Skip to main content

Noncoding RNAs in Cancer Immunology

  • Chapter
  • First Online:
The Long and Short Non-coding RNAs in Cancer Biology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 927))

Abstract

Cancer immunology is the study of interaction between cancer cells and immune system by the application of immunology principle and theory. With the recent approval of several new drugs targeting immune checkpoints in cancer, cancer immunology has become a very attractive field of research and is thought to be the new hope to conquer cancer. This chapter introduces the aberrant expression and function of noncoding RNAs, mainly microRNAs and long noncoding RNAs, in tumor-infiltrating immune cells, and their significance in tumor immunity. It also illustrates how noncoding RNAs are shuttled between tumor cells and immune cells in tumor microenvironments via exosomes or other microvesicles to modulate tumor immunity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gross L. Intradermal immunization of C3H mice against a sarcoma that originated in an animal of the same line. Cancer Res. 1942;3(5):326–33.

    Google Scholar 

  2. Burnet M. Cancer—a biological approach. I. The processes of control. Br Med J. 1957;1(5022):779–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mayordomo JI, Zorina T, Storkus WJ, et al. Bone marrow-derived dendritic cells pulsed with synthetic tumour peptides elicit protective and therapeutic antitumour immunity. Nat Med. 1995;1(12):1297–302.

    Article  CAS  PubMed  Google Scholar 

  4. Flamand V, Sornasse T, Thielemans K, et al. Murine dendritic cells pulsed in vitro with tumor antigen induce tumor resistance in vivo. Eur J Immunol. 1994;24(3):605–10. doi:10.1002/eji.1830240317.

    Article  CAS  PubMed  Google Scholar 

  5. Celluzzi CM, Mayordomo JI, Storkus WJ, et al. Peptide-pulsed dendritic cells induce antigen-specific CTL-mediated protective tumor immunity. J Exp Med. 1996;183(1):283–7.

    Article  CAS  PubMed  Google Scholar 

  6. Brossart P, Wirths S, Brugger W, Kanz L. Dendritic cells in cancer vaccines. Exp Hematol. 2001;29(11):1247–55.

    Article  CAS  PubMed  Google Scholar 

  7. Steinman RM, Dhodapkar M. Active immunization against cancer with dendritic cells: the near future. Int J Cancer. 2001;94(4):459–73.

    Article  CAS  PubMed  Google Scholar 

  8. Byrne SN, Halliday GM. Dendritic cells: making progress with tumour regression? Immunol Cell Biol. 2002;80(6):520–30. doi:10.1046/j.1440-1711.2002.01122.x.

    Article  PubMed  Google Scholar 

  9. Parmiani G, Castelli C, Dalerba P, et al. Cancer immunotherapy with peptide-based vaccines: what have we achieved? where are we going? J Natl Cancer Inst. 2002;94(11):805–18.

    Article  CAS  PubMed  Google Scholar 

  10. Couzin-Frankel J. Breakthrough of the year 2013. Cancer immunotherapy. Science. 2013;342(6165):1432–3. doi:10.1126/science.342.6165.1432.

    Article  CAS  PubMed  Google Scholar 

  11. Parish CR. Cancer immunotherapy: the past, the present and the future. Immunol Cell Biol. 2003;81(2):106–13. doi:10.1046/j.0818-9641.2003.01151.x.

    Article  CAS  PubMed  Google Scholar 

  12. Dunn GP, Old LJ, Schreiber RD. The three Es of cancer immunoediting. Annu Rev Immunol. 2004;22:329–60. doi:10.1146/annurev.immunol.22.012703.104803.

    Article  CAS  PubMed  Google Scholar 

  13. Kim R, Emi M, Tanabe K. Cancer immunoediting from immune surveillance to immune escape. Immunology. 2007;121(1):1–14. doi:10.1111/j.1365-2567.2007.02587.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Su S, Liu Q, Chen J, et al. A positive feedback loop between mesenchymal-like cancer cells and macrophages is essential to breast cancer metastasis. Cancer Cell. 2014;25(5):605–20. doi:10.1016/j.ccr.2014.03.021.

    Article  PubMed  Google Scholar 

  15. Fontana L, Pelosi E, Greco P, et al. MicroRNAs 17-5p–20a–106a control monocytopoiesis through AML1 targeting and M-CSF receptor up-regulation. Nat Cell Biol. 2007;9(7):775–87. doi:10.1038/ncb1613.

    Article  CAS  PubMed  Google Scholar 

  16. Costinean S, Zanesi N, Pekarsky Y, et al. Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenic mice. Proc Natl Acad Sci U S A. 2006;103(18):7024–9. doi:10.1073/pnas.0602266103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer. 2006;6(11):857–66. doi:10.1038/nrc1997.

    Article  CAS  PubMed  Google Scholar 

  18. Tili E, Croce CM, Michaille JJ. MiR-155: on the crosstalk between inflammation and cancer. Int Rev Immunol. 2009;28(5):264–84. doi:10.1080/08830180903093796.

    Article  CAS  PubMed  Google Scholar 

  19. O’Connell RM, Chaudhuri AA, Rao DS, Baltimore D. Inositol phosphatase SHIP1 is a primary target of miR-155. Proc Natl Acad Sci U S A. 2009;106(17):7113–18. doi:10.1073/pnas.0902636106.

    Article  PubMed  PubMed Central  Google Scholar 

  20. O’Connell RM, Taganov KD, Boldin MP, et al. MicroRNA-155 is induced during the macrophage inflammatory response. Proc Natl Acad Sci U S A. 2007;104(5):1604–9. doi:10.1073/pnas.0610731104.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Androulidaki A, Iliopoulos D, Arranz A, et al. The kinase Akt1 controls macrophage response to lipopolysaccharide by regulating microRNAs. Immunity. 2009;31(2):220–31. doi:10.1016/j.immuni.2009.06.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ceppi M, Pereira PM, Dunand-Sauthier I, et al. MicroRNA-155 modulates the interleukin-1 signaling pathway in activated human monocyte-derived dendritic cells. Proc Natl Acad Sci U S A. 2009;106(8):2735–40. doi:10.1073/pnas.0811073106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Luers AJ, Loudig OD, Berman JW. MicroRNAs are expressed and processed by human primary macrophages. Cell Immunol. 2010;263(1):1–8. doi:10.1016/j.cellimm.2010.03.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu G, Friggeri A, Yang Y, et al. MiR-147, a microRNA that is induced upon Toll-like receptor stimulation, regulates murine macrophage inflammatory responses. Proc Natl Acad Sci U S A. 2009;106(37):15819–24. doi:10.1073/pnas.0901216106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tili E, Michaille JJ, Cimino A, et al. Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-alpha stimulation and their possible roles in regulating the response to endotoxin shock. J Immunol. 2007;179(8):5082–9.

    Article  CAS  PubMed  Google Scholar 

  26. Sheedy FJ, Palsson-McDermott E, Hennessy EJ, et al. Negative regulation of TLR4 via targeting of the proinflammatory tumor suppressor PDCD4 by the microRNA miR-21. Nat Immunol. 2009;11(2):141–7. doi:10.1038/ni.1828.

    Article  PubMed  Google Scholar 

  27. Zhu D, Pan C, Li L, et al. MicroRNA-17/20a/106a modulate macrophage inflammatory responses through targeting signal-regulatory protein α. J Allergy Clin Immunol. 2013;132(2):426–36. doi:10.1016/j.jaci.2013.02.005.

    Article  CAS  PubMed  Google Scholar 

  28. Bezman NA, Cedars E, Steiner DF, et al. Distinct requirements of MicroRNAs in NK cell activation, survival, and function. J Immunol. 2010;185(7):3835–46. doi:10.4049/jimmunol.1000980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yamanaka Y, Tagawa H, Takahashi N, et al. Aberrant overexpression of microRNAs activate AKT signaling via down-regulation of tumor suppressors in natural killer-cell lymphoma/leukemia. Blood. 2009;114(15):3265–75. doi:10.1182/blood-2009-06-222794.

    Article  CAS  PubMed  Google Scholar 

  30. Bezman NA, Chakraborty T, Bender T, Lanier LL. MiR-150 regulates the development of NK and iNKT cells. J Exp Med. 2011;208(13):2717–31. doi:10.1084/jem.20111386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Heinemann A, Zhao F, Pechlivanis S, et al. Tumor suppressive microRNAs miR-34a/c control cancer cell expression of ULBP2, a stress-induced ligand of the natural killer cell receptor NKG2D. Cancer Res. 2012;72(2):460–71. doi:10.1158/0008-5472.CAN-11-1977.

    Article  CAS  PubMed  Google Scholar 

  32. Sun JC, Beilke JN, Lanier LL. Adaptive immune features of natural killer cells. Nature. 2009;457(7229):557–61. doi:10.1038/nature07665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wu H, Neilson JR, Kumar P, et al. miRNA profiling of naive, effector and memory CD8 T cells. Plos One. 2007;2(10):e1020. doi:10.1371/journal.pone.0001020.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Landgraf P, Rusu M, Sheridan R, et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell. 2007;129(7):1401–14. doi:10.1016/j.cell.2007.04.040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Xu H, Cheung IY, Guo HF, Cheung NK. MicroRNA miR-29 modulates expression of immunoinhibitory molecule B7-H3: Potential implications for immune based therapy of human solid tumors. Cancer Res. 2009;69(15):6275–81. doi:10.1158/0008-5472.CAN-08-4517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sheppard HM, Verdon D, Brooks AE, et al. MicroRNA regulation in human CD8+ T cell subsets--cytokine exposure alone drives miR-146a expression. J Transl Med. 2014;12:292. doi:10.1186/s12967-014-0292-0.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Saki N, Abroun S, Soleimani M, et al. The roles of miR-146a in the differentiation of Jurkat T-lymphoblasts. Hematology. 2014;19(3):141–7. doi:10.1179/1607845413Y.0000000105.

    Article  CAS  PubMed  Google Scholar 

  38. Yang L, Boldin MP, Yu Y, et al. MiR-146a controls the resolution of T cell responses in mice. J Exp Med. 2012;209(9):1655–70. doi:10.1084/jem.20112218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lu LF, Boldin MP, Chaudhry A, et al. Function of miR-146a in controlling Treg cell-mediated regulation of Th1 responses. Cell. 2010;142(6):914–29. doi:10.1016/j.cell.2010.08.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Burger ML, Xue L, Sun Y, et al. Premalignant PTEN-deficient thymocytes activate microRNAs miR-146a and miR-146b as a cellular defense against malignant transformation. Blood. 2014;123(26):4089–100. doi:10.1182/blood-2013-11-539411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rodriguez A, Vigorito E, Clare S, et al. Requirement of bic/microRNA-155 for normal immune function. Science. 2007;316(5824):608–11. doi:10.1126/science.1139253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Banerjee A, Schambach F, DeJong CS, et al. Micro-RNA-155 inhibits IFN-gamma signaling in CD4+ T cells. Eur J Immunol. 2010;40(1):225–31. doi:10.1002/eji.200939381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lu LF, Thai TH, Calado DP, et al. Foxp3-dependent microRNA155 confers competitive fitness to regulatory T cells by targeting SOCS1 protein. Immunity. 2008;30(1):80–91. doi:10.1016/j.immuni.2008.11.010.

    Article  Google Scholar 

  44. Zhao XD, Zhang W, Liang HJ, Ji WY. Overexpression of miR -155 promotes proliferation and invasion of human laryngeal squamous cell carcinoma via targeting SOCS1 and STAT3. Plos One. 2013;8(2), e56395. doi:10.1371/journal.pone.0056395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Li QJ, Chau J, Ebert PJ, et al. MiR-181a is an intrinsic modulator of T cell sensitivity and selection. Cell. 2007;129(1):147–61. doi:10.1016/j.cell.2007.03.008.

    Article  CAS  PubMed  Google Scholar 

  46. Li G, Yu M, Lee WW, et al. Decline in miR-181a expression with age impairs T cell receptor sensitivity by increasing DUSP6 activity. Nat Med. 2012;18(10):1518–24. doi:10.1038/nm.2963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nishimura J, Handa R, Yamamoto H, et al. MicroRNA-181a is associated with poor prognosis of colorectal cancer. Oncol Rep. 2012;28(6):2221–6. doi:10.3892/or.2012.2059.

    CAS  PubMed  Google Scholar 

  48. Xiao C, Srinivasan L, Calado DP, et al. Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes. Nat Immunol. 2008;9(4):405–14. doi:10.1038/ni1575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sasaki K, Kohanbash G, Hoji A, et al. MiR-17-92 expression in differentiated T cells – implications for cancer immunotherapy. J Transl Med. 2010;8:17. doi:10.1186/1479-5876-8-17.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Taguchi A, Yanagisawa K, Tanaka M, et al. Identification of hypoxia-inducible factor-1 alpha as a novel target for miR-17-92 microRNA cluster. Cancer Res. 2008;68(14):5540–5. doi:10.1158/0008-5472.CAN-07-6460.

    Article  CAS  PubMed  Google Scholar 

  51. Du C, Liu C, Kang J, et al. MicroRNA miR-326 regulates TH-17 differentiation and is associated with the pathogenesis of multiple sclerosis. Nat Immunol. 2009;10(12):1252–9. doi:10.1038/ni.1798.

    Article  CAS  PubMed  Google Scholar 

  52. Hoareau-Aveilla C, Valentin T, Daugrois C, et al. Reversal of microRNA-150 silencing disadvantages crizotinib-resistant NPM-ALK(+) cell growth. J Clin Invest. 2015;125(9):3505–18. doi:10.1172/JCI78488.

    Article  PubMed  PubMed Central  Google Scholar 

  53. de Yebenes VG, Belver L, Pisano DG, et al. MiR-181b negatively regulates activation-induced cytidine deaminase in B cells. J Exp Med. 2008;205(10):2199–206. doi:10.1084/jem.20080579.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Xu X, Ge S, Jia R, et al. Hypoxia-induced miR-181b enhances angiogenesis of retinoblastoma cells by targeting PDCD10 and GATA6. Oncol Rep. 2015;33(6):2789–96. doi:10.3892/or.2015.3900.

    PubMed  Google Scholar 

  55. Mraz M, Chen L, Rassenti LZ, et al. MiR-150 influences B-cell receptor signaling in chronic lymphocytic leukemia by regulating expression of GAB1 and FOXP1. Blood. 2014;124(1):84–95. doi:10.1182/blood-2013-09-527234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Manoharan P, Basford JE, Pilcher-Roberts R, et al. Reduced levels of microRNAs miR-124a and miR-150 are associated with increased proinflammatory mediator expression in Kruppel-like factor 2 (KLF2)-deficient macrophages. J Biol Chem. 2014;289(45):31638–46. doi:10.1074/jbc.M114.579763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhou B, Wang S, Mayr C, et al. MiR-150, a microRNA expressed in mature B and T cells, blocks early B cell development when expressed prematurely. Proc Natl Acad Sci U S A. 2007;104(17):7080–5. doi:10.1073/pnas.0702409104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Dorsett Y, McBride KM, Jankovic M, et al. MicroRNA-155 suppresses activation-induced cytidine deaminase-mediated Myc-Igh translocation. Immunity. 2008;28(5):630–8. doi:10.1016/j.immuni.2008.04.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wang YZ, Tian FF, Yan M, et al. Delivery of an miR155 inhibitor by anti-CD20 single-chain antibody into B cells reduces the acetylcholine receptor-specific autoantibodies and ameliorates experimental autoimmune myasthenia gravis. Clin Exp Immunol. 2014;176(2):207–21. doi:10.1111/cei.12265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Neilsen PM, Noll JE, Mattiske S, et al. Mutant p53 drives invasion in breast tumors through up-regulation of miR-155. Oncogene. 2013;32(24):2992–3000. doi:10.1038/onc.2012.305.

    Article  CAS  PubMed  Google Scholar 

  61. Yin Q, Wang X, McBride J, et al. B-cell receptor activation induces BIC/miR-155 expression through a conserved AP-1 element. J Biol Chem. 2008;283(5):2654–62. doi:10.1074/jbc.M708218200.

    Article  CAS  PubMed  Google Scholar 

  62. Carpenter S, Aiello D, Atianand MK, et al. A long non-coding RNA mediates both activation and repression of immune response genes. Science. 2013;341(6147):789–92. doi:10.1126/science.1240925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Krawczyk M, Emerson BM. P50-associated COX-2 extragenic RNA (PACER) activates COX-2 gene expression by occluding repressive NF-kappaB complexes. Elife. 2014;3:e1776.

    Article  Google Scholar 

  64. Liu B, Sun L, Liu Q, et al. A cytoplasmic NF-kappaB interacting long non-coding RNA blocks IkappaB phosphorylation and suppresses breast cancer metastasis. Cancer Cell. 2015;27(3):370–81. doi:10.1016/j.ccell.2015.02.004.

    Article  CAS  PubMed  Google Scholar 

  65. Wang P, Xue Y, Han Y, et al. The STAT3-binding long non-coding RNA lnc-DC controls human dendritic cell differentiation. Science. 2014;344(6181):310–13. doi:10.1126/science.1251456.

    Article  CAS  PubMed  Google Scholar 

  66. Cui H, Xie N, Tan Z, et al. The human long non-coding RNA lnc-IL7R regulates the inflammatory response. Eur J Immunol. 2014;44(7):2085–95. doi:10.1002/eji.201344126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Rapicavoli NA, Qu K, Zhang J, et al. A mammalian pseudogene lncRNA at the interface of inflammation and anti-inflammatory therapeutics. Elife. 2013;2:e762. doi:10.7554/eLife.00762.

    Article  Google Scholar 

  68. Collier SP, Henderson MA, Tossberg JT, Aune TM. Regulation of the th1 genomic locus from ifng through tmevpg1 by t-bet. J Immunol. 2014;193(8):3959–65. doi:10.4049/jimmunol.1401099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Gomez JA, Wapinski OL, Yang YW, et al. The NeST long ncRNA controls microbial susceptibility and epigenetic activation of the interferon-γ locus. Cell. 2013;152(4):743–54. doi:10.1016/j.cell.2013.01.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hu G, Tang Q, Sharma S, et al. Expression and regulation of intergenic long non-coding RNAs during T cell development and differentiation. Nat Immunol. 2013;14(11):1190–8. doi:10.1038/ni.2712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhang H, Nestor CE, Zhao S, et al. Profiling of human CD4+ T-cell subsets identifies the TH2-specific non-coding RNA GATA3-AS1. J Allergy Clin Immunol. 2013;132(4):1005–8. doi:10.1016/j.jaci.2013.05.033.

    Article  CAS  PubMed  Google Scholar 

  72. Hwang SS, Kim K, Lee W, Lee GR. Aberrant expression of IFN-gamma in Th2 cells from Th2 LCR-deficient mice. Biochem Biophys Res Commun. 2012;424(3):512–18. doi:10.1016/j.bbrc.2012.06.146.

    Article  CAS  PubMed  Google Scholar 

  73. Spurlock CF, Tossberg JT, Guo Y, et al. Expression and functions of long non-coding RNAs during human T helper cell differentiation. Nat Commun. 2015;6:6932. doi:10.1038/ncomms7932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ranzani V, Rossetti G, Panzeri I, et al. The long intergenic non-coding RNA landscape of human lymphocytes highlights the regulation of T cell differentiation by linc-MAF-4. Nat Immunol. 2015;16(3):318–25. doi:10.1038/ni.3093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sharma S, Findlay GM, Bandukwala HS, et al. Dephosphorylation of the nuclear factor of activated T cells (NFAT) transcription factor is regulated by an RNA-protein scaffold complex. Proc Natl Acad Sci U S A. 2011;108(28):11381–6. doi:10.1073/pnas.1019711108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sehgal L, Mathur R, Braun FK, et al. FAS-antisense 1 lncRNA and production of soluble versus membrane Fas in B-cell lymphoma. Leukemia. 2014;28(12):2376–87. doi:10.1038/leu.2014.126.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Li, Q., Liu, Q. (2016). Noncoding RNAs in Cancer Immunology. In: Song, E. (eds) The Long and Short Non-coding RNAs in Cancer Biology. Advances in Experimental Medicine and Biology, vol 927. Springer, Singapore. https://doi.org/10.1007/978-981-10-1498-7_9

Download citation

Publish with us

Policies and ethics