Skip to main content

Advertisement

Log in

Bildgebende Untersuchungsverfahren, Navigation und minimal-invasive Verfahren in der Acetabulumchirurgie

Imaging examination procedures, navigation and minimally invasive procedures in acetabular surgery

  • Leitthema
  • Published:
Die Unfallchirurgie Aims and scope Submit manuscript

Zusammenfassung

Acetabulumfrakturen stellen bis heute eine besondere Herausforderung dar. Vor allem vor dem Hintergrund steigender Fallzahlen insbesondere in der geriatrischen Patientengruppe sind moderne bildgebende Untersuchungsverfahren ein wesentlicher Pfeiler. Gerade in dieser vulnerablen Patientengruppe sind minimal-invasivere Methoden notwendig; diese können durch eine intraoperative Navigation gewährleistet werden. Die Wahl des operativen Zugangs und der Implantate wird auf dem Boden der vorliegenden Frakturmorphologie getroffen, was die Bedeutung einer möglichst detaillierten Modalität des bildgebenden Untersuchungsverfahrens verdeutlicht. Nicht zuletzt darauf basieren auch neue Entwicklungen hinsichtlich der operativen Versorgung dieser Verletzungen. Diese Arbeit fasst den aktuellen Stand der Technik und vorhandenen Literatur dahingehend zusammen.

Abstract

Acetabular fractures still pose a special challenge even today. Considering the increasing case numbers, especially in the geriatric patient group, modern imaging examination procedures represent an essential pillar of the diagnostics. Especially in this vulnerable patient group, minimally invasive methods are necessary, which can be guaranteed by intraoperative navigation; however, the choice of surgical access and implants is also made based on the existing morphological characteristics of fractures, which highlights the importance of an imaging modality that is as detailed as possible. Last but not least, new developments concerning the surgical treatment of these injuries are also based on this. This article summarizes the current state of the techniques and the available literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8

Literatur

  1. Letournel E (1961) Fractures of the cotyloid cavity, study of a series of 75 cases. J Chir (Paris) 82:47–87

    CAS  Google Scholar 

  2. Judet R, Judet J, Letournel E (1964) Fractures of the acetabulum: classification and surgical approaches for open reduction. Preliminary report. J Bone Joint Surg Am 46:1615–1646

    Article  CAS  Google Scholar 

  3. Matta JM, Tornetta P 3rd (1996) Internal fixation of unstable pelvic ring injuries. Clin Orthop Relat Res 329:129–140

    Article  Google Scholar 

  4. Audretsch C et al (2022) Evaluation of decision-making in the treatment of acetabular fractures. EFORT Open Rev 7(1):84–94

    Article  Google Scholar 

  5. Ochs BG et al (2010) Changes in the treatment of acetabular fractures over 15 years: analysis of 1266 cases treated by the German pelvic multicentre study group (DAO/DGU). Injury 41(8):839–851

    Article  Google Scholar 

  6. Lundin N et al (2021) Increasing incidence of pelvic and acetabular fractures. A nationwide study of 87,308 fractures over a 16-year period in Sweden. Injury 52(6):1410–1417

    Article  Google Scholar 

  7. Mauffrey C et al (2018) Radiographic evaluation of acetabular fractures: review and update on methodology. J Am Acad Orthop Surg 26(3):83–93

    Article  Google Scholar 

  8. Letournel E, Judet R (1993) Fractures of the acetabulum. Springer, New York, S 541–543

    Google Scholar 

  9. Hüfner T et al (1999) The value of CT in classification and decision making in acetabulum fractures. A systematic analysis. Unfallchirurg 102(2):124–131

    Article  Google Scholar 

  10. Schäffler A et al (2013) CT-based classification aid for acetabular fractures: evaluation and clinical testing. Unfallchirurg 116(11):1006–1014

    Article  Google Scholar 

  11. Meesters AML et al (2021) The accuracy of gap and step-off measurements in acetabular fracture treatment. Sci Rep 11(1):18294

    Article  CAS  Google Scholar 

  12. Cimerman M et al (2021) Fractures of the acetabulum: from yesterday to tomorrow. Int Orthop 45(4):1057–1064

    Article  Google Scholar 

  13. Burk DL Jr. et al (1985) Three-dimensional computed tomography of acetabular fractures. Radiology 155(1):183–186

    Article  Google Scholar 

  14. Keil H et al (2019) Intraoperative imaging in pelvic surgery. Z Orthop Unfall 157(4):367–377

    Article  Google Scholar 

  15. Kendoff D et al (2008) Value of 3D fluoroscopic imaging of acetabular fractures comparison to 2D fluoroscopy and CT imaging. Arch Orthop Trauma Surg 128(6):599–605

    Article  CAS  Google Scholar 

  16. Gras F et al (2012) Screw placement for acetabular fractures: which navigation modality (2-dimensional vs. 3‑dimensional) should be used? An experimental study. J Orthop Trauma 26(8):466–473

    Article  Google Scholar 

  17. Moon SW, Kim JW (2014) Usefulness of intraoperative three-dimensional imaging in fracture surgery: a prospective study. J Orthop Sci 19(1):125–131

    Article  Google Scholar 

  18. He J et al (2016) Comparison of isocentric C‑arm 3‑dimensional navigation and conventional fluoroscopy for percutaneous retrograde screwing for anterior column fracture of acetabulum: an observational study. Medicine 95(2):e2470

    Article  Google Scholar 

  19. Keil H et al (2018) Intraoperative assessment of reduction and implant placement in acetabular fractures-limitations of 3D-imaging compared to computed tomography. J Orthop Surg Res 13(1):78

    Article  Google Scholar 

  20. Sebaaly A et al (2016) The added value of intraoperative CT scanner and screw navigation in displaced posterior wall acetabular fracture with articular impaction. Orthop Traumatol Surg Res 102(7):947–950

    Article  CAS  Google Scholar 

  21. Scarone P et al (2018) Use of the Airo mobile intraoperative CT system versus the O‑arm for transpedicular screw fixation in the thoracic and lumbar spine: a retrospective cohort study of 263 patients. J Neurosurg Spine 29(4):397–406

    Article  Google Scholar 

  22. Eckardt H, Lind D, Toendevold E (2015) Open reduction and internal fixation aided by intraoperative 3‑dimensional imaging improved the articular reduction in 72 displaced acetabular fractures. Acta Orthop 86(6):684–689

    Article  Google Scholar 

  23. Firoozabadi R et al (2018) Risk factors for conversion to total hip arthroplasty after acetabular fractures involving the posterior wall. J Orthop Trauma 32(12):607–611

    Article  Google Scholar 

  24. Verbeek DO et al (2018) Predictors for long-term hip survivorship following acetabular fracture surgery: importance of gap compared with step displacement. J Bone Joint Surg Am 100(11):922–929

    Article  Google Scholar 

  25. Ewurum CH et al (2018) Surgical navigation in orthopedics: workflow and system review. Adv Exp Med Biol 1093:47–63

    Article  Google Scholar 

  26. Jacofsky DJ, Allen M (2016) Robotics in arthroplasty: a comprehensive review. J Arthroplasty 31(10):2353–2363

    Article  Google Scholar 

  27. Mathew KK et al (2020) Computer-assisted navigation in total knee arthroplasty. Surg Technol Int 36:323–330

    Google Scholar 

  28. Stübig T et al (2020) Computer-assisted orthopedic and trauma surgery. Dtsch Arztebl Int 117(47):793–800

    Google Scholar 

  29. Sun J et al (2020) Pedicle screw insertion: is o‑arm-based navigation superior to the conventional freehand technique? A systematic review and meta-analysis. World Neurosurg 144:e87–e99

    Article  Google Scholar 

  30. Emara AK et al (2021) Robotic-arm assisted versus manual total hip arthroplasty: systematic review and meta-analysis of radiographic accuracy. Int J Med Robot 17(6):e2332

    Article  Google Scholar 

  31. Stöckle U et al (2004) Clinical applications—pelvis. Injury 35(1):a46–56

    Article  Google Scholar 

  32. Stöckle U, Schaser K, König B (2007) Image guidance in pelvic and acetabular surgery—expectations, success and limitations. Injury 38(4):450–462

    Article  Google Scholar 

  33. Stöckle U et al (2003) CT and fluoroscopy based navigation in pelvic surgery. Unfallchirurg 106(11):914–920

    Google Scholar 

  34. Takao M et al (2018) Clinical application of navigation in the surgical treatment of a pelvic ring injury and acetabular fracture. Adv Exp Med Biol 1093:289–305

    Article  Google Scholar 

  35. Schwabe P et al (2014) Three-dimensional fluoroscopy-navigated percutaneous screw fixation of acetabular fractures. J Orthop Trauma 28(12):700–706 (discussion 706)

    Article  Google Scholar 

  36. Wong JM et al (2015) Fluoroscopically assisted computer navigation enables accurate percutaneous screw placement for pelvic and acetabular fracture fixation. Injury 46(6):1064–1068

    Article  Google Scholar 

  37. Swartman B et al (2021) Fracture reduction and screw position after 3D-navigated and conventional fluoroscopy-assisted percutaneous management of acetabular fractures: a retrospective comparative study. Arch Orthop Trauma Surg 141(4):593–602

    Article  CAS  Google Scholar 

  38. Cutrera NJ, Pinkas D, Toro JB (2015) Surgical approaches to the acetabulum and modifications in technique. J Am Acad Orthop Surg 23(10):592–603

    Article  Google Scholar 

  39. Andersen RC et al (2010) Modified stoppa approach for acetabular fractures with anterior and posterior column displacement: quantification of radiographic reduction and analysis of interobserver variability. J Orthop Trauma 24(5):271–278

    Article  Google Scholar 

  40. Keel MJ et al (2012) The pararectus approach for anterior intrapelvic management of acetabular fractures: an anatomical study and clinical evaluation. J Bone Joint Surg Br 94(3):405–411

    Article  CAS  Google Scholar 

  41. Küper MA et al (2022) Pararectus approach vs. Stoppa approach for the treatment of acetabular fractures—a comparison of approach-related complications and operative outcome parameters from the German pelvic registry. Orthop Traumatol Surg Res 108(4):103275

    Article  Google Scholar 

  42. Mardian S et al (2015) Fixation of acetabular fractures via the ilioinguinal versus pararectus approach: a direct comparison. Bone Joint J 97-B(9):1271–1278

    Article  CAS  Google Scholar 

  43. Farouk O et al (2014) Minimal invasive para-rectus approach for limited open reduction and percutaneous fixation of displaced acetabular fractures. Injury 45(6):995–999

    Article  Google Scholar 

  44. Spagnolo R et al (2009) Minimal-invasive posterior approach in the treatment of the posterior wall fractures of the acetabulum. Chir Organi Mov 93(1):9–13

    Google Scholar 

  45. Lichte P et al (2019) Percutaneous screw techniques for the pelvic ring and acetabulum. Unfallchirurg 122(5):387–403

    Article  Google Scholar 

  46. Puchwein P et al (2012) Percutaneous fixation of acetabular fractures: computer-assisted determination of safe zones, angles and lengths for screw insertion. Arch Orthop Trauma Surg 132(6):805–811

    Article  Google Scholar 

  47. Banaszek D, Starr AJ, Lefaivre KA (2019) Technical considerations and fluoroscopy in percutaneous fixation of the pelvis and acetabulum. J Am Acad Orthop Surg 27(24):899–908

    Article  Google Scholar 

  48. Swartman B et al (2020) Minimally invasive surgical treatment of minimally displaced acetabular fractures does not improve pain, mobility or quality of life compared to conservative treatment: a matched-pair analysis of 50 patients. J Orthop Surg Res 15(1):115

    Article  Google Scholar 

  49. Söylemez MS, Kemah B, Poyanli O (2022) Arthroscopy-assisted reduction and fixation of femoral head and acetabulum fractures: a systematic review of the literature. Orthop Surg 14(4):652–662

    Article  Google Scholar 

  50. Küper MA et al (2019) EASY (endoscopic approach to the symphysis): a new minimally invasive approach for the plate osteosynthesis of the symphysis and the anterior pelvic ring—a cadaver study and first clinical results. Eur J Trauma Emerg Surg 45(4):745–755

    Article  Google Scholar 

  51. Trulson A et al (2019) Endoscopic approach to the quadrilateral plate (EAQUAL): a new endoscopic approach for plate osteosynthesis of the pelvic ring and acetabulum—a cadaver study. Z Orthop Unfall 157(1):22–28

    Article  Google Scholar 

  52. Küper MA et al (2022) Clinical experience with the new EASY (endoscopic approach to the symphysis) preparation technique for injuries of the anterior pelvic ring. Z Orthop Unfall. https://doi.org/10.1055/a-1851-5389

    Article  Google Scholar 

  53. Küper MA et al (2021) Laparoscopic acetabular surgery (LASY)—vision or illusion? Orthop Traumatol Surg Res 107(6):102964

    Article  Google Scholar 

  54. Küper MA et al (2022) Robotic-assisted plate osteosynthesis of the anterior pelvic ring and acetabulum: an anatomical feasibility study. J Robot Surg 16(6):1401–1407

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Märdian.

Ethics declarations

Interessenkonflikt

S. Märdian, T. Maleitzke, M. Niemann, K. Salmoukas und U. Stöckle geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autor/-innen keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

Wolfgang Lehmann, Göttingen

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Märdian, S., Maleitzke, T., Niemann, M. et al. Bildgebende Untersuchungsverfahren, Navigation und minimal-invasive Verfahren in der Acetabulumchirurgie. Unfallchirurgie 126, 89–99 (2023). https://doi.org/10.1007/s00113-022-01281-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00113-022-01281-x

Schlüsselwörter

Keywords

Navigation