Skip to main content

Advertisement

Log in

Periostin secreted by cancer-associated fibroblasts promotes cancer progression and drug resistance in non-small cell lung cancer

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

A Correction to this article was published on 18 December 2023

This article has been updated

Abstract

Cancer-associated fibroblasts (CAFs) are important components in the tumor microenvironment, and we sought to identify effective therapeutic targets in CAFs for non-small cell lung cancer (NSCLC). In this study, we established fibroblast cell lines from the cancerous and non-cancerous parts of surgical lung specimens from patients with NSCLC and evaluated the differences in behaviors towards NSCLC cells. RNA sequencing analysis was performed to investigate the differentially expressed genes between normal fibroblasts (NFs) and CAFs, and we identified that the expression of periostin (POSTN), which is known to be overexpressed in various solid tumors and promote cancer progression, was significantly higher in CAFs than in NFs. POSTN increased cell proliferation via NSCLC cells’ ERK pathway activation and induced epithelial-mesenchymal transition (EMT), which improved migration in vitro. In addition, POSTN knockdown in CAFs suppressed these effects, and in vivo experiments demonstrated that the POSTN knockdown improved the sensitivity of EGFR-mutant NSCLC cells for osimertinib treatment. Collectively, our results showed that CAF-derived POSTN is involved in tumor growth, migration, EMT induction, and drug resistance in NSCLC. Targeting CAF-secreted POSTN could be a potential therapeutic strategy for NSCLC.

Key messages

• POSTN is significantly upregulated in CAFs compared to normal fibroblasts in NCSLC.

• POSTN increases cell proliferation via activation of the NSCLC cells’ ERK pathway.

• POSTN induces EMT in NSCLC cells and improves the migration ability.

• POSTN knockdown improves the sensitivity for osimertinib in EGFR-mutant NSCLC cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The raw RNA-seq data generated in this study are publicly available in Gene Expression Omnibus (GEO) at GSE205814. Data sources and handling of publicly available data are described in the Materials and Methods. Further information is available from the corresponding author upon request.

Change history

Abbreviations

αSMA:

Alpha-smooth muscle actin

CAF:

Cancer-associated fibroblasts

FAP:

Fibroblast activation protein

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

EMT:

Epithelial-mesenchymal transition

MAPK:

Mitogen-activated protein kinase

NF:

Normal fibroblasts

NSCLC:

Non-small cell lung cancer

POSTN:

Periostin

TME:

Tumor microenvironment

References

  1. Alexander M, Kim SY, Cheng H (2020) Update 2020: Management of Non-Small Cell Lung Cancer. Lung 198:897–907. https://doi.org/10.1007/s00408-020-00407-5

    Article  PubMed  PubMed Central  Google Scholar 

  2. Quail DF, Joyce JA (2013) Microenvironmental regulation of tumor progression and metastasis. Nat Med 19:1423–1437. https://doi.org/10.1038/nm.3394

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Fiori ME, Di Franco S, Villanova L, Bianca P, Stassi G, De Maria R (2019) Cancer-associated fibroblasts as abettors of tumor progression at the crossroads of EMT and therapy resistance. Mol Cancer 18:70. https://doi.org/10.1186/s12943-019-0994-2

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sun W, Fu S (2019) Role of cancer-associated fibroblasts in tumor structure, composition and the microenvironment in ovarian cancer. Oncol Lett 18:2173–2178. https://doi.org/10.3892/ol.2019.10587

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Horiuchi K, Amizuka N, Takeshita S, Takamatsu H, Katsuura M, Ozawa H, Toyama Y, Bonewald LF, Kudo A (1999) Identification and characterization of a novel protein, periostin, with restricted expression to periosteum and periodontal ligament and increased expression by transforming growth factor beta. J Bone Miner Res 14:1239–1249. https://doi.org/10.1359/jbmr.1999.14.7.1239

    Article  PubMed  CAS  Google Scholar 

  6. Cui D, Huang Z, Liu Y, Ouyang G (2017) The multifaceted role of periostin in priming the tumor microenvironments for tumor progression. Cell Mol Life Sci 74:4287–4291. https://doi.org/10.1007/s00018-017-2646-2

    Article  PubMed  CAS  Google Scholar 

  7. González-González L, Alonso J (2018) Periostin: A Matricellular Protein With Multiple Functions in Cancer Development and Progression. Front Oncol 8:225. https://doi.org/10.3389/fonc.2018.00225

    Article  PubMed  PubMed Central  Google Scholar 

  8. Rachner TD, Göbel A, Hoffmann O, Erdmann K, Kasimir-Bauer S, Breining D, Kimmig R, Hofbauer LC, Bittner AK (2020) High serum levels of periostin are associated with a poor survival in breast cancer. Breast Cancer Res Treat 180:515–524. https://doi.org/10.1007/s10549-020-05570-0

    Article  PubMed  CAS  Google Scholar 

  9. Dong D, Zhang L, Jia L, Ji W, Wang Z, Ren L, Niu R, Zhou Y (2018) Identification of Serum Periostin as a Potential Diagnostic and Prognostic Marker for Colorectal Cancer. Clin Lab 64:973–981. https://doi.org/10.7754/Clin.Lab.2018.171225

    Article  PubMed  CAS  Google Scholar 

  10. Lv Y, Wang W, Jia WD, Sun QK, Huang M, Zhou HC, Xia HH, Liu WB, Chen H, Sun SN et al (2013) High preoparative levels of serum periostin are associated with poor prognosis in patients with hepatocellular carcinoma after hepatectomy. Eur J Surg Oncol 39:1129–1135. https://doi.org/10.1016/j.ejso.2013.06.023

    Article  PubMed  CAS  Google Scholar 

  11. Xu CH, Wang W, Lin Y, Qian LH, Zhang XW, Wang QB, Yu LK (2017) Diagnostic and prognostic value of serum periostin in patients with non-small cell lung cancer. Oncotarget 8:18746–18753. https://doi.org/10.18632/oncotarget.13004

    Article  PubMed  Google Scholar 

  12. Qin X, Yan M, Zhang J, Wang X, Shen Z, Lv Z, Li Z, Wei W, Chen W (2016) TGFβ3-mediated induction of Periostin facilitates head and neck cancer growth and is associated with metastasis. Sci Rep 6:20587. https://doi.org/10.1038/srep20587

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Ochi K, Suzawa K, Thu YM, Takatsu F, Tsudaka S, Zhu Y, Nakata K, Takeda T, Shien K, Yamamoto H et al (2022) Drug repositioning of tranilast to sensitize a cancer therapy by targeting cancer-associated fibroblast. Cancer Sci. https://doi.org/10.1111/cas.15502

  14. Kim N, Kim HK, Lee K, Hong Y, Cho JH, Choi JW, Lee JI, Suh YL, Ku BM, Eum HH et al (2020) Single-cell RNA sequencing demonstrates the molecular and cellular reprogramming of metastatic lung adenocarcinoma. Nat Commun 11:2285. https://doi.org/10.1038/s41467-020-16164-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Bartha Á, Győrffy B (2021) TNMplot.com: A Web Tool for the Comparison of Gene Expression in Normal, Tumor and Metastatic Tissues. Int J Mol Sci 22. https://doi.org/10.3390/ijms22052622

  16. Chen X, Song E (2019) Turning foes to friends: targeting cancer-associated fibroblasts. Nat Rev Drug Discov 18:99–115. https://doi.org/10.1038/s41573-018-0004-1

    Article  PubMed  CAS  Google Scholar 

  17. Ruan K, Bao S, Ouyang G (2009) The multifaceted role of periostin in tumorigenesis. Cell Mol Life Sci 66:2219–2230. https://doi.org/10.1007/s00018-009-0013-7

    Article  PubMed  CAS  Google Scholar 

  18. Roma-Rodrigues C, Mendes R, Baptista PV, Fernandes AR (2019) Targeting Tumor Microenvironment for Cancer Therapy. Int J Mol Sci 20. https://doi.org/10.3390/ijms20040840

  19. Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6:392–401. https://doi.org/10.1038/nrc1877

    Article  PubMed  CAS  Google Scholar 

  20. Kanzaki R, Pietras K (2020) Heterogeneity of cancer-associated fibroblasts: Opportunities for precision medicine. Cancer Sci 111:2708–2717. https://doi.org/10.1111/cas.14537

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Nitsche U, Stangel D, Pan Z, Schlitter AM, Esposito I, Regel I, Raulefs S, Friess H, Kleeff J, Erkan M (2016) Periostin and tumor-stroma interactions in non-small cell lung cancer. Oncol Lett 12:3804–3810. https://doi.org/10.3892/ol.2016.5132

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Hong LZ, Wei XW, Chen JF, Shi Y (2013) Overexpression of periostin predicts poor prognosis in non-small cell lung cancer. Oncol Lett 6:1595–1603. https://doi.org/10.3892/ol.2013.1590

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Ratajczak-Wielgomas K, Kmiecik A, Grzegrzołka J, Piotrowska A, Gomulkiewicz A, Partynska A, Pawelczyk K, Nowinska K, Podhorska-Okolow M, Dziegiel P (2020) Prognostic Significance of Stromal Periostin Expression in Non-Small Cell Lung Cancer. Int J Mol Sci 21. https://doi.org/10.3390/ijms21197025

  24. Zhang Y, Yuan D, Yao Y, Sun W, Shi Y, Su X (2017) Predictive and prognostic value of serum periostin in advanced non-small cell lung cancer patients receiving chemotherapy. Tumour Biol 39:1010428317698367. https://doi.org/10.1177/1010428317698367

    Article  PubMed  CAS  Google Scholar 

  25. Che J, Shen WZ, Deng Y, Dai YH, Liao YD, Yuan XL, Zhang P (2017) Effects of lentivirus-mediated silencing of Periostin on tumor microenvironment and bone metastasis via the integrin-signaling pathway in lung cancer. Life Sci 182:10–21. https://doi.org/10.1016/j.lfs.2017.05.030

    Article  PubMed  CAS  Google Scholar 

  26. Berdiel-Acer M, Sanz-Pamplona R, Calon A, Cuadras D, Berenguer A, Sanjuan X, Paules MJ, Salazar R, Moreno V, Batlle E et al (2014) Differences between CAFs and their paired NCF from adjacent colonic mucosa reveal functional heterogeneity of CAFs, providing prognostic information. Mol Oncol 8:1290–1305. https://doi.org/10.1016/j.molonc.2014.04.006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Liu Y, Huang Z, Cui D, Ouyang G (2019) The Multiaspect Functions of Periostin in Tumor Progression. Adv Exp Med Biol 1132:125–136. https://doi.org/10.1007/978-981-13-6657-4_13

    Article  PubMed  CAS  Google Scholar 

  28. Du B, Shim JS (2016) Targeting Epithelial-Mesenchymal Transition (EMT) to Overcome Drug Resistance in Cancer. Molecules 21. https://doi.org/10.3390/molecules21070965

  29. Okazaki T, Tamai K, Shibuya R, Nakamura M, Mochizuki M, Yamaguchi K, Abe J, Takahashi S, Sato I, Kudo A et al (2018) Periostin is a negative prognostic factor and promotes cancer cell proliferation in non-small cell lung cancer. Oncotarget 9:31187–31199. https://doi.org/10.18632/oncotarget.25435

    Article  PubMed  PubMed Central  Google Scholar 

  30. Hu WW, Chen PC, Chen JM, Wu YM, Liu PY, Lu CH, Lin YF, Tang CH, Chao CC (2017) Periostin promotes epithelial-mesenchymal transition via the MAPK/miR-381 axis in lung cancer. Oncotarget 8:62248–62260. https://doi.org/10.18632/oncotarget.19273

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wu SG, Shih JY (2018) Management of acquired resistance to EGFR TKI-targeted therapy in advanced non-small cell lung cancer. Mol Cancer 17:38. https://doi.org/10.1186/s12943-018-0777-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Cross DA, Ashton SE, Ghiorghiu S, Eberlein C, Nebhan CA, Spitzler PJ, Orme JP, Finlay MR, Ward RA, Mellor MJ et al (2014) AZD9291, an irreversible EGFR TKI, overcomes T790M-mediated resistance to EGFR inhibitors in lung cancer. Cancer Discov 4:1046–1061. https://doi.org/10.1158/2159-8290.Cd-14-0337

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Leonetti A, Sharma S, Minari R, Perego P, Giovannetti E, Tiseo M (2019) Resistance mechanisms to osimertinib in EGFR-mutated non-small cell lung cancer. Br J Cancer 121:725–737. https://doi.org/10.1038/s41416-019-0573-8

    Article  PubMed  PubMed Central  Google Scholar 

  34. Tricker EM, Xu C, Uddin S, Capelletti M, Ercan D, Ogino A, Pratilas CA, Rosen N, Gray NS, Wong KK et al (2015) Combined EGFR/MEK Inhibition Prevents the Emergence of Resistance in EGFR-Mutant Lung Cancer. Cancer Discov 5:960–971. https://doi.org/10.1158/2159-8290.Cd-15-0063

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Biffi G, Tuveson DA (2021) Diversity and Biology of Cancer-Associated Fibroblasts. Physiol Rev 101:147–176. https://doi.org/10.1152/physrev.00048.2019

    Article  PubMed  CAS  Google Scholar 

  36. Kalluri R (2016) The biology and function of fibroblasts in cancer. Nat Rev Cancer 16:582–598. https://doi.org/10.1038/nrc.2016.73

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Ms. Fumiko Isobe for her technical assistance.

Funding

This study was supported by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (Grant number 22529148).

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: F. Takatsu, K. Suzawa, S. Tomida, M. Sakaguchi, and S. Toyooka. Acquisition of data: F. Takatsu, S. Tomida, and Y. Thu. Analysis and interpretation of data: F. Takatsu, K. Suzawa, S. Tomida, M. Sakaguchi, T. Toji, M. Ohki, S. Tsudaka, K. Date, N. Matsuda, K. Iwata, Y. Zhu, K. Nakata, K. Shien, H. Yamamoto, A. Nakayama, M. Okazaki, S. Sugimoto, and S. Toyooka. Writing, review, and revision of the manuscript: F. Takatsu, K. Suzawa, S. Tomida, and S. Toyooka. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Ken Suzawa.

Ethics declarations

Ethics approval

Studies using clinical specimens were approved by the Okayama Medical School and Hospital’s Research Ethics Committee (Approval Number: # 1906–033). The protocol for animal models was approved by the Animal Care and Use Committee of Okayama University (Okayama, Japan: permit number: OKU-2016398), and this study was carried out in accordance with the Guidelines of the Okayama University.

Consent to participate

Informed consent was obtained from all individual patients for the use of their materials.

Competing interests

Shinichi Toyooka received research funding from Eli Lilly Japan, Taiho (Japan) and Chugai (Japan), and lecture fees from Chugai. All other authors have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takatsu, F., Suzawa, K., Tomida, S. et al. Periostin secreted by cancer-associated fibroblasts promotes cancer progression and drug resistance in non-small cell lung cancer. J Mol Med 101, 1603–1614 (2023). https://doi.org/10.1007/s00109-023-02384-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-023-02384-7

Keywords

Navigation