genes controlling shelling percentage using QTL-seq approach in cultivated peanut (Arachis hypogaea L.) [J]. Plant Biotechnol J 17:1248–1260

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maeo K, Tokuda T, Ayame A, Mitsui N, Kawai T, Tsukagoshi H, Ishiguro S, Nakamura K (2009) An AP2-type transcription factor, WRINKLED1, of Arabidopsis thaliana binds to the AW-box sequence conserved among proximal upstream regions of genes involved in fatty acid synthesis. Plant J 60:476–487

    CAS  PubMed  Google Scholar 

  • Meng L, Li H, Zhang L, Wang J (2015) QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J 3:269–283

    Google Scholar 

  • Nakamura T, Vrinten P, Shimbata T, Saito M (2015) Starch modification: a model for wheat MAS breeding. In: Ogihara Y, Takumi S, Handa H (eds) Advances in wheat genetics: from genome to field. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55675-6_29

    Chapter  Google Scholar 

  • Pandey MK, Wang ML, Qiao L, Feng S, Khera P, Wang H, Tonnis B, Barkley NA, Wang J, Holbrook CC et al (2014) Identification of QTLs associated with oil content and mapping FAD2 genes and their relative contribution to oil quality in peanut (Arachis hypogaea L.). BMC Genet 15:133

    PubMed  PubMed Central  Google Scholar 

  • Panthee DR, Pantalone VR, Saxton AM (2006) Modifier QTL for fatty acid composition in soybean oil. Euphytica 152(1):67–73

    CAS  Google Scholar 

  • Peterson BG, Carl P, Boudt K, Bennett R, Ulrich J, Zivot E, Cornilly D, Hung E, Lestel M, Balkissoon K (2018) Package Performance analytics. R Team Cooperation

  • Ruuska SA, Girke T, Benning C, Ohlrogge JB (2002) Contrapuntal networks of gene expression during Arabidopsis seed filling. Plant Cell 14:1191–1206

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sarvamangala C, Gowda MVC, Varshney RK (2011) Identification of quantitative trait loci for protein content, oil content and oil quality for groundnut (Arachis hypogaea L.). Field Crops Res 122(1):49–59

    Google Scholar 

  • Selvaraj MG, Narayana M, Schubert AM, Ayers JL, Baring MR, Burow MD (2009) Identification of QTLs for pod and kernel traits in cultivated peanut by bulked segregant analysis. Electron J Biotechnol 12(2):1–10

    Google Scholar 

  • Shasidhar Y, Vishwakarma MK, Pandey MK, Janila P, Variath MT, Manohar SS, Nigam SN, Guo B, Arshney RK (2017) Molecular mapping of oil content and fatty acids using dense genetic maps in groundnut (Arachis hypogaea L.). Front Plant Sci 8:794

    PubMed  PubMed Central  Google Scholar 

  • Shi A, Gepts P, Song Q, Xiong H, Michaels TE, Chen S (2021) Genome-wide association study and genomic prediction for soybean cyst nematode resistance in USDA common bean (Phaseolus vulgaris) core collection. Front Plant Sci 12:624156

    PubMed  PubMed Central  Google Scholar 

  • Sun Z, Qi F, Liu H, Qin L, Xu J, Shi L, Zhang Z, Miao L, Huang B, Dong W, Wang X, Tian M, Feng J, Zhao R, Zheng Z, Zhang X (2022) QTL mapping of quality traits in peanut using whole-genome resequencing[J]. Crop J 10(1):177–184

    Google Scholar 

  • Tian DG, Chen ZQ, Lin Y, Chen Z, Luo J, Wang M, Chen S, Ji P, Yang L, Wang Z, Wang F (2021) Two novel gene-specific markers at the Pik locus facilitate the application of rice blast resistant alleles in breeding. J Integr Agric 20(6):1554–1562

    CAS  Google Scholar 

  • Van Ooijen JW (2004) MapQTL®5 Software for the mapping of quantitative trait loci in experimental populations. Kyazma B V, Wageningen

    Google Scholar 

  • Wakchaure R, Ganguly S, Praveen PK, Kumar A, Sharma S, Mahajan T (2015) Marker assisted selection (MAS) in animal breeding: a review. J Drug Metab Toxicol 6:127

    Google Scholar 

  • Wang ML, Khera P, Pandey MK, Wang H, Qiao L, Feng S, Tonnis B, Barkley NA, Pinnow D, Holbrook CC (2015) Genetic mapping of QTLs controlling fatty acids provided insights into the genetic control of fatty acid synthesis pathway in peanut (Arachis hypogaea L.). PLoS ONE 10:e0119454

    PubMed  PubMed Central  Google Scholar 

  • Wang Y, Han Y, Zhao X, Li Y, Teng W, Li D, Zhan Y, Li W (2015b) Mapping isoflavone QTL with main, epistatic and QTL × environment effects in recombinant inbred lines of soybean. PLoS ONE 10(3):e0118447

    PubMed  PubMed Central  Google Scholar 

  • Wang Z, Huai D, Zhang Z, Cheng K, Kang Y, Wan L, Yan L, Jiang H, Lei Y, Liao B (2018) Development of a high-density genetic map based on specific length amplified fragment sequencing and its application in quantitative trait loci analysis for yield-related traits in cultivated peanut. Front Plant Sci 9:827

    PubMed  PubMed Central  Google Scholar 

  • Wilson J, Baring M, Burow M, Rooney W, Simpson C (2013) Generation means analysis of oil concentration in peanut. J Crop Improv 27:85–95

    CAS  Google Scholar 

  • Wu X, Liu Z, Hu Z, Huang R (2014) BnWRI1 coordinates fatty acid biosynthesis and photosynthesis pathways during oil accumulation in rapeseed. J Integr Plant Biol 56(6):582–593

    CAS  PubMed  Google Scholar 

  • Yang Y, Zhao Q, Li X, Ai W, Liu D, Qi W, Zhang M, Yang C, Liao H (2017) Characterization of genetic basis on synergistic interactions between root architecture and biological nitrogen fixation in soybean. Front Plant Sci 8:1466

    PubMed  PubMed Central  Google Scholar 

  • Yang Y, Tong Y, Li X, He Y, Xu R, Liu D, Yang Q, Lv H, Liao H (2019) Genetic analysis and fine mapping of phosphorus efficiency locus 1 (PE1) in soybean. Theor Appl Genet 132(3):2847–2858

    CAS  PubMed  Google Scholar 

  • Yin D, Wang Y, Zhang X, Li H, Lu X, Zhang J, Zhang W, Chen S, Liu JH (2013) De novo assembly of the peanut (Arachis hypogaea L.) seed transcriptome revealed candidate unigenes for oil accumulation pathways. PLOS one 8(9):e73767

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Hu X, Miao H, Chu H, Cui F, Yang W, Wang C, Shen Y, Xu T, Zhao L, Zhang J, Chen J (2019) QTL identification for seed weight and size based on a high-density SLAF-seq genetic map in peanut (Arachis hypogaea L.). BMC Plant Biol 19:537

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu X, Leiser WL, Hahn V, Würschum T (2020) Identification of seed protein and oil related QTL in 944 RILs from a diallel of early-maturing European soybean. The Crop Journal 9(1):238–247

    Google Scholar 

  • Zhuang W, Chen H, Yang M et al (2019) The genome of cultivated peanut provides insight into legume karyotypes, polyploid evolution and crop domestication. Nat Genet 51:865–876

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Liwen Bianji (Edanz) (www.liwenbianji.cn/ac) for editing the English text of a draft of this manuscript.

Funding

This work was jointly supported by the earmarked fund for CARS-13; The modern agricultural industrial technology system of Hebei Province (HBCT2018090101, HBCT2018090201); The Science and Technology Innovation Team of modern peanut seed industry (21326316D); Technology Innovation Special Project (2022KJCXZX-LYS-11); Basic Research Funds of Hebei Academy of Agriculture and Forestry Sciences (2021060201) and Talents construction project of science and technology innovation, Hebei Academy of Agriculture and Forestry Sciences (C22R0311).

Author information

Authors and Affiliations

Authors

Contributions

YY and JW designed the experiments and analyzed the data; JW, QS, YL, ZC XJ, and YS carried out the experiments; YY wrote the paper, and JW critically revised the paper.

Corresponding author

Correspondence to Jin Wang.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Communicated by Janila Pasupuleti.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 2016 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Li, Y., Cheng, Z. et al. Genetic analysis and exploration of major effect QTLs underlying oil content in peanut. Theor Appl Genet 136, 97 (2023). https://doi.org/10.1007/s00122-023-04328-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00122-023-04328-8

Navigation