Skip to main content

Advertisement

Log in

Role of non-coding RNA in immune microenvironment and anticancer therapy of gastric cancer

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Gastric cancer remains one of the cancers with the highest mortality in the world; therefore, it is very important to investigate its pathogenesis to improve the prognosis of gastric cancer patients. Recently, noncoding RNAs have become a research hotspot in the field of oncology. These RNA molecules play complex roles in the regulation of tumor cells, immune cells, and the tumor microenvironment. Therefore, studying their ability to regulate the gastric cancer immune microenvironment will provide us with a better perspective to understand their potential role in anticancer therapy. In this review, we discuss the regulatory effects of several common noncoding RNAs on the immune microenvironment of gastric cancer and their prospects in anticancer therapy to provide some novel insight into the identification of valuable diagnostic markers and improving the prognosis of gastric cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Joshi SS, Badgwell BD (2021) Current treatment and recent progress in gastric cancer. CA Cancer J Clin 71:264–279. https://doi.org/10.3322/caac.21657

    Article  PubMed  Google Scholar 

  2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424. https://doi.org/10.3322/caac.21492

    Article  PubMed  Google Scholar 

  3. Necula L, Matei L, Dragu D, Neagu AI, Mambet C, Nedeianu S, Bleotu C, Diaconu CC, Chivu-Economescu M (2019) Recent advances in gastric cancer early diagnosis. World J Gastroenterol 25:2029–2044. https://doi.org/10.3748/wjg.v25.i17.2029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nagini S (2012) Carcinoma of the stomach: a review of epidemiology, pathogenesis, molecular genetics and chemoprevention. World J Gastrointest Oncol 4:156–169. https://doi.org/10.4251/wjgo.v4.i7.156

    Article  PubMed  PubMed Central  Google Scholar 

  5. Fattahi S, Kosari-Monfared M, Ghadami E, Golpour M, Khodadadi P, Ghasemiyan M, Akhavan-Niaki H (2018) Infection-associated epigenetic alterations in gastric cancer: new insight in cancer therapy. J Cell Physiol 233:9261–9270. https://doi.org/10.1002/jcp.27030

    Article  CAS  PubMed  Google Scholar 

  6. Puneet Kazmi HR, Kumari S, Tiwari S, Khanna A, Narayan G (2018) Epigenetic mechanisms and events in gastric cancer-emerging novel biomarkers. Pathol Oncol Res 24:757–770. https://doi.org/10.1007/s12253-018-0410-z

    Article  CAS  PubMed  Google Scholar 

  7. Sonohara F, Inokawa Y, Hayashi M, Kodera Y, Nomoto S (2017) Epigenetic modulation associated with carcinogenesis and prognosis of human gastric cancer. Oncol Lett 13:3363–3368. https://doi.org/10.3892/ol.2017.5912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fabbri M, Girnita L, Varani G, Calin GA (2019) Decrypting noncoding RNA interactions, structures, and functional networks. Genome Res 29:1377–1388. https://doi.org/10.1101/gr.247239.118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Slack FJ, Chinnaiyan AM (2019) The role of non-coding RNAs in oncology. Cell 179:1033–1055. https://doi.org/10.1016/j.cell.2019.10.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bure I, Haller F, Zaletaev DV (2018) Coding and non-coding: molecular portrait of GIST and its clinical implication. Curr Mol Med 18:252–259. https://doi.org/10.2174/1566524018666181004113436

    Article  CAS  PubMed  Google Scholar 

  11. Lee H, Zhang Z, Krause HM (2019) Long noncoding RNAs and repetitive elements: junk or intimate evolutionary partners? Trends Genet 35:892–902. https://doi.org/10.1016/j.tig.2019.09.006

    Article  CAS  PubMed  Google Scholar 

  12. Yaman Agaoglu F, Kovancilar M, Dizdar Y, Darendeliler E, Holdenrieder S, Dalay N, Gezer U (2011) Investigation of miR-21, miR-141, and miR-221 in blood circulation of patients with prostate cancer. Tumour Biol 32:583–588. https://doi.org/10.1007/s13277-011-0154-9

    Article  CAS  PubMed  Google Scholar 

  13. Fabris L, Ceder Y, Chinnaiyan AM, Jenster GW, Sorensen KD, Tomlins S, Visakorpi T, Calin GA (2016) The potential of MicroRNAs as prostate cancer biomarkers. Eur Urol 70:312–322. https://doi.org/10.1016/j.eururo.2015.12.054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang X, Xie K, Zhou H, Wu Y, Li C, Liu Y, Liu Z, Xu Q, Liu S, Xiao D et al (2020) Role of non-coding RNAs and RNA modifiers in cancer therapy resistance. Mol Cancer 19:47. https://doi.org/10.1186/s12943-020-01171-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zheng A, Song X, Zhang L, Zhao L, Mao X, Wei M, Jin F (2019) Long non-coding RNA LUCAT1/miR-5582-3p/TCF7L2 axis regulates breast cancer stemness via Wnt/β-catenin pathway. J Exp Clin Cancer Res 38:305. https://doi.org/10.1186/s13046-019-1315-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Salati M, Braconi C (2019) Noncoding RNA in cholangiocarcinoma. Semin Liver Dis 39:13–25. https://doi.org/10.1055/s-0038-1676097

    Article  CAS  PubMed  Google Scholar 

  17. Okugawa Y, Grady WM, Goel A (2015) Epigenetic alterations in colorectal cancer: emerging biomarkers. Gastroenterology. https://doi.org/10.1053/j.gastro.2015.07.011

    Article  PubMed  Google Scholar 

  18. Panni S, Lovering RC, Porras P, Orchard S (2020) Non-coding RNA regulatory networks. Biochim Biophys Acta Gene Regul Mech 1863. https://doi.org/10.1016/j.bbagrm.2019.194417

    Article  CAS  PubMed  Google Scholar 

  19. Arif KMT, Elliott EK, Haupt LM, Griffiths LR (2020) Regulatory mechanisms of epigenetic mirna relationships in human cancer and potential as therapeutic targets. Cancers (Basel). https://doi.org/10.3390/cancers12102922

    Article  PubMed  Google Scholar 

  20. Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6:392–401. https://doi.org/10.1038/nrc1877

    Article  CAS  PubMed  Google Scholar 

  21. Kobayashi H, Enomoto A, Woods SL, Burt AD, Takahashi M, Worthley DL (2019) Cancer-associated fibroblasts in gastrointestinal cancer. Nat Rev Gastroenterol Hepatol 16:282–295. https://doi.org/10.1038/s41575-019-0115-0

    Article  PubMed  Google Scholar 

  22. Kalluri R (2016) The biology and function of fibroblasts in cancer. Nat Rev Cancer 16:582–598. https://doi.org/10.1038/nrc.2016.73

    Article  CAS  PubMed  Google Scholar 

  23. Zhao J, Du P, Cui P, Qin Y, Hu Ce WuJ, Zhou Z, Zhang W, Qin L, Huang G (2018) LncRNA PVT1 promotes angiogenesis via activating the STAT3/VEGFA axis in gastric cancer. Oncogene 37:4094–4109. https://doi.org/10.1038/s41388-018-0250-z

    Article  CAS  PubMed  Google Scholar 

  24. Li S, Liang X, Ma L, Shen L, Li T, Zheng L, Sun A, Shang W, Chen C, Zhao W et al (2018) MiR-22 sustains NLRP3 expression and attenuates H. pylori-induced gastric carcinogenesis. Oncogene 37:884–896. https://doi.org/10.1038/onc.2017.381

    Article  CAS  PubMed  Google Scholar 

  25. Liu R, Lu Z, Gu J, Liu J, Huang E, Liu X, Wang L, Yang J, Deng Y, Qian J et al (2018) MicroRNAs 15A and 16–1 activate signaling pathways that mediate chemotaxis of immune regulatory B cells to colorectal tumors. Gastroenterology 154(637–651). https://doi.org/10.1053/j.gastro.2017.09.045

    Article  CAS  Google Scholar 

  26. Kopetz S, Grothey A, Yaeger R, Van Cutsem E, Desai J, Yoshino T, Wasan H, Ciardiello F, Loupakis F, Hong YS et al (2019) Encorafenib, binimetinib, and cetuximab in BRAF V600E-mutated colorectal cancer. N Engl J Med 381:1632–1643. https://doi.org/10.1056/NEJMoa1908075

    Article  CAS  PubMed  Google Scholar 

  27. Ajani JA, Lee J, Sano T, Janjigian YY, Fan D, Song S (2017) Gastric adenocarcinoma. Nat Rev Dis Primers 3:17036. https://doi.org/10.1038/nrdp.2017.36

    Article  PubMed  Google Scholar 

  28. Mactier KE, Glaire MA, Basavaraju U, El-Omar EM, Hold GL (2014) MicroRNAs in gastrointestinal malignancy: a tool in cancer prevention? Eur J Cancer Prev 23:540–549. https://doi.org/10.1097/CEJ.0000000000000014

    Article  CAS  PubMed  Google Scholar 

  29. Tu C, Zeng Z, Qi P, Li X, Guo C, Xiong F, Xiang B, Zhou M, Liao Q, Yu J et al (2018) Identification of genomic alterations in nasopharyngeal carcinoma and nasopharyngeal carcinoma-derived Epstein-Barr virus by whole-genome sequencing. Carcinogenesis 39:1517–1528. https://doi.org/10.1093/carcin/bgy108

    Article  CAS  PubMed  Google Scholar 

  30. Yi M, Cai J, Li J, Chen S, Zeng Z, Peng Q, Ban Y, Zhou Y, Li X, Xiong W et al (2018) Rediscovery of NF-kappaB signaling in nasopharyngeal carcinoma: how genetic defects of NF-kappaB pathway interplay with EBV in driving oncogenesis? J Cell Physiol 233:5537–5549. https://doi.org/10.1002/jcp.26410

    Article  CAS  PubMed  Google Scholar 

  31. Oya Y, Hayakawa Y, Koike K (2020) Tumor microenvironment in gastric cancers. Cancer Sci 111:2696–2707. https://doi.org/10.1111/cas.14521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Huang T, Song C, Zheng L, Xia L, Li Y, Zhou Y (2019) The roles of extracellular vesicles in gastric cancer development, microenvironment, anti-cancer drug resistance, and therapy. Mol Cancer 18:62. https://doi.org/10.1186/s12943-019-0967-5

    Article  PubMed  PubMed Central  Google Scholar 

  33. Fu M, Gu J, Jiang P, Qian H, Xu W, Zhang X (2019) Exosomes in gastric cancer: roles, mechanisms, and applications. Mol Cancer 18:41. https://doi.org/10.1186/s12943-019-1001-7

    Article  PubMed  PubMed Central  Google Scholar 

  34. Aktas ON, Ozturk AB, Erman B, Erus S, Tanju S, Dilege S (2018) Role of natural killer cells in lung cancer. J Cancer Res Clin Oncol 144:997–1003. https://doi.org/10.1007/s00432-018-2635-3

    Article  CAS  PubMed  Google Scholar 

  35. Lu T, Ramakrishnan R, Altiok S, Youn JI, Cheng P, Celis E, Pisarev V, Sherman S, Sporn MB, Gabrilovich D (2011) Tumor-infiltrating myeloid cells induce tumor cell resistance to cytotoxic T cells in mice. J Clin Invest 121:4015–4029. https://doi.org/10.1172/JCI45862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Talmadge JE, Gabrilovich DI (2013) History of myeloid-derived suppressor cells. Nat Rev Cancer 13:739–752. https://doi.org/10.1038/nrc3581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jackaman C, Tomay F, Duong L, Abdol Razak NB, Pixley FJ, Metharom P, Nelson DJ (2017) Aging and cancer: the role of macrophages and neutrophils. Ageing Res Rev 36:105–116. https://doi.org/10.1016/j.arr.2017.03.008

    Article  CAS  PubMed  Google Scholar 

  38. Tevis KM, Cecchi RJ, Colson YL, Grinstaff MW (2017) Mimicking the tumor microenvironment to regulate macrophage phenotype and assessing chemotherapeutic efficacy in embedded cancer cell/macrophage spheroid models. Acta Biomater 50:271–279. https://doi.org/10.1016/j.actbio.2016.12.037

    Article  CAS  PubMed  Google Scholar 

  39. Zhihua Y, Yulin T, Yibo W, Wei D, Yin C, Jiahao X, Runqiu J, Xuezhong X (2019) Hypoxia decreases macrophage glycolysis and M1 percentage by targeting microRNA-30c and mTOR in human gastric cancer. Cancer Sci 110:2368–2377. https://doi.org/10.1111/cas.14110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu F, Bu Z, Zhao F, Xiao D (2018) Increased T-helper 17 cell differentiation mediated by exosome-mediated microRNA-451 redistribution in gastric cancer infiltrated T cells. Cancer Sci 109:65–73. https://doi.org/10.1111/cas.13429

    Article  CAS  PubMed  Google Scholar 

  41. Zhao M, Liu Q, Liu W, Zhou H, Zang X, Lu J (2019) MicroRNA140 suppresses Helicobacter pyloripositive gastric cancer growth by enhancing the antitumor immune response. Mol Med Rep 20:2484–2492. https://doi.org/10.3892/mmr.2019.10475

    Article  CAS  PubMed  Google Scholar 

  42. Zhang Z, Chen S, Fan M, Ruan G, Xi T, Zheng L, Guo L, Ye F, Xing Y (2021) Helicobacter pylori induces gastric cancer via down-regulating miR-375 to inhibit dendritic cell maturation. Helicobacter 26. https://doi.org/10.1111/hel.12813

    Article  CAS  PubMed  Google Scholar 

  43. Ou J, Lei P, Yang Z, Yang M, Luo L, Mo H, Luo G, He J (2021) LINC00152 mediates CD8(+) T-cell infiltration in gastric cancer through binding to EZH2 and regulating the CXCL9, 10/CXCR3 axis. J Mol Histol 52:611–620. https://doi.org/10.1007/s10735-021-09967-z

    Article  CAS  PubMed  Google Scholar 

  44. Xu P, Xu X, Wu X, Zhang L, Meng L, Chen Z, Han W, Yao J, Xu A (2022) CircTMC5 promotes gastric cancer progression and metastasis by targeting miR-361-3p/RABL6. Gastric Cancer 25:64–82. https://doi.org/10.1007/s10120-021-01220-6

    Article  CAS  PubMed  Google Scholar 

  45. Kalluri R (2016) The biology and function of exosomes in cancer. J Clin Investig 126:1208–1215. https://doi.org/10.1172/jci81135

    Article  PubMed  PubMed Central  Google Scholar 

  46. Shao C, Yang F, Miao S, Liu W, Wang C, Shu Y, Shen H (2018) Role of hypoxia-induced exosomes in tumor biology. Mol Cancer 17:120. https://doi.org/10.1186/s12943-018-0869-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Xu W, Li Z, Zhu X, Xu R, Xu Y (2018) miR-29 Family inhibits resistance to methotrexate and promotes cell apoptosis by targeting COL3A1 and MCL1 in osteosarcoma. Med Sci Monit 24:8812–8821. https://doi.org/10.12659/MSM.911972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhao B, Song X, Guan H (2020) CircACAP2 promotes breast cancer proliferation and metastasis by targeting miR-29a/b-3p-COL5A1 axis. Life Sci 244. https://doi.org/10.1016/j.lfs.2019.117179

    Article  CAS  PubMed  Google Scholar 

  49. Liu W, Wei H, Gao Z, Chen G, Liu Y, Gao X, Bai G, He S, Liu T, Xu W et al (2018) COL5A1 may contribute the metastasis of lung adenocarcinoma. Gene 665:57–66. https://doi.org/10.1016/j.gene.2018.04.066

    Article  CAS  PubMed  Google Scholar 

  50. Shi Y, Zheng C, Jin Y, Bao B, Wang D, Hou K, Feng J, Tang S, Qu X, Liu Y et al (2020) Reduced expression of METTL3 promotes metastasis of triple-negative breast cancer by m6A methylation-mediated COL3A1 up-regulation. Front Oncol 10:1126. https://doi.org/10.3389/fonc.2020.01126

    Article  PubMed  PubMed Central  Google Scholar 

  51. Xiao Q, Ge G (2012) Lysyl oxidase, extracellular matrix remodeling and cancer metastasis. Cancer Microenviron 5:261–273. https://doi.org/10.1007/s12307-012-0105-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Goddard ET, Bozic I, Riddell SR, Ghajar CM (2018) Dormant tumour cells, their niches and the influence of immunity. Nat Cell Biol 20:1240–1249. https://doi.org/10.1038/s41556-018-0214-0

    Article  CAS  PubMed  Google Scholar 

  53. Wang L, Steele I, Kumar JD, Dimaline R, Jithesh PV, Tiszlavicz L, Reisz Z, Dockray GJ, Varro A (2016) Distinct miRNA profiles in normal and gastric cancer myofibroblasts and significance in Wnt signaling. Am J Physiol Gastrointest Liver Physiol 310:G696-704. https://doi.org/10.1152/ajpgi.00443.2015

    Article  PubMed  PubMed Central  Google Scholar 

  54. Tetsuroh Saitoh TM, Katoh Masaru (2002) Frequent up-regulation of WNT5A mRNA in primary gastric cancer. Int J Mol Med 9:515–519

    PubMed  Google Scholar 

  55. Wang MY, PC, CP Wang, (2019) Targeted regulation of miR-17-5p on TMOD1 promotes the development of cardia cancer. Eur Rev Med Pharmacol Sci 23:6170–6178

    PubMed  Google Scholar 

  56. Han S, Wang Z, Liu J, Wang HD, Yuan Q (2021) miR-29a-3p-dependent COL3A1 and COL5A1 expression reduction assists sulforaphane to inhibit gastric cancer progression. Biochem Pharmacol 188. https://doi.org/10.1016/j.bcp.2021.114539

    Article  CAS  PubMed  Google Scholar 

  57. Wei Z, Chen L, Meng L, Han W, Huang L, Xu A (2020) LncRNA HOTAIR promotes the growth and metastasis of gastric cancer by sponging miR-1277-5p and upregulating COL5A1. Gastric Cancer 23:1018–1032. https://doi.org/10.1007/s10120-020-01091-3

    Article  CAS  PubMed  Google Scholar 

  58. Aran D, Sirota M, Butte AJ (2015) Systematic pan-cancer analysis of tumour purity. Nat Commun 6:8971. https://doi.org/10.1038/ncomms9971

    Article  CAS  PubMed  Google Scholar 

  59. Mao Y, Feng Q, Zheng P, Yang L, Liu T, Xu Y, Zhu D, Chang W, Ji M, Ren L et al (2018) Low tumor purity is associated with poor prognosis, heavy mutation burden, and intense immune phenotype in colon cancer. Cancer Manag Res 10:3569–3577. https://doi.org/10.2147/CMAR.S171855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Na Ri Shin EHJ, Choi Chang In, Moon Hyun Jung, Kwon Chae Hwa, Chu In Sun, Kim Gwang Ha, Jeon Tae Yong, Kim Dae Hwan, Lee Jae Hyuk, Park Do Youn (2012) Overexpression of Snail is associated with lymph node metastasis and poor prognosis in patients with gastric cancer. BMC Cancer 12:521–536

    Article  PubMed  PubMed Central  Google Scholar 

  61. Poincloux R, Lizarraga F, Chavrier P (2009) Matrix invasion by tumour cells: a focus on MT1-MMP trafficking to invadopodia. J Cell Sci 122:3015–3024. https://doi.org/10.1242/jcs.034561

    Article  CAS  PubMed  Google Scholar 

  62. He H, Chen W, Wang X, Wang C, Liu F, Shen Z, Xu J, Gu J, Sun Y (2012) Snail is an independent prognostic predictor for progression and patient survival of gastric cancer. Cancer Sci 103:1296–1303. https://doi.org/10.1111/j.1349-7006.2012.02295.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. de la Pena S, Sampieri CL, Ochoa-Lara M, Leon-Cordoba K, Remes-Troche JM (2014) Expression of the matrix metalloproteases 2, 14, 24, and 25 and tissue inhibitor 3 as potential molecular markers in advanced human gastric cancer. Dis Markers 2014. https://doi.org/10.1155/2014/285906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wang ZQ, He CY, Hu L, Shi HP, Li JF, Gu QL, Su LP, Liu BY, Li C, Zhu Z (2017) Long noncoding RNA UCA1 promotes tumour metastasis by inducing GRK2 degradation in gastric cancer. Cancer Lett 408:10–21. https://doi.org/10.1016/j.canlet.2017.08.013

    Article  CAS  PubMed  Google Scholar 

  65. Xiaobo Guo ZY, Zhi Qiaoming, Wang Dan, Guo Lei, Li Guimei, Miao Ruizhen, Shi Yulong, Kuang Yuting (2016) Long noncoding RNA OR3A4 promotes metastasis and tumorigenicity in gastric cancer. Oncotarget 7:30276–30294

    Article  PubMed  PubMed Central  Google Scholar 

  66. Tian Y, Xing Y, Zhang Z, Peng R, Zhang L, Sun Y (2020) Bioinformatics analysis of key genes and circRNA-miRNA-mRNA regulatory network in gastric cancer. Biomed Res Int 2020:2862701. https://doi.org/10.1155/2020/2862701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Rhim AD, Oberstein PE, Thomas DH, Mirek ET, Palermo CF, Sastra SA, Dekleva EN, Saunders T, Becerra CP, Tattersall IW et al (2014) Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell 25:735–747. https://doi.org/10.1016/j.ccr.2014.04.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mizutani Y, Kobayashi H, Iida T, Asai N, Masamune A, Hara A, Esaki N, Ushida K, Mii S, Shiraki Y et al (2019) Meflin-positive cancer-associated fibroblasts inhibit pancreatic carcinogenesis. Cancer Res 79:5367–5381. https://doi.org/10.1158/0008-5472.can-19-0454

    Article  CAS  PubMed  Google Scholar 

  69. Elyada E, Bolisetty M, Laise P, Flynn WF, Courtois ET, Burkhart RA, Teinor JA, Belleau P, Biffi G, Lucito MS et al (2019) Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-associated fibroblasts. Cancer Discov 9:1102–1123. https://doi.org/10.1158/2159-8290.CD-19-0094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Quante M, Tu SP, Tomita H, Gonda T, Wang SS, Takashi S, Baik GH, Shibata W, Diprete B, Betz KS et al (2011) Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth. Cancer Cell 19:257–272. https://doi.org/10.1016/j.ccr.2011.01.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Karakasheva TA, Lin EW, Tang Q, Qiao E, Waldron TJ, Soni M, Klein-Szanto AJ, Sahu V, Basu D, Ohashi S et al (2018) IL-6 mediates cross-talk between tumor cells and activated fibroblasts in the tumor microenvironment. Cancer Res 78:4957–4970. https://doi.org/10.1158/0008-5472.CAN-17-2268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hayakawa Y, Ariyama H, Stancikova J, Sakitani K, Asfaha S, Renz BW, Dubeykovskaya ZA, Shibata W, Wang H, Westphalen CB et al (2015) Mist1 Expressing gastric stem cells maintain the normal and neoplastic gastric epithelium and are supported by a perivascular stem cell niche. Cancer Cell 28:800–814. https://doi.org/10.1016/j.ccell.2015.10.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kinoshita H, Hirata Y, Nakagawa H, Sakamoto K, Hayakawa Y, Takahashi R, Nakata W, Sakitani K, Serizawa T, Hikiba Y et al (2013) Interleukin-6 mediates epithelial-stromal interactions and promotes gastric tumorigenesis. PLoS ONE 8. https://doi.org/10.1371/journal.pone.0060914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wang D, Wang X, Si M, Yang J, Sun S, Wu H, Cui S, Qu X, Yu X (2020) Exosome-encapsulated miRNAs contribute to CXCL12/CXCR4-induced liver metastasis of colorectal cancer by enhancing M2 polarization of macrophages. Cancer Lett 474:36–52. https://doi.org/10.1016/j.canlet.2020.01.005

    Article  CAS  PubMed  Google Scholar 

  75. Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, Fulda S, Gascon S, Hatzios SK, Kagan VE et al (2017) Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 171:273–285. https://doi.org/10.1016/j.cell.2017.09.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhang H, Deng T, Liu R, Ning T, Yang H, Liu D, Zhang Q, Lin D, Ge S, Bai M et al (2020) CAF secreted miR-522 suppresses ferroptosis and promotes acquired chemo-resistance in gastric cancer. Mol Cancer 19:43. https://doi.org/10.1186/s12943-020-01168-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zhou Y, Zhong JH, Gong FS, Xiao J (2019) MiR-141-3p suppresses gastric cancer induced transition of normal fibroblast and BMSC to cancer-associated fibroblasts via targeting STAT4. Exp Mol Pathol 107:85–94. https://doi.org/10.1016/j.yexmp.2018.11.014

    Article  CAS  PubMed  Google Scholar 

  78. Li P, Shan JX, Chen XH, Zhang D, Su LP, Huang XY, Yu BQ, Zhi QM, Li CL, Wang YQ et al (2015) Epigenetic silencing of microRNA-149 in cancer-associated fibroblasts mediates prostaglandin E2/interleukin-6 signaling in the tumor microenvironment. Cell Res 25:588–603. https://doi.org/10.1038/cr.2015.51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Junji Kurashige KM, Sawada Genta, Takahashi Yusuke, Eguchi Hidetoshi, Sugimachi Keishi, Mori Masaki, Yanagihara Kazuyoshi, Yashiro Masakazu, Hirakawa Kosei, Baba Hideo, Mimori Koshi (2015) Epigenetic modulation and repression of miR-200b by cancer-associated fibroblasts contribute to cancer invasion and peritoneal dissemination in gastric cancer. Carcinogenesis 36:133–141. https://doi.org/10.1093/carcin/bgu232

    Article  CAS  PubMed  Google Scholar 

  80. Huang C, Liu J, He L, Wang F, Xiong B, Li Y, Yang X (2021) The long noncoding RNA noncoding RNA activated by DNA damage (NORAD)-microRNA-496-Interleukin-33 axis affects carcinoma-associated fibroblasts-mediated gastric cancer development. Bioengineered 12:11738–11755. https://doi.org/10.1080/21655979.2021.2009412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Liu G, Sun J, Yang ZF, Zhou C, Zhou PY, Guan RY, Sun BY, Wang ZT, Zhou J, Fan J et al (2021) Cancer-associated fibroblast-derived CXCL11 modulates hepatocellular carcinoma cell migration and tumor metastasis through the circUBAP2/miR-4756/IFIT1/3 axis. Cell Death Dis 12:260. https://doi.org/10.1038/s41419-021-03545-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Xiao K, Yu Z, Li X, Li X, Tang K, Tu C, Qi P, Liao Q, Chen P, Zeng Z et al (2016) Genome-wide analysis of Epstein-Barr virus (EBV) integration and strain in C666–1 and Raji Cells. J Cancer 7:214–224. https://doi.org/10.7150/jca.13150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Fan C, Tang Y, Wang J, Xiong F, Guo C, Wang Y, Xiang B, Zhou M, Li X, Wu X et al (2018) The emerging role of Epstein-Barr virus encoded microRNAs in nasopharyngeal carcinoma. J Cancer 9:2852–2864. https://doi.org/10.7150/jca.25460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Quail DF, Joyce JA (2013) Microenvironmental regulation of tumor progression and metastasis. Nat Med 19:1423–1437. https://doi.org/10.1038/nm.3394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Keir ME, Butte MJ, Freeman GJ, Sharpe AH (2008) PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 26:677–704. https://doi.org/10.1146/annurev.immunol.26.021607.090331

    Article  CAS  PubMed  Google Scholar 

  86. Tomohide Yamazaki HA, Iwai Hideyuki, Matsuda Hironori, Aoki Mami, Tanno Yuka, Shin Tahiro, Tsuchiya Haruo, Pardoll Drew M, Okumura Ko, Azuma Miyuki, Yagita Hideo (2002) expression of programmed death 1 ligands by murine T cells and APC. J Immunol 169:5538–5545

    Article  PubMed  Google Scholar 

  87. Zhong X, Tumang JR, Gao W, Bai C, Rothstein TL (2007) PD-L2 expression extends beyond dendritic cells/macrophages to B1 cells enriched for V(H)11/V(H)12 and phosphatidylcholine binding. Eur J Immunol 37:2405–2410. https://doi.org/10.1002/eji.200737461

    Article  CAS  PubMed  Google Scholar 

  88. Haidong Dong GZ, Tamada Koji, Chen Lieping (1999) B7–H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med 5:1365–1369

    Article  Google Scholar 

  89. Lin YM, Sung WW, Hsieh MJ, Tsai SC, Lai HW, Yang SM, Shen KH, Chen MK, Lee H, Yeh KT et al (2015) High PD-L1 expression correlates with metastasis and poor prognosis in oral squamous cell carcinoma. PLoS ONE 10. https://doi.org/10.1371/journal.pone.0142656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Gong Z, Zhang S, Zeng Z, Wu H, Yang Q, Xiong F, Shi L, Yang J, Zhang W, Zhou Y et al (2014) LOC401317, a p53-regulated long non-coding RNA, inhibits cell proliferation and induces apoptosis in the nasopharyngeal carcinoma cell line HNE2. PLoS ONE 9. https://doi.org/10.1371/journal.pone.0110674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Patel JS, Hu M, Sinha G, Walker ND, Sherman LS, Gallagher A, Rameshwar P (2016) Non-coding RNA as mediators in microenvironment-breast cancer cell communication. Cancer Lett 380:289–295. https://doi.org/10.1016/j.canlet.2015.11.016

    Article  CAS  PubMed  Google Scholar 

  92. Miliotis C, Slack FJ (2021) miR-105-5p regulates PD-L1 expression and tumor immunogenicity in gastric cancer. Cancer Lett 518:115–126. https://doi.org/10.1016/j.canlet.2021.05.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zheng X, Dong L, Wang K, Zou H, Zhao S, Wang Y, Wang G (2019) MiR-21 Participates in the PD-1/PD-L1 pathway-mediated imbalance of Th17/treg cells in patients after gastric cancer resection. Ann Surg Oncol 26:884–893. https://doi.org/10.1245/s10434-018-07117-6

    Article  PubMed  Google Scholar 

  94. Chen T, Zhang C, Liu Y, Zhao Y, Lin D, Hu Y, Yu J, Li G (2019) A gastric cancer LncRNAs model for MSI and survival prediction based on support vector machine. BMC Genomics 20:846. https://doi.org/10.1186/s12864-019-6135-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wang J, Yu Z, Wang J, Shen Y, Qiu J, Zhuang Z (2020) LncRNA NUTM2A-AS1 positively modulates TET1 and HIF-1A to enhance gastric cancer tumorigenesis and drug resistance by sponging miR-376a. Cancer Med 9:9499–9510. https://doi.org/10.1002/cam4.3544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Spaccarelli N, Rook AH (2015) The use of interferons in the treatment of cutaneous T-cell lymphoma. Dermatol Clin 33:731–745. https://doi.org/10.1016/j.det.2015.05.008

    Article  CAS  PubMed  Google Scholar 

  97. Martinez R, de Villavicencio-Diaz TN, Sanchez A, Ramos Y, Ferro JN, Gonzalez LG, Mendez M, Rodriguez E, Marcos E, Sanchez B et al (2016) Comparative proteomic analysis of growth hormone secretagogue A233 treatment of murine macrophage cells J774A.2 indicates it has a role in antiviral innate response. Biochem Biophys Rep 5:379–387. https://doi.org/10.1016/j.bbrep.2016.01.008

    Article  PubMed  PubMed Central  Google Scholar 

  98. Matalka HAAaKZ, (2011) IFN-g, IL-17 and TGF-b involvement in shaping the tumor microenvironment: the significance of modulating such cytokines in treating malignant solid tumors. Cancer Cell Int 11:33

    Article  Google Scholar 

  99. Mandai M, Hamanishi J, Abiko K, Matsumura N, Baba T, Konishi I (2016) Dual faces of IFNgamma in cancer progression: a role of PD-L1 induction in the determination of pro- and antitumor immunity. Clin Cancer Res 22:2329–2334. https://doi.org/10.1158/1078-0432.CCR-16-0224

    Article  CAS  PubMed  Google Scholar 

  100. Mimura K, Teh JL, Okayama H, Shiraishi K, Kua L-F, Koh V, Smoot DT, Ashktorab H, Oike T, Suzuki Y et al (2018) PD-L1 expression is mainly regulated by interferon gamma associated with JAK-STAT pathway in gastric cancer. Cancer Sci 109:43–53. https://doi.org/10.1111/cas.13424

    Article  CAS  PubMed  Google Scholar 

  101. Moon JW, Kong S-K, Kim BS, Kim HJ, Lim H, Noh K, Kim Y, Choi J-W, Lee J-H, Kim Y-S (2017) IFNγ induces PD-L1 overexpression by JAK2/STAT1/IRF-1 signaling in EBV-positive gastric carcinoma. Sci Rep. https://doi.org/10.1038/s41598-017-18132-0

    Article  PubMed  PubMed Central  Google Scholar 

  102. Gong A-Y, Zhou R, Hu G, Li X, Splinter PL, O’Hara SP, LaRusso NF, Soukup GA, Dong H, Chen X-M (2009) MicroRNA-513 regulates B7–H1 translation and is involved in IFN-γ-induced B7–H1 expression in cholangiocytes. J Immunol 182:1325–1333. https://doi.org/10.4049/jimmunol.182.3.1325

    Article  CAS  PubMed  Google Scholar 

  103. Yuan J, Tan L, Yin Z, Zhu W, Tao K, Wang G, Shi W, Gao J (2019) MIR17HG-miR-18a/19a axis, regulated by interferon regulatory factor-1, promotes gastric cancer metastasis via Wnt/β-catenin signalling. Cell Death Dis. https://doi.org/10.1038/s41419-019-1685-z

    Article  PubMed  PubMed Central  Google Scholar 

  104. Wei MF, Gu ZS, Zheng LL, Zhao MX, Wang XJ (2020) Long non-coding RNA GAS5 promotes natural killer cell cytotoxicity against gastric cancer by regulating miR-18a. Neoplasma 67:1085–1093. https://doi.org/10.4149/neo_2020_191014N1034

    Article  CAS  PubMed  Google Scholar 

  105. Yamaoka Y, Kim HJ, Song DE, Lim SY, Lee S-H, Kang JL, Lee SJ, Benveniste EN, Choi Y-H (2011) Loss of the promyelocytic leukemia protein in gastric cancer: implications for IP-10 expression and tumor-infiltrating lymphocytes. PLoS ONE. https://doi.org/10.1371/journal.pone.0026264

    Article  PubMed  PubMed Central  Google Scholar 

  106. Yee D, Shah KM, Coles MC, Sharp TV, Lagos D (2017) MicroRNA-155 induction via TNF-α and IFN-γ suppresses expression of programmed death ligand-1 (PD-L1) in human primary cells. J Biol Chem 292:20683–20693. https://doi.org/10.1074/jbc.M117.809053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Hartley G, Regan D, Guth A, Dow S (2017) Regulation of PD-L1 expression on murine tumor-associated monocytes and macrophages by locally produced TNF-α. Cancer Immunol Immunother 66:523–535. https://doi.org/10.1007/s00262-017-1955-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Wang X, Yang L, Huang F, Zhang Q, Liu S, Ma L, You Z (2017) Inflammatory cytokines IL-17 and TNF-α up-regulate PD-L1 expression in human prostate and colon cancer cells. Immunol Lett 184:7–14. https://doi.org/10.1016/j.imlet.2017.02.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Yan Liu LL, Xiaoxu Wu, Qi Haiyan, Gao Yan, Li Yanqi, Chen Da (2021) MSC-AS1 induced cell growth and inflammatory mediators secretion through sponging miR-142-5p/DDX5 in gastric carcinoma. Aging (Albany NY) 13:10387–10395

    PubMed  Google Scholar 

  110. Guo T, Zhang Y, Qu X, Che X, Li C, Fan Y, Wan X, Ma R, Hou K, Zhou H et al (2018) miR-200a enhances TRAIL-induced apoptosis in gastric cancer cells by targeting A20. Cell Biol Int 42:506–514. https://doi.org/10.1002/cbin.10924

    Article  CAS  PubMed  Google Scholar 

  111. Zhou C, Li X, Zhang X, Liu X, Tan Z, Yang C, Zhang J (2013) microRNA-372 maintains oncogene characteristics by targeting TNFAIP1 and affects NFκB signaling in human gastric carcinoma cells. Int J Oncol 42:635–642. https://doi.org/10.3892/ijo.2012.1737

    Article  CAS  PubMed  Google Scholar 

  112. Zhong L, Huot J, Simard MJ (2018) p38 activation induces production of miR-146a and miR-31 to repress E-selectin expression and inhibit transendothelial migration of colon cancer cells. Sci Rep 8:2334. https://doi.org/10.1038/s41598-018-20837-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Potente M, Gerhardt H, Carmeliet P (2011) Basic and therapeutic aspects of angiogenesis. Cell 146:873–887. https://doi.org/10.1016/j.cell.2011.08.039

    Article  CAS  PubMed  Google Scholar 

  114. Ferrara N (2009) Vascular endothelial growth factor. Arterioscler Thromb Vasc Biol 29:789–791. https://doi.org/10.1161/ATVBAHA.108.179663

    Article  CAS  PubMed  Google Scholar 

  115. Kazerounian S, Yee KO, Lawler J (2008) Thrombospondins in cancer. Cell Mol Life Sci 65:700–712. https://doi.org/10.1007/s00018-007-7486-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674. https://doi.org/10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  117. Wu ZH, Lin C, Liu CC, Jiang WW, Huang MZ, Liu X, Guo WJ (2018) MiR-616-3p promotes angiogenesis and EMT in gastric cancer via the PTEN/AKT/mTOR pathway. Biochem Biophys Res Commun 501:1068–1073. https://doi.org/10.1016/j.bbrc.2018.05.109

    Article  CAS  PubMed  Google Scholar 

  118. Yang H, Zhang H, Ge S, Ning T, Bai M, Li J, Li S, Sun W, Deng T, Zhang L et al (2018) Exosome-derived miR-130a activates angiogenesis in gastric cancer by targeting C-MYB in vascular endothelial cells. Mol Ther 26:2466–2475. https://doi.org/10.1016/j.ymthe.2018.07.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Deng T, Zhang H, Yang H, Wang H, Bai M, Sun W, Wang X, Si Y, Ning T, Zhang L et al (2020) Exosome miR-155 derived from gastric carcinoma promotes angiogenesis by targeting the c-MYB/VEGF axis of endothelial cells. Mol Ther Nucleic Acids 19:1449–1459. https://doi.org/10.1016/j.omtn.2020.01.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Zhou Z, Zhang H, Deng T, Ning T, Liu R, Liu D, Bai M, Ying G, Ba Y (2019) Exosomes carrying microRNA-155 target forkhead box O3 of endothelial cells and promote angiogenesis in gastric cancer. Mol Ther Oncolytics 15:223–233. https://doi.org/10.1016/j.omto.2019.10.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Bai M, Li J, Yang H, Zhang H, Zhou Z, Deng T, Zhu K, Ning T, Fan Q, Ying G et al (2019) miR-135b delivered by gastric tumor exosomes inhibits FOXO1 expression in endothelial cells and promotes angiogenesis. Mol Ther 27:1772–1783. https://doi.org/10.1016/j.ymthe.2019.06.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Xie M, Yu T, Jing X, Ma L, Fan Y, Yang F, Ma P, Jiang H, Wu X, Shu Y et al (2020) Exosomal circSHKBP1 promotes gastric cancer progression via regulating the miR-582-3p/HUR/VEGF axis and suppressing HSP90 degradation. Mol Cancer 19:112. https://doi.org/10.1186/s12943-020-01208-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Zhang Z, Harrison PM, Liu Y, Gerstein M (2003) Millions of years of evolution preserved: a comprehensive catalog of the processed pseudogenes in the human genome. Genome Res 13:2541–2558. https://doi.org/10.1101/gr.1429003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Hu X, Yang L, Mo YY (2018) Role of pseudogenes in tumorigenesis. Cancers (Basel). https://doi.org/10.3390/cancers10080256

    Article  PubMed  PubMed Central  Google Scholar 

  125. Wang Y, Han G, Wang K, Liu G, Wang R, Xiao H, Li X, Hou C, Shen B, Guo R et al (2014) Tumor-derived GM-CSF promotes inflammatory colon carcinogenesis via stimulating epithelial release of VEGF. Cancer Res 74:716–726. https://doi.org/10.1158/0008-5472.CAN-13-1459

    Article  CAS  PubMed  Google Scholar 

  126. Huang HW, Chen CY, Huang YH, Yeh CT, Wang CS, Chang CC, Lin KH (2022) CMAHP promotes metastasis by reducing ubiquitination of Snail and inducing angiogenesis via GM-CSF overexpression in gastric cancer. Oncogene 41:159–172. https://doi.org/10.1038/s41388-021-02087-8

    Article  CAS  PubMed  Google Scholar 

  127. Lisa M, Coussens ZW (2002) Inflammation and cancer. Nature 420:860–867

    Article  Google Scholar 

  128. Walczak H (2011) TNF and ubiquitin at the crossroads of gene activation, cell death, inflammation, and cancer. Immunol Rev 244:9–28

    Article  CAS  PubMed  Google Scholar 

  129. Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454:436–444. https://doi.org/10.1038/nature07205

    Article  CAS  PubMed  Google Scholar 

  130. Grivennikov SI, Karin M (2010) Inflammation and oncogenesis: a vicious connection. Curr Opin Genet Dev 20:65–71. https://doi.org/10.1016/j.gde.2009.11.004

    Article  CAS  PubMed  Google Scholar 

  131. Stephens PJ, McBride DJ, Lin ML, Varela I, Pleasance ED, Simpson JT, Stebbings LA, Leroy C, Edkins S, Mudie LJ et al (2009) Complex landscapes of somatic rearrangement in human breast cancer genomes. Nature 462:1005–1010. https://doi.org/10.1038/nature08645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Pleasance ED, Stephens PJ, O’Meara S, McBride DJ, Meynert A, Jones D, Lin ML, Beare D, Lau KW, Greenman C et al (2010) A small-cell lung cancer genome with complex signatures of tobacco exposure. Nature 463:184–190. https://doi.org/10.1038/nature08629

    Article  CAS  PubMed  Google Scholar 

  133. Pleasance ED, Cheetham RK, Stephens PJ, McBride DJ, Humphray SJ, Greenman CD, Varela I, Lin ML, Ordonez GR, Bignell GR et al (2010) A comprehensive catalogue of somatic mutations from a human cancer genome. Nature 463:191–196. https://doi.org/10.1038/nature08658

    Article  CAS  PubMed  Google Scholar 

  134. Ushijima T, Hattori N (2012) Molecular pathways: involvement of Helicobacter pylori-triggered inflammation in the formation of an epigenetic field defect, and its usefulness as cancer risk and exposure markers. Clin Cancer Res 18:923–929. https://doi.org/10.1158/1078-0432.CCR-11-2011

    Article  CAS  PubMed  Google Scholar 

  135. Niwa T, Tsukamoto T, Toyoda T, Mori A, Tanaka H, Maekita T, Ichinose M, Tatematsu M, Ushijima T (2010) Inflammatory processes triggered by Helicobacter pylori infection cause aberrant DNA methylation in gastric epithelial cells. Cancer Res 70:1430–1440. https://doi.org/10.1158/0008-5472.CAN-09-2755

    Article  CAS  PubMed  Google Scholar 

  136. Zhong L, Simard MJ, Huot J (2018) Endothelial microRNAs regulating the NF-κB pathway and cell adhesion molecules during inflammation. FASEB J : Official Pub Federation of Am Societies For Experimental Biol 32:4070–4084. https://doi.org/10.1096/fj.201701536R

    Article  CAS  Google Scholar 

  137. Han TS, Voon DC, Oshima H, Nakayama M, Echizen K, Sakai E, Yong ZWE, Murakami K, Yu L, Minamoto T et al (2019) Interleukin 1 up-regulates MicroRNA 135b to promote inflammation-associated gastric carcinogenesis in mice. Gastroenterology 156(1140–1155). https://doi.org/10.1053/j.gastro.2018.11.059

    Article  CAS  Google Scholar 

  138. Ting Li HG, Zhao Xiaodi, Jin Jiang, Zhang Lifeng, Li Hong, Yuanyuan Lu, Nie Yongzhan, Kaichun Wu, Shi Yongquan, Fan Daiming (2017) Gastric cancer cell proliferation and survival is enabled by a cyclophilin B/STAT3/miR-520d-5p Signaling Feedback Loop. Cancer Res 77:1227–1240

    Article  PubMed  Google Scholar 

  139. Shao L, Chen Z, Soutto M, Zhu S, Lu H, Romero-Gallo J, Peek R, Zhang S, El-Rifai W (2019) Helicobacter pylori-induced miR-135b-5p promotes cisplatin resistance in gastric cancer. FASEB J 33:264–274. https://doi.org/10.1096/fj.201701456RR

    Article  CAS  PubMed  Google Scholar 

  140. Kong D, Piao YS, Yamashita S, Oshima H, Oguma K, Fushida S, Fujimura T, Minamoto T, Seno H, Yamada Y et al (2012) Inflammation-induced repression of tumor suppressor miR-7 in gastric tumor cells. Oncogene 31:3949–3960. https://doi.org/10.1038/onc.2011.558

    Article  CAS  PubMed  Google Scholar 

  141. Han T, Jing X, Bao J, Zhao L, Zhang A, Miao R, Guo H, Zhou B, Zhang S, Sun J et al (2020) H. pylori infection alters repair of DNA double-strand breaks via SNHG17. J Clin Invest 130:3901–3918. https://doi.org/10.1172/JCI125581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Jiang T, Xia Y, Lv J, Li B, Li Y, Wang S, Xuan Z, Xie L, Qiu S, He Z et al (2021) A novel protein encoded by circMAPK1 inhibits progression of gastric cancer by suppressing activation of MAPK signaling. Mol Cancer 20:66. https://doi.org/10.1186/s12943-021-01358-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Jiang XJWJ, Deng XY, Li XL, Li XY, Zeng ZY, Xiong W, Li GY, Xiong F, Guo C (2018) Immunotherapy targeted to immune checkpoint: a revolutionary breakthrough in cancer therapy. Prog Biochem Biophys 11:1178–1186. https://doi.org/10.16476/j.pibb.2018.0264

    Article  Google Scholar 

  144. Jiang X, Shapiro DJ (2014) The immune system and inflammation in breast cancer. Mol Cell Endocrinol 382:673–682. https://doi.org/10.1016/j.mce.2013.06.003

    Article  CAS  PubMed  Google Scholar 

  145. Wang Y-A, Li X-L, Mo Y-Z, Fan C-M, Tang L, Xiong F, Guo C, Xiang B, Zhou M, Ma J et al (2018) Effects of tumor metabolic microenvironment on regulatory T cells. Mol Cancer 17:168. https://doi.org/10.1186/s12943-018-0913-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Benencia F, Muccioli M, Alnaeeli M (2014) Perspectives on reprograming cancer-associated dendritic cells for anti-tumor therapies. Front Oncol 4:72. https://doi.org/10.3389/fonc.2014.00072

    Article  PubMed  PubMed Central  Google Scholar 

  147. Chanmee T, Ontong P, Konno K, Itano N (2014) Tumor-associated macrophages as major players in the tumor microenvironment. Cancers (Basel) 6:1670–1690. https://doi.org/10.3390/cancers6031670

    Article  PubMed  Google Scholar 

  148. Ishida YAY, Shibahara K, Honjo T (1992) Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. Eur Mol Biol Org J 11:3887–3895

    Article  CAS  Google Scholar 

  149. Liang Y, Liu Y, Zhang Q, Zhang H, Du J (2021) Tumor-derived extracellular vesicles containing microRNA-1290 promote immune escape of cancer cells through the Grhl2/ZEB1/PD-L1 axis in gastric cancer. Transl Res 231:102–112. https://doi.org/10.1016/j.trsl.2020.12.003

    Article  CAS  PubMed  Google Scholar 

  150. Li H, Zhao C, Zhao H, Liu G, Mao H, Liu Y (2021) Elevated linc00936 or silenced microRNA-425-3p inhibits immune escape of gastric cancer cells via elevation of ZC3H12A. Int Immunopharmacol 95. https://doi.org/10.1016/j.intimp.2021.107559

    Article  CAS  PubMed  Google Scholar 

  151. Sun L, Li J, Yan W, Yao Z, Wang R, Zhou X, Wu H, Zhang G, Shi T, Chen W (2021) H19 promotes aerobic glycolysis, proliferation, and immune escape of gastric cancer cells through the microRNA-519d-3p/lactate dehydrogenase A axis. Cancer Sci 112:2245–2259. https://doi.org/10.1111/cas.14896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Han YJ, Zhang J, Lee JH, Mason JM, Karginova O, Yoshimatsu TF, Hao Q, Hurley I, Brunet LP, Prat A et al (2021) The BRCA1 pseudogene negatively regulates antitumor responses through inhibition of innate immune defense mechanisms. Cancer Res 81:1540–1551. https://doi.org/10.1158/0008-5472.CAN-20-1959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Gao C, Xu YJ, Qi L, Bao YF, Zhang L, Zheng L (2021) CircRNA VIM silence synergizes with sevoflurane to inhibit immune escape and multiple oncogenic activities of esophageal cancer by simultaneously regulating miR-124/PD-L1 axis. Cell Biol Toxicol.https://doi.org/10.1007/s10565-021-09613-0

  154. Shah MY, Ferrajoli A, Sood AK, Lopez-Berestein G, Calin GA (2016) microRNA therapeutics in cancer — an emerging concept. EBioMedicine 12:34–42. https://doi.org/10.1016/j.ebiom.2016.09.017

    Article  PubMed  PubMed Central  Google Scholar 

  155. Donlic A, Hargrove AE (2018) Targeting RNA in mammalian systems with small molecules. WIREs RNA. https://doi.org/10.1002/wrna.1477

    Article  PubMed  Google Scholar 

  156. Shi LWZ, Geng X, Zhang Y, Xue Z (2020) Exosomal miRNA-34 from cancer-associated fibroblasts inhibits growth and invasion of gastric cancer cells in vitro and in vivo. Aging (Albany NY) 12:8549–8564

    Article  CAS  PubMed  Google Scholar 

  157. Li Z, Suo B, Long G, Gao Y, Song J, Zhang M, Feng B, Shang C, Wang D (2020) Exosomal miRNA-16-5p derived from M1 macrophages enhances T cell-dependent immune response by regulating PD-L1 in gastric cancer. Front Cell and Dev Biol. https://doi.org/10.3389/fcell.2020.572689

    Article  Google Scholar 

  158. Wang X, Zhang H, Bai M, Ning T, Ge S, Deng T, Liu R, Zhang L, Ying G, Ba Y (2018) Exosomes serve as nanoparticles to deliver anti-miR-214 to reverse chemoresistance to cisplatin in gastric cancer. Mol Ther 26:774–783. https://doi.org/10.1016/j.ymthe.2018.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Ji R, Zhang X, Gu H, Ma J, Wen X, Zhou J, Qian H, Xu W, Qian J, Lin J (2019) miR-374a-5p: a new target for diagnosis and drug resistance therapy in gastric cancer. Molecular Therapy - Nucleic Acids 18:320–331. https://doi.org/10.1016/j.omtn.2019.07.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Kanasty R, Dorkin JR, Vegas A, Anderson D (2013) Delivery materials for siRNA therapeutics. Nat Mater 12:967–977. https://doi.org/10.1038/nmat3765

    Article  CAS  PubMed  Google Scholar 

  161. Ling H (2016) Non-coding RNAs: therapeutic strategies and delivery systems non-coding RNAs in colorectal cancer. 229-237

  162. Van Roosbroeck K, Calin GA (2017) Cancer hallmarks and microRNAs: the therapeutic connection MiRNA and cancer. 119-149

  163. Kamerkar S, LeBleu VS, Sugimoto H, Yang S, Ruivo CF, Melo SA, Lee JJ, Kalluri R (2017) Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature 546:498–503. https://doi.org/10.1038/nature22341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Fabbri M, Paone A, Calore F, Galli R, Gaudio E, Santhanam R, Lovat F, Fadda P, Mao C, Nuovo GJ et al (2012) MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. Proc Natl Acad Sci. https://doi.org/10.1073/pnas.1209414109

    Article  PubMed  PubMed Central  Google Scholar 

  165. Matsui M, Corey DR (2016) Non-coding RNAs as drug targets. Nat Rev Drug Discovery 16:167–179. https://doi.org/10.1038/nrd.2016.117

    Article  CAS  PubMed  Google Scholar 

  166. Albanese M, Chen YA, Huls C, Gartner K, Tagawa T, Mejias-Perez E, Keppler OT, Gobel C, Zeidler R, Shein M et al (2021) MicroRNAs are minor constituents of extracellular vesicles that are rarely delivered to target cells. PLoS Genet 17. https://doi.org/10.1371/journal.pgen.1009951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Xu G, Zhang B, Ye J, Cao S, Shi J, Zhao Y, Wang Y, Sang J, Yao Y, Guan W, et al (2019) Exosomal miRNA-139 in cancer-associated fibroblasts inhibits gastric cancer progression by repressing MMP11 expression. Int J Biol Sci 15: 2320–2329. https://doi.org/10.7150/ijbs.33750

  168. Li Q, Li B, Li Q, Wei S, He Z, Huang X, Wang L, Xia Y, Xu Z, Li Z, et al (2018) Exosomal miR-21-5p derived from gastric cancer promotes peritoneal metastasis via mesothelial-to-mesenchymal transition. Cell Death Dis 9: 854. https://doi.org/10.1038/s41419-018-0928-8

Download references

Acknowledgements

Thanks for the assistance and support of Y. X. Yang, J. R. Chen, Y. Y. Ding, and S. X. Lin. Thanks for the figure created with BioRender.com. Thanks for the editor and all reviewers for their comments.

Funding

This study was supported in part by Grants from the Programs of National Natural Science Foundation of China (no. 81572372, no. 81974373), National Precision Medicine Research Program (2017YFC0908304), National Key Research and Development Program (MOST-2016YFC1303200), and Tianjin Key Medical Discipline (Specialty) Construction Project (TJYXZDXK-009A).

Author information

Authors and Affiliations

Authors

Contributions

Jingyu Deng provided direction. Liqiao Chen drafted and revised the manuscript. All authors contributed to the article and approved the submitted version.

Corresponding author

Correspondence to Jingyu Deng.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics approval and consent to participate

The protocol of this research and the license for usage of clinical data were given by the Institutional Research Ethics Committee of Tianjin Medical University Cancer Institute and Hospital (Tianjin, China) (No. bc2019087).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Deng, J. Role of non-coding RNA in immune microenvironment and anticancer therapy of gastric cancer. J Mol Med 100, 1703–1719 (2022). https://doi.org/10.1007/s00109-022-02264-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-022-02264-6

Keywords

Navigation