Skip to main content
Log in

Acid phosphatase gene GmHAD1 linked to low phosphorus tolerance in soybean, through fine mapping

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Map-based cloning identified GmHAD1, a gene which encodes a HAD-like acid phosphatase, associated with soybean tolerance to low phosphorus stress.

Abstract

Phosphorus (P) deficiency in soils is a major limiting factor for crop growth worldwide. Plants may adapt to low phosphorus (LP) conditions via changes to root morphology, including the number, length, orientation, and branching of the principal root classes. To elucidate the genetic mechanisms for LP tolerance in soybean, quantitative trait loci (QTL) related to root morphology responses to LP were identified via hydroponic experiments. In total, we identified 14 major loci associated with these traits in a RIL population. The log-likelihood scores ranged from 2.81 to 7.43, explaining 4.23–13.98% of phenotypic variance. A major locus on chromosome 08, named qP8-2, was co-localized with an important P efficiency QTL (qPE8), containing phosphatase genes GmACP1 and GmACP2. Another major locus on chromosome 10 named qP10-2 explained 4.80–13.98% of the total phenotypic variance in root morphology. The qP10-2 contains GmHAD1, a gene which encodes an acid phosphatase. In the transgenic soybean hairy roots, GmHAD1 overexpression increased P efficiency by 8.4–16.5% relative to the control. Transgenic Arabidopsis plants had higher biomass than wild-type plants across both short- and long-term P reduction. These results suggest that GmHAD1, an acid phosphatase gene, improved the utilization of organic phosphate by soybean and Arabidopsis plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

APA:

Acid phosphatase activity

cv.:

Cultivar

CIM:

Composite interval mapping method

LOD:

Log-likelihood

QTL:

Quantitative trait loci

RIL:

Recombinant inbred line

RAD-seq:

Restriction-site-associated DNA sequencing

SNP:

Single nucleotide polymorphism

MAS:

Marker-assisted selection

RSA:

Root system architecture

LP:

Low phosphorus

HAD:

Haloacid dehalogenase

ρ-NPP:

ρ-Nitrophenol phosphate

References

  • Abdel-Haleem H, Lee GJ, Boerma RH (2011) Identification of QTL for increased fibrous roots in soybean. Theor Appl Genet 122(5):935–946

    Article  Google Scholar 

  • Ahsan M, Wright D, Virk DS (1996) Genetic analysis of salt tolerance in spring wheat (Triticum aestivum L.). Cereal Res Commun 24:353–360

    Google Scholar 

  • Baldwin JC, Karthikeyan AS, Raghothama KG (2001) LEPS2, a phosphorus starvation-induced novel acid phosphatase from tomato. Plant Physiol 125(2):728–737

    Article  PubMed Central  CAS  Google Scholar 

  • Baldwin JC, Karthikeyan AS, Cao A et al (2008) Biochemical and molecular analysis of LePS2; 1: a phosphate starvation induced protein phosphatase gene from tomato. Planta 228(2):273

    Article  CAS  Google Scholar 

  • Barriga P, Marambio E (1995) Gene action and components of genetic variation of phosphorus content and phosphorus efficiency utilization in wheat. Agro Sur (Chile) 23:30–38

    Google Scholar 

  • Cai Z, Cheng Y, Ma Z et al (2017) Fine-mapping of QTLs for individual and total isoflavone content in soybean (Glycine max L.) using a high-density genetic map. Theor Appl Genet 131(3):555–568

    Article  Google Scholar 

  • Cheng F, Cao G, Wang X et al (2008) The discovery and application of the efficient strains of soybean rhizobia in the acid low phosphorus soil in south China. Chin Sci Bull 23:2903–2910

    Google Scholar 

  • Cheng Y, Ma Q, Ren H et al (2017) Fine mapping of a Phytophthora-resistance gene RpsWY in soybean (Glycine max L.) by high-throughput genome-wide sequencing. Theor Appl Genet 130(5):1041–1051

    Article  PubMed Central  CAS  Google Scholar 

  • Chin JH, Gamuyao R, Dalid C et al (2011) Developing rice with high yield under phosphorus deficiency: Pup1 sequence to application. Plant Physiol 156(3):1202–1216

    Article  PubMed Central  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium mediated transformation of Arabidopsis thaliana. Plant J 16(6):735–743

    Article  CAS  Google Scholar 

  • Cordell D, White S (2011) Peak phosphorus: clarifying the key issues of a vigorous debate about long-term phosphorus security. Sustainability 3(10):2027–2049

    Article  Google Scholar 

  • Elser JJ (2012) Phosphorus: a limiting nutrient for humanity? Curr Opin Biotechnol 23(6):833–838

    Article  CAS  Google Scholar 

  • FAO (2015) World fertilizer trends and outlook to 2018. http://www.fao.org/3/a-i4324e.pdf. Accessed 16 Feb 2015

  • Furlani AMC, Lima M, Nass LL (1998) Combining ability effects for P-efficiency characters in maize grown in low P nutrient [Zea mays L.-phosphorus]. Maydica (Italy) 43:169–174

    Google Scholar 

  • Gamuyao R, Chin JH, Pariasca-Tanaka J et al (2012) The protein kinase Pstol1 from traditional rice confers tolerance of phosphorus deficiency. Nature 488(7412):535–539

    Article  CAS  Google Scholar 

  • Gao H, Bhattacharyya MK (2008) The soybean-Phytophthora resistance locus Rps1-k encompasses coiled coil-nucleotide binding-leucine rich repeat-like genes and repetitive sequences. BMC Plant Biol 8(1):29

    Article  PubMed Central  Google Scholar 

  • Gaxiola RA, Sanchez CA, Paez-Valencia J et al (2012) Genetic manipulation of a “vacuolar” H+-PPase: from salt tolerance to yield enhancement under phosphorus-deficient soils. Plant Physiol 159(1):3–11

    Article  PubMed Central  CAS  Google Scholar 

  • Geng X, Horst WJ, Golz JF et al (2017) LEUNIG_HOMOLOG transcriptional corepressor mediates aluminium sensitivity through PECTIN METHYLESTERASE46 modulated root cell wall pectin methylesterification in Arabidopsis. Plant J 90(3):491–504

    Article  CAS  Google Scholar 

  • Gohla A, Birkenfeld J, Bokoch GM (2005) Chronophin, a novel HAD-type serine protein phosphatase, regulates cofilin-dependent actin dynamics. Nat Cell Biol 7(1):21–29

    Article  CAS  Google Scholar 

  • Gutierrez-Gonzalez JJ, Wu X, Zhang J et al (2009) Genetic control of soybean seed isoflavone content: importance of statistical model and epistasis in complex traits. Theor Appl Genet 119(6):1069–1083

    Article  PubMed Central  CAS  Google Scholar 

  • Gutierrez-Gonzalez JJ, Wu X, Gillman JD et al (2010) Intricate environment-modulated genetic networks control isoflavone accumulation in soybean seeds. BMC Plant Biol 10(1):105

    Article  PubMed Central  Google Scholar 

  • Gutierrez-Gonzalez JJ, Vuong TD, Zhong R et al (2011) Major locus and other novel additive and epistatic loci involved in modulation of isoflavone concentration in soybean seeds. Theor Appl Genet 123(8):1375–1385

    Article  CAS  Google Scholar 

  • Haling RE, Brown LK, Bengough AG et al (2013) Root hairs improve root penetration, root–soil contact, and phosphorus acquisition in soils of different strength. J Exp Bot 64(12):3711–3721

    Article  CAS  Google Scholar 

  • Hufnagel B, de Sousa SM, Assis L et al (2014) Duplicate and conquer: multiple homologs of PHOSPHORUS-STARVATION TOLERANCE1 enhance phosphorus acquisition and sorghum performance on low-phosphorus soils. Plant Physiol 166(2):659–677

    Article  PubMed Central  Google Scholar 

  • Jain A, Vasconcelos MJ, Raghothama KG et al (2007) Molecular mechanisms of plant adaptation to phosphate deficiency. Plant Breed Rev 29:359

    Article  CAS  Google Scholar 

  • Kereszt A, Li D, Indrasumunar A et al (2007) Agrobacterium rhizogenes-mediated transformation of soybean to study root biology. Nat Protoc 2(4):948–952

    Article  CAS  Google Scholar 

  • Kumar B, Abdel-Ghani AH, Pace J et al (2014) Association analysis of single nucleotide polymorphisms in candidate genes with root traits in maize (Zea mays L.) seedlings. Plant Sci 224:9–19

    Article  CAS  Google Scholar 

  • Kumar J, Gupta DS, Gupta S et al (2017) Quantitative trait loci from identification to exploitation for crop improvement. Plant Cell Rep 36(8):1187–1213

    Article  CAS  Google Scholar 

  • Kuznetsova E, Nocek B, Brown G et al (2015) Functional diversity of haloacid dehalogenase superfamily phosphatases from Saccharomyces cerevisiae biochemical, structural, and evolutionary insights. J Biol Chem 290(30):18678–18698

    Article  PubMed Central  CAS  Google Scholar 

  • Lambers H, Shane MW, Cramer MD et al (2006) Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits. Ann Bot 98(4):693–713

    Article  PubMed Central  Google Scholar 

  • Li P, Chen F, Cai H et al (2015) A genetic relationship between nitrogen use efficiency and seedling root traits in maize as revealed by QTL analysis. J Exp Bot 66(11):3175–3188

    Article  PubMed Central  CAS  Google Scholar 

  • Li H, Yang Y, Zhang H et al (2016) A genetic relationship between phosphorus efficiency and photosynthetic traits in soybean as revealed by QTL analysis using a high-density genetic map. Front Plant Sci 7:924

    PubMed Central  PubMed  Google Scholar 

  • Liang Q, Cheng X, Mei M et al (2010) QTL analysis of root traits as related to phosphorus efficiency in soybean. Ann Bot 106(1):223–234

    Article  PubMed Central  CAS  Google Scholar 

  • Liang CY, Chen ZJ, Yao ZF et al (2012) Characterization of two putative protein phosphatase genes and their involvement in phosphorus efficiency in Phaseolus vulgaris. J Integr Plant Biol 54(6):400–411

    Article  CAS  Google Scholar 

  • Liang H, Yu Y, Yang H et al (2014) Inheritance and QTL mapping of related root traits in soybean at the seedling stage. Theor Appl Genet 127(10):2127–2137

    Article  CAS  Google Scholar 

  • Liao H, Yan X, Rubio G et al (2004) Genetic mapping of basal root gravitropism and phosphorus acquisition efficiency in common bean. Funct Plant Biol 31(10):959–970

    Article  CAS  Google Scholar 

  • Liu JQ, Allan DL, Vance CP (2010) Systemic signaling and local sensing of phosphate in common bean: cross-talk between photosynthate and microRNA399. Mol Plant 3(2):428–437

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25(4):402–408

    Article  CAS  Google Scholar 

  • Lü J, Suo H, Yi R et al (2015) Glyma11g13220, a homolog of the vernalization pathway gene VERNALIZATION 1 from soybean [Glycine max (L.) Merr.], promotes flowering in Arabidopsis thaliana. BMC Plant Biol 15(1):232

    Article  PubMed Central  Google Scholar 

  • Lynch JP, Brown KM (2008) Root strategies for phosphorus acquisition. In: White PJ, Hammond JP (eds) The ecophysiology of plant-phosphorus interactions. Springer, Dordrecht, pp 83–116

    Chapter  Google Scholar 

  • Manavalan LP, Guttikonda SK, Nguyen VT et al (2010) Evaluation of diverse soybean germplasm for root growth and architecture. Plant Soil 330(1–2):503–514

    Article  CAS  Google Scholar 

  • May A, Berger S, Hertel T et al (2011) The Arabidopsis thaliana phosphate starvation responsive gene AtPPsPase1 encodes a novel type of inorganic pyrophosphatase. Biochim Biophys Acta (BBA) Gen Subj 1810(2):178–185

    Article  CAS  Google Scholar 

  • May A, Spinka M, Köck M (2012) Arabidopsis thaliana PECP1—enzymatic characterization and structural organization of the first plant phosphoethanolamine/phosphocholine phosphatase. Biochim Biophys Acta (BBA) Proteins Proteomics 1824(2):319–325

    Article  CAS  Google Scholar 

  • Miguel MA, Widrig A, Vieira RF et al (2013) Basal root whorl number: a modulator of phosphorus acquisition in common bean (Phaseolus vulgaris). Ann Bot 112(6):973–982

    Article  PubMed Central  CAS  Google Scholar 

  • Niu J, Guo N, Sun J et al (2017) Fine mapping of a resistance gene RpsHN that controls Phytophthora sojae using recombinant inbred lines and secondary populations. Front Plant Sci 8:538

    PubMed Central  PubMed  Google Scholar 

  • Nurlaeny N, Marschner H, George E (1996) Effects of liming and mycorrhizal colonization on soil phosphate depletion and phosphate uptake by maize (Zea mays L.) and soybean (Glycine max L.) grown in two tropical acid soils. Plant Soil 181(2):275–285

    Article  CAS  Google Scholar 

  • Peng Y, Hu Y, Mao B et al (2016) Genetic analysis for rice grain quality traits in the YVB stable variant line using RAD-seq. Mol Genet Genom 291(1):297–307

    Article  CAS  Google Scholar 

  • Prince SJ, Song L, Qiu D et al (2015) Genetic variants in root architecture-related genes in a Glycine soja accession, a potential resource to improve cultivated soybean. BMC Genom 16(1):132

    Article  Google Scholar 

  • Qu T, Liu R, Wang W et al (2011) Brassinosteroids regulate pectin methylesterase activity and AtPME41 expression in Arabidopsis under chilling stress. Cryobiology 63(2):111–117

    Article  CAS  Google Scholar 

  • Rao IM, Miles JW, Beebe SE et al (2016) Root adaptations to soils with low fertility and aluminium toxicity. Ann Bot 118(4):593–605

    Article  PubMed Central  CAS  Google Scholar 

  • Richardson AE, Hocking PJ, Simpson RJ et al (2009) Plant mechanisms to optimise access to soil phosphorus. Crop Pasture Sci 60(2):124–143

    Article  CAS  Google Scholar 

  • Saengwilai P, Tian X, Lynch JP (2014) Low crown root number enhances nitrogen acquisition from low-nitrogen soils in maize. Plant Physiol 166(2):581–589

    Article  PubMed Central  CAS  Google Scholar 

  • Sheshukova EV, Komarova TV, Pozdyshev DV et al (2017) The intergenic interplay between aldose 1-epimerase-like protein and pectin methylesterase in abiotic and biotic stress control. Front Plant Sci 8:1646

    Article  PubMed Central  Google Scholar 

  • Song W, Wang B, Hauck AL et al (2016) Genetic dissection of maize seedling root system architecture traits using an ultrahigh density binmap and a recombinant inbred line population. J Integr Plant Biol 58(3):266–279

    Article  PubMed Central  CAS  Google Scholar 

  • Steele KA, Price AH, Shashidhar HE et al (2006) Marker-assisted selection to introgress rice QTLs controlling root traits into an Indian upland rice variety. Theor Appl Genet 112(2):208–221

    Article  CAS  Google Scholar 

  • Tian J, Venkatachalam P, Liao H et al (2007) Molecular cloning and characterization of phosphorus starvation responsive genes in common bean (Phaseolus vulgaris L.). Planta 227(1):151–165

    Article  CAS  Google Scholar 

  • Tribble GD, Mao S, James CE et al (2006) A porphyromonas gingivalis haloacid dehalogenase family phosphatase interacts with human phosphoproteins and is important for invasion. Proc Natl Acad Sci 103(29):11027–11032

    Article  CAS  Google Scholar 

  • Tuberosa R, Salvi S, Sanguineti MC et al (2003) Searching for quantitative trait loci controlling root traits in maize: a critical appraisal[M]//roots: the dynamic interface between plants and the earth. Springer, Dordrecht, pp 35–54

    Google Scholar 

  • Uzokwe VNE, Asafo-Adjei B, Fawole I et al (2017) Generation mean analysis of phosphorus-use efficiency in freely nodulating soybean crosses grown in low-phosphorus soil. Plant Breed 136(2):139–146

    Article  CAS  Google Scholar 

  • Van Nguyen L, Takahashi R, Githiri SM et al (2017) Mapping quantitative trait loci for root development under hypoxia conditions in soybean (Glycine max L. Merr.). Theor Appl Genet 130(4):743–755

    Article  CAS  Google Scholar 

  • Vejchasarn P, Lynch JP, Brown KM (2016) Genetic variability in phosphorus responses of rice root phenotypes. Rice 9(1):1–16

    Article  Google Scholar 

  • Vieira AJD, Oliveira DA, Soares TCB et al (2006) Use of the QTL approach to the study of soybean trait relationships in two populations of recombinant inbred lines at the F7 and F8 generations. Braz J Plant Physiol 18(2):281–290

    Article  Google Scholar 

  • Walia H, Wilson C, Condamine P et al (2005) Comparative transcriptional profiling of two contrasting rice genotypes under salinity stress during the vegetative growth stage. Plant Physiol 139(2):822–835

    Article  PubMed Central  CAS  Google Scholar 

  • Wang X, Yan X, Liao H (2010) Genetic improvement for phosphorus efficiency in soybean: a radical approach. Ann Bot 106(1):215–222

    Article  PubMed Central  Google Scholar 

  • Wang X, Pan Q, Chen F et al (2011) Effects of co-inoculation with arbuscular mycorrhizal fungi and rhizobia on soybean growth as related to root architecture and availability of N and P. Mycorrhiza 21(3):173–181

    Article  Google Scholar 

  • Wang Y, Yu K, Poysa V et al (2012) Selection of reference genes for normalization of qRT-PCR analysis of differentially expressed genes in soybean exposed to cadmium. Mol Biol Rep 39(2):1585–1594

    Article  CAS  Google Scholar 

  • Wang Q, Wang J, Yang Y et al (2016) A genome-wide expression profile analysis reveals active genes and pathways coping with phosphate starvation in soybean. BMC Genom 17(1):192

    Article  Google Scholar 

  • Wang J, Wang Z, Du X et al (2017) A high-density genetic map and QTL analysis of agronomic traits in foxtail millet [Setaria italica (L.) P. Beauv.] using RAD-seq. PLoS ONE 12(6):e0179717

    Article  PubMed Central  Google Scholar 

  • White PJ, Hammond JP (2008) Phosphorus nutrition of terrestrial plants. In: White PJ, Hammond JP (eds) The ecophysiology of plant-phosphorus interactions. Springer, Dordrecht, pp 51–81

    Chapter  Google Scholar 

  • White PJ, George TS, Gregory PJ et al (2013) Matching roots to their environment. Ann Bot 112(2):207–222

    Article  PubMed Central  CAS  Google Scholar 

  • Woodend JJ, Glass ADM (1993) Inheritance of potassium uptake and utilization in wheat (T. aestivum L.) grown under potassium stress. J Genet Breed 47:95

    Google Scholar 

  • Wu K, Liu H, Yang M et al (2014) High-density genetic map construction and QTLs analysis of grain yield-related traits in Sesame (Sesamum indicum L.) based on RAD-Seq technology. BMC Plant Biol 14(1):274

    Article  PubMed Central  Google Scholar 

  • Wu HC, Huang YC, Stracovsky L et al (2017) Pectin methylesterase is required for guard cell function in response to heat. Plant Signal Behav 12(6):e1338227

    Article  PubMed Central  Google Scholar 

  • Yan X, Lynch JP, Beebe SE (1995) Genetic variation for phosphorus efficiency of common bean in contrasting soil types: I. Vegetative response. Crop Sci 35(4):1086–1093

    Article  Google Scholar 

  • Yan X, Liao H, Beebe SE et al (2004) QTL mapping of root hair and acid exudation traits and their relationship to phosphorus uptake in common bean. Plant Soil 265(1–2):17–29

    Article  CAS  Google Scholar 

  • Yang K, Moon JK, Jeong N et al (2011a) Novel major quantitative trait loci regulating the content of isoflavone in soybean seeds. Genes Genom 33(6):685–692

    Article  CAS  Google Scholar 

  • Yang M, Ding G, Shi L et al (2011b) Detection of QTL for phosphorus efficiency at vegetative stage in Brassica napus. Plant Soil 339(1–2):97–111

    Article  CAS  Google Scholar 

  • Yu H, Xie W, Wang J et al (2011) Gains in QTL detection using an ultra-high density SNP map based on population sequencing relative to traditional RFLP/SSR markers. PLoS ONE 6(3):e17595

    Article  PubMed Central  CAS  Google Scholar 

  • Zeng W, Sun Z, Cai Z et al (2015) The identification and selection of different new soybean varieties with high phosphorus efficiency in seedling stage. J Guangxi Agric 2015(01):14–17

    Google Scholar 

  • Zeng H, Wang G, Zhang Y et al (2016) Genome-wide identification of phosphate-deficiency-responsive genes in soybean roots by high-throughput sequencing. Plant Soil 398(1–2):207–227

    Article  CAS  Google Scholar 

  • Zhang D, Cheng H, Geng L et al (2009) Detection of quantitative trait loci for phosphorus deficiency tolerance at soybean seedling stage. Euphytica 167(3):313–322

    Article  CAS  Google Scholar 

  • Zhang D, Liu C, Cheng H et al (2010) Quantitative trait loci associated with soybean tolerance to low phosphorus stress based on flower and pod abscission. Plant Breed 129(3):243–249

    Article  CAS  Google Scholar 

  • Zhang D, Song H, Cheng H et al (2014) The acid phosphatase-encoding gene GmACP1 contributes to soybean tolerance to low-phosphorus stress. PLoS Genet 10(1):e1004061

    Article  PubMed Central  Google Scholar 

  • Zhang Y, Thomas CL, Xiang J et al (2016) QTL meta-analysis of root traits in Brassica napus under contrasting phosphorus supply in two growth systems. Sci Rep 6:33113

    Article  PubMed Central  CAS  Google Scholar 

  • Zhang D, Zhang H, Chu S et al (2017) Integrating QTL mapping and transcriptomics identifies candidate genes underlying QTLs associated with soybean tolerance to low-phosphorus stress. Plant Mol Biol 93(1–2):137–150

    Article  CAS  Google Scholar 

  • Zhu J, Kaeppler SM, Lynch JP (2005) Mapping of QTL controlling root hair length in maize (Zea mays L.) under phosphorus deficiency. Plant Soil 270(1):299–310

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key R&D Program of China (2017YFD0101500), the China Agricultural Research System (CARS-04-PS09) and the Research Project of the State Key Laboratory of Agricultural and Biological Resources Protection and Utilization in Subtropics.

Author contribution statement

Y.C., Q.M. and H.N. provided the soybean materials used in this study. Y.C., P.X., K.W. and Z.C. performed the experiments and date analyses. Q.X. and G.Z. performed QTL mapping. Z.C. and H.N. prepared the manuscript. H.N. planned, supervised and financed this work, as well as edited the manuscript. All authors have read and approved the final version of the manuscript to be published.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai Nian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Henry T. Nguyen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 4543 kb)

Supplementary material 2 (XLSX 44 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, Z., Cheng, Y., Xian, P. et al. Acid phosphatase gene GmHAD1 linked to low phosphorus tolerance in soybean, through fine mapping. Theor Appl Genet 131, 1715–1728 (2018). https://doi.org/10.1007/s00122-018-3109-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-018-3109-3

Navigation