Skip to main content

Advertisement

Log in

Anti-fibrotic effects of pharmacologic FGF-2: a review of recent literature

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Fibrosis is a process of pathological tissue repair that replaces damaged, formerly functional tissue with a non-functional, collagen-rich scar. Complications of fibrotic pathologies, which can arise in numerous organs and from numerous conditions, result in nearly half of deaths in the developed world. Despite this, therapies that target fibrosis at its mechanistic roots are still notably lacking. The ubiquity of the occurrence of fibrosis in myriad organs emphasizes the fact that there are shared mechanisms underlying fibrotic conditions, which may serve as common therapeutic targets for multiple fibrotic diseases of varied organs. Thus, study of the basic science of fibrosis and of anti-fibrotic modalities is critical to therapeutic development and may have potential to translate across organs and disease states. Fibroblast growth factor 2 (FGF-2) is a broadly studied member of the fibroblast growth factors, a family of multipotent cytokines implicated in diverse cellular and tissue processes, which has previously been recognized for its anti-fibrotic potential. However, the mechanisms underlying this potential are not fully understood, nor is the potential for its use to ameliorate fibrosis in diverse pathologies and tissues. Presented here is a review of recent literature that sheds further light on these questions, with the hopes of inspiring further research into the mechanisms underlying the anti-fibrotic activities of FGF-2, as well as the disease conditions for which pharmacologic FGF-2 might be a useful option in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

FGF-2:

Fibroblast growth factor 2

FGFR:

Fibroblast growth factor receptor

IPF:

Idiopathic pulmonary fibrosis

MAPK:

Mitogen-activated protein kinase

STAT:

Signal transducer and activator of transcription

PLC:

Phospholipase C

HIF:

Hypoxia-inducible factor

VEGF:

Vascular endothelial growth factor

SVR:

Surgical ventricular restoration

TGF-β:

Transforming growth factor beta

LPS:

Lipopolysaccharide

PEGDA:

Polyethylene glycol diacrylate

MMP:

Matrix metalloproteinase

HGF:

Hepatocyte growth factor

CT:

Computed tomography

TCKO:

Triple conditional knockout

AEC2:

Alveolar type II epithelial cells

MEK:

MAPK/ERK Kinase

ERK:

Extracellular signal-regulated kinase

SRF:

Serum response factor

MRTF:

Myocardin-related transcription factor

PDGFR:

Platelet-derived growth factor

SPION:

Superparamagnetic iron oxide nanoparticle

α-SMA:

Smooth muscle alpha actin

NOD-SCID:

Non-obese diabetic severe combined immunodeficiency

rAAV:

Recombinant adeno-associated virus

ECM:

Extracellular matrix

YAP/TAZ:

Yes-associated protein/Transcriptional co-activator with PDZ-binding motif

LSE:

Living skin equivalent

TGF-βR:

Transforming growth factor beta receptor

PEG:

Polyethylene glycol

VIC:

Valvular interstitial cell

Elk-1:

ETS Like-1

NF-κB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

BM-MSC:

Bone marrow-derived mesenchymal stem cell

ADAMTS:

A disintegrin and metalloproteinase with thrombospondin motifs

LOX:

Lysyl oxidase

CD:

Cluster of differentiation

CCN2:

Cellular communication network factor 2

CTGF:

Connective tissue growth factor

References

  1. Wynn TA (2008) Cellular and molecular mechanisms of fibrosis. J Pathol 214:199–210. https://doi.org/10.1002/path.2277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Walraven M, Hinz B (2018) Therapeutic approaches to control tissue repair and fibrosis: extracellular matrix as a game changer. Matrix Biol 71–72:205–224. https://doi.org/10.1016/j.matbio.2018.02.020

    Article  CAS  PubMed  Google Scholar 

  3. Wynn TA (2007) Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases. J Clin Invest 117:524–529. https://doi.org/10.1172/JCI31487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Richeldi L, du Bois RM, Raghu G, Azuma A, Brown KK, Costabel U, Cottin V, Flaherty KR, Hansell DM, Inoue Y et al (2014) Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N Engl J Med 370:2071–2082. https://doi.org/10.1056/NEJMoa1402584

    Article  CAS  PubMed  Google Scholar 

  5. King TE Jr, Bradford WZ, Castro-Bernardini S, Fagan EA, Glaspole I, Glassberg MK, Gorina E, Hopkins PM, Kardatzke D, Lancaster L (2014) A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. N Engl J Med 370:2083–2092

    Article  PubMed  CAS  Google Scholar 

  6. Noble PW, Albera C, Bradford WZ, Costabel U, Du Bois RM, Fagan EA, Fishman RS, Glaspole I, Glassberg MK, Lancaster L (2016) Pirfenidone for idiopathic pulmonary fibrosis: analysis of pooled data from three multinational phase 3 trials. Eur Respir J 47:243–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Noble PW, Albera C, Bradford WZ, Costabel U, Glassberg MK, Kardatzke D, King TE Jr, Lancaster L, Sahn SA, Szwarcberg J (2011) Pirfenidone in patients with idiopathic pulmonary fibrosis (CAPACITY): two randomised trials. The Lancet 377:1760–1769

    Article  CAS  Google Scholar 

  8. Bai X, Nie P, Lou Y, Zhu Y, Jiang S, Li B, Luo P (2021) Pirfenidone is a renal protective drug: Mechanisms, signalling pathways, and preclinical evidence. Eur J Phamarcol 911: 174503

  9. Huang J, Beyer C, Palumbo-Zerr K, Zhang Y, Ramming A, Distler A, Gelse K, Distler O, Schett G, Wollin L (2016) Nintedanib inhibits fibroblast activation and ameliorates fibrosis in preclinical models of systemic sclerosis. Ann Rheum Dis 75:883–890

    Article  CAS  PubMed  Google Scholar 

  10. Wollin L, Togbe D, Ryffel B (2020) Effects of nintedanib in an animal model of liver fibrosis. BioMed Res Int

  11. Aimo A, Cerbai E, Bartolucci G, Adamo L, Barison A, Surdo GL, Biagini S, Passino C, Emdin M (2020) Pirfenidone is a cardioprotective drug: mechanisms of action and preclinical evidence. Pharmacol Res 155: 104694

  12. Lewis GA, Dodd S, Clayton D, Bedson E, Eccleson H, Schelbert EB, Naish JH, Jimenez BD, Williams SG, Cunnington C (2021) Pirfenidone in heart failure with preserved ejection fraction: a randomized phase 2 trial. Nat Med 27:1477–1482

    Article  CAS  PubMed  Google Scholar 

  13. Behr J, Prasse A, Kreuter M, Johow J, Rabe KF, Bonella F, Bonnet R, Grohe C, Held M, Wilkens H (2021) Pirfenidone in patients with progressive fibrotic interstitial lung diseases other than idiopathic pulmonary fibrosis (RELIEF): a double-blind, randomised, placebo-controlled, phase 2b trial. Lancet Respir Med 9:476–486

    Article  CAS  PubMed  Google Scholar 

  14. Maher TM, Corte TJ, Fischer A, Kreuter M, Lederer DJ, Molina-Molina M, Axmann J, Kirchgaessler K-U, Samara K, Gilberg F (2020) Pirfenidone in patients with unclassifiable progressive fibrosing interstitial lung disease: a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet Respir Med 8:147–157

    Article  CAS  PubMed  Google Scholar 

  15. Wells AU, Flaherty KR, Brown KK, Inoue Y, Devaraj A, Richeldi L, Moua T, Crestani B, Wuyts WA, Stowasser S (2020) Nintedanib in patients with progressive fibrosing interstitial lung diseases—subgroup analyses by interstitial lung disease diagnosis in the INBUILD trial: a randomised, double-blind, placebo-controlled, parallel-group trial. Lancet Respir Med 8:453–460

    Article  CAS  PubMed  Google Scholar 

  16. Distler O, Highland KB, Gahlemann M, Azuma A, Fischer A, Mayes MD, Raghu G, Sauter W, Girard M, Alves M (2019) Nintedanib for systemic sclerosis–associated interstitial lung disease. N Engl J Med 380:2518–2528

    Article  CAS  PubMed  Google Scholar 

  17. Ornitz DM, Itoh N (2015) The fibroblast growth factor signaling pathway. Wiley Interdiscip Rev Dev Biol 4:215–266. https://doi.org/10.1002/wdev.176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ornitz DM, Itoh N (2001) Fibroblast growth factors. Genome Biol 2: REVIEWS3005. https://doi.org/10.1186/gb-2001-2-3-reviews3005

  19. Kardami E, Koleini N (2022) The role of FGF2 isoforms in cell survival in the heartbiochemistry of apoptosis and autophagy Springer, pp. 269–283.

  20. Freiin von Hövel F, Kefalakes E, Grothe C (2021) What can we learn from FGF-2 isoform-specific mouse mutants? Differential insights into FGF-2 physiology in vivo. Int J Mol Sci 22:390

    Article  CAS  Google Scholar 

  21. Förthmann B, Grothe C, Claus P (2015) A nuclear odyssey: fibroblast growth factor-2 (FGF-2) as a regulator of nuclear homeostasis in the nervous system. Cell Mol Life Sci 72:1651–1662

    Article  PubMed  CAS  Google Scholar 

  22. Kole D, Grella A, Dolivo D, Shumaker L, Hermans W, Dominko T (2017) High molecular weight FGF2 isoforms demonstrate canonical receptor-mediated activity and support human embryonic stem cell self-renewal. Stem Cell Res 21:106–116. https://doi.org/10.1016/j.scr.2017.04.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ornitz DM, Xu J, Colvin JS, McEwen DG, MacArthur CA, Coulier F, Gao G, Goldfarb M (1996) Receptor specificity of the fibroblast growth factor family. J Biol Chem 271:15292–15297. https://doi.org/10.1074/jbc.271.25.15292

    Article  CAS  PubMed  Google Scholar 

  24. Sarabipour S, Hristova K (2016) Mechanism of FGF receptor dimerization and activation. Nat Commun 7:10262. https://doi.org/10.1038/ncomms10262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liao S, Porter D, Scott A, Newman G, Doetschman T, Schultz Jel J (2007) The cardioprotective effect of the low molecular weight isoform of fibroblast growth factor-2: the role of JNK signaling. J Mol Cell Cardiol 42:106–120. https://doi.org/10.1016/j.yjmcc.2006.10.005

    Article  CAS  PubMed  Google Scholar 

  26. Heffron DS, Mandell JW (2005) Opposing roles of ERK and p38 MAP kinases in FGF2-induced astroglial process extension. Mol Cell Neurosci 28:779–790. https://doi.org/10.1016/j.mcn.2004.12.010

    Article  CAS  PubMed  Google Scholar 

  27. Ahn HJ, Lee WJ, Kwack K, Do Kwon Y (2009) FGF2 stimulates the proliferation of human mesenchymal stem cells through the transient activation of JNK signaling. FEBS Lett 583:2922–2926. https://doi.org/10.1016/j.febslet.2009.07.056

    Article  CAS  PubMed  Google Scholar 

  28. Maher P (1999) p38 mitogen-activated protein kinase activation is required for fibroblast growth factor-2-stimulated cell proliferation but not differentiation. J Biol Chem 274:17491–17498

    Article  CAS  PubMed  Google Scholar 

  29. Su WC, Kitagawa M, Xue N, Xie B, Garofalo S, Cho J, Deng C, Horton WA, Fu XY (1997) Activation of Stat1 by mutant fibroblast growth-factor receptor in thanatophoric dysplasia type II dwarfism. Nature 386:288–292. https://doi.org/10.1038/386288a0

    Article  CAS  PubMed  Google Scholar 

  30. Hart KC, Robertson SC, Kanemitsu MY, Meyer AN, Tynan JA, Donoghue DJ (2000) Transformation and stat activation by derivatives of FGFR1, FGFR3, and FGFR4. Oncogene 19:3309–3320. https://doi.org/10.1038/sj.onc.1203650

    Article  CAS  PubMed  Google Scholar 

  31. Dudka AA, Sweet SMM, Heath JK (2010) Signal transducers and activators of transcription-3 binding to the fibroblast growth factor receptor is activated by receptor amplification. Can Res 70:3391–3401. https://doi.org/10.1158/0008-5472.Can-09-3033

    Article  CAS  Google Scholar 

  32. Ma DK, Ponnusamy K, Song MR, Ming GL, Song H (2009) Molecular genetic analysis of FGFR1 signalling reveals distinct roles of MAPK and PLCgamma1 activation for self-renewal of adult neural stem cells. Mol Brain 2:16. https://doi.org/10.1186/1756-6606-2-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Maffucci T, Raimondi C, Abu-Hayyeh S, Dominguez V, Sala G, Zachary I, Falasca M (2009) A phosphoinositide 3-kinase/phospholipase Cgamma1 pathway regulates fibroblast growth factor-induced capillary tube formation. PLoS ONE 4:e8285. https://doi.org/10.1371/journal.pone.0008285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fearon AE, Grose RP (2014) Grb-ing receptor activation by the tail. Nat Struct Mol Biol 21:113–114. https://doi.org/10.1038/nsmb.2767

    Article  CAS  PubMed  Google Scholar 

  35. Shi HX, Lin C, Lin BB, Wang ZG, Zhang HY, Wu FZ, Cheng Y, Xiang LJ, Guo DJ, Luo X et al (2013) The anti-scar effects of basic fibroblast growth factor on the wound repair in vitro and in vivo. PLoS ONE 8:e59966. https://doi.org/10.1371/journal.pone.0059966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Akasaka Y, Ono I, Yamashita T, Jimbow K, Ishii T (2004) Basic fibroblast growth factor promotes apoptosis and suppresses granulation tissue formation in acute incisional wounds. J Pathol 203:710–720. https://doi.org/10.1002/path.1574

    Article  CAS  PubMed  Google Scholar 

  37. McGee GS, Davidson JM, Buckley A, Sommer A, Woodward SC, Aquino AM, Barbour R, Demetriou AA (1988) Recombinant basic fibroblast growth factor accelerates wound healing. J Surg Res 45:145–153. https://doi.org/10.1016/0022-4804(88)90034-0

    Article  CAS  PubMed  Google Scholar 

  38. Spyrou GE, Naylor IL (2002) The effect of basic fibroblast growth factor on scarring. Br J Plast Surg 55:275–282. https://doi.org/10.1054/bjps.2002.3831

    Article  CAS  PubMed  Google Scholar 

  39. Ono I, Akasaka Y, Kikuchi R, Sakemoto A, Kamiya T, Yamashita T, Jimbow K (2007) Basic fibroblast growth factor reduces scar formation in acute incisional wounds. Wound Repair Regen 15:617–623. https://doi.org/10.1111/j.1524-475X.2007.00293.x

    Article  PubMed  Google Scholar 

  40. Akita S, Akino K, Imaizumi T, Hirano A (2008) Basic fibroblast growth factor accelerates and improves second-degree burn wound healing. Wound Repair Regen 16:635–641. https://doi.org/10.1111/j.1524-475X.2008.00414.x

    Article  PubMed  Google Scholar 

  41. Akita S, Akino K, Imaizumi T, Tanaka K, Anraku K, Yano H, Hirano A (2006) The quality of pediatric burn scars is improved by early administration of basic fibroblast growth factor. J Burn Care Res 27:333–338. https://doi.org/10.1097/01.BCR.0000216742.23127.7A

    Article  PubMed  Google Scholar 

  42. Dolivo DM, Larson SA, Dominko T (2017) Fibroblast growth factor 2 as an antifibrotic: antagonism of myofibroblast differentiation and suppression of pro-fibrotic gene expression. Cytokine Growth Factor Rev 38:49–58. https://doi.org/10.1016/j.cytogfr.2017.09.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nunes QM, Li Y, Sun CY, Kinnunen TK, Fernig DG (2016) Fibroblast growth factors as tissue repair and regeneration therapeutics. Peerj 4: e1535. ARTN e153510.7717/peerj.1535

  44. Abdelhakim M, Lin X, Ogawa R (2020) The Japanese experience with basic fibroblast growth factor in cutaneous wound management and scar prevention: a systematic review of clinical and biological aspects. Dermatology and Therapy 10:569–587

    Article  PubMed  PubMed Central  Google Scholar 

  45. Nusayr E, Sadideen DT, Doetschman T (2013) FGF2 modulates cardiac remodeling in an isoform‐and sex‐specific manner. Physiol Rep 1

  46. Shen D-p GE, D-h WU Y-q, Lei L, Chu M-p (2018) Effect of bFGF on promoting angiogenesis in infarct area and improving myocardial fibrosis in mouse myocardial infarction model. Chin J Pathol 34:47–51

    Google Scholar 

  47. Rao Z, Shen D, Chen J, Jin L, Wu X, Chen M, Li L, Chu M, Lin J (2020) Basic fibroblast growth factor attenuates injury in myocardial infarction by enhancing hypoxia-inducible factor-1 Alpha accumulation. Front Pharmacol 11:1193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fan Z, Xu Z, Niu H, Sui Y, Li H, Ma J, Guan J (2019) Spatiotemporal delivery of basic fibroblast growth factor to directly and simultaneously attenuate cardiac fibrosis and promote cardiac tissue vascularization following myocardial infarction. J Control Release 311:233–244

    Article  PubMed  CAS  Google Scholar 

  49. Fu B, Wang X, Chen Z, Jiang N, Guo Z, Zhang Y, Zhang S, Liu X, Liu L (2022) Improved myocardial performance in infarcted rat heart by injection of disulfide-cross-linked chitosan hydrogels loaded with basic fibroblast growth factor. J Mater Chem B

  50. Nagasawa A, Masumoto H, Yanagi S, Kanemitsu N, Ikeda T, Tabata Y, Minatoya K (2019) Basic fibroblast growth factor attenuates left-ventricular remodeling following surgical ventricular restoration in a rat ischemic cardiomyopathy model. Gen Thorac Cardiovasc Surg 1–8

  51. Erndt-Marino JD, Jimenez-Vergara AC, Diaz-Rodriguez P, Kulwatno J, Diaz-Quiroz JF, Thibeault S, Hahn MS (2018) In vitro evaluation of a basic fibroblast growth factor-containing hydrogel toward vocal fold lamina propria scar treatment. J Biomed Mater Res B Appl Biomater 106:1258–1267

    Article  CAS  PubMed  Google Scholar 

  52. Suzuki R, Kawai Y, Tsuji T, Hiwatashi N, Kishimoto Y, Tateya I, Nakamura T, Hirano S (2017) Prevention of vocal fold scarring by local application of basic fibroblast growth factor in a rat vocal fold injury model. Laryngoscope 127:E67–E74

    Article  CAS  PubMed  Google Scholar 

  53. Kobayashi T, Mizuta M, Hiwatashi N, Kishimoto Y, Nakamura T, Kanemaru S-i, Hirano S (2017) Drug delivery system of basic fibroblast growth factor using gelatin hydrogel for restoration of acute vocal fold scar. Auris Nasus Larynx 44:86–92

    Article  PubMed  Google Scholar 

  54. Hiwatashi N, Hirano S, Mizuta M, Kobayashi T, Kawai Y, Kanemaru SI, Nakamura T, Ito J, Kawai K, Suzuki S (2017) The efficacy of a novel collagen-gelatin scaffold with basic fibroblast growth factor for the treatment of vocal fold scar. J Tissue Eng Regen Med 11:1598–1609. https://doi.org/10.1002/term.2060

    Article  CAS  PubMed  Google Scholar 

  55. Imaizumi M, Nakamura R, Nakaegawa Y, Dirja BT, Tada Y, Tani A, Sugino T, Tabata Y, Omori K (2021) Regenerative potential of basic fibroblast growth factor contained in biodegradable gelatin hydrogel microspheres applied following vocal fold injury: Early effect on tissue repair in a rabbit model. Braz J Otorhinolaryngol 87:274–282

    Article  PubMed  Google Scholar 

  56. Ban MJ, Park JH, Kim JW, Park KN, Lee JY, Kim HK, Lee SW (2017) The efficacy of fibroblast growth factor for the treatment of chronic vocal fold scarring: from animal model to clinical application. Clinical and experimental otorhinolaryngology 10:349

    Article  CAS  PubMed  Google Scholar 

  57. Kim Y-S, Hong G, Kim DH, Kim YM, Kim Y-K, Oh Y-M, Jee Y-K (2018) The role of FGF-2 in smoke-induced emphysema and the therapeutic potential of recombinant FGF-2 in patients with COPD. Exp Mol Med 50:1–10

    PubMed  PubMed Central  Google Scholar 

  58. Zhang S, Qiu X, Zhang Y, Fu K, Zhao X, Wu J, Hu Y, Zhu W, Guo H (2015) Basic fibroblast growth factor ameliorates endothelial dysfunction in radiation-induced bladder injury. BioMed Res Int

  59. Pena LA, Fuks Z, Kolesnick RN (2000) Radiation-induced apoptosis of endothelial cells in the murine central nervous system: protection by fibroblast growth factor and sphingomyelinase deficiency. Can Res 60:321–327

    CAS  Google Scholar 

  60. Gu Q, Wang D, Wang X, Peng R, Liu J, Jiang T, Wang Z, Wang S, Deng H (2004) Basic fibroblast growth factor inhibits radiation-induced apoptosis of HUVECs. I. The PI3K/AKT pathway and induction of phosphorylation of BAD. Radiat Res 161:692–702

    Article  CAS  PubMed  Google Scholar 

  61. Paris F, Fuks Z, Kang A, Capodieci P, Juan G, Ehleiter D, Haimovitz-Friedman A, Cordon-Cardo C, Kolesnick R (2001) Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice. Science 293: 293–297

  62. Guan D, Mi J, Chen X, Wu Y, Yao Y, Wang L, Xiao Z, Zhao Y, Chen B, Dai J (2018) Lung endothelial cell-targeted peptide-guided bFGF promotes the regeneration after radiation induced lung injury. Biomaterials 184:10–19

    Article  CAS  PubMed  Google Scholar 

  63. Guzy RD, Stoilov I, Elton TJ, Mecham RP, Ornitz DM (2015) Fibroblast growth factor 2 is required for epithelial recovery, but not for pulmonary fibrosis, in response to bleomycin. Am J Respir Cell Mol Biol 52:116–128

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Koo HY, El-Baz LM, House S, Cilvik SN, Dorry SJ, Shoukry NM, Salem ML, Hafez HS, Dulin NO, Ornitz DM (2018) Fibroblast growth factor 2 decreases bleomycin-induced pulmonary fibrosis and inhibits fibroblast collagen production and myofibroblast differentiation. J Pathol 246:54–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Dorry SJ, Ansbro BO, Ornitz DM, Mutlu GM, Guzy RD (2020) FGFR2 is required for AEC2 homeostasis and survival after bleomycin-induced lung injury. Am J Respir Cell Mol Biol 62:608–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. MacKenzie B, Henneke I, Hezel S, Al Alam D, El Agha E, Chao C-M, Quantius J, Wilhelm J, Jones M, Goth K (2015) Attenuating endogenous Fgfr2b ligands during bleomycin-induced lung fibrosis does not compromise murine lung repair. Am J Physiol Lung Cell Mol Physiol 308:L1014–L1024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Dolivo DM, Larson SA, Dominko T (2017) FGF2-mediated attenuation of myofibroblast activation is modulated by distinct MAPK signaling pathways in human dermal fibroblasts. J Dermatol Sci 88:339–348. https://doi.org/10.1016/j.jdermsci.2017.08.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sandbo N, Kregel S, Taurin S, Bhorade S, Dulin NO (2009) Critical role of serum response factor in pulmonary myofibroblast differentiation induced by TGF-β. Am J Respir Cell Mol Biol 41:332–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Small EM (2012) The actin–MRTF–SRF gene regulatory axis and myofibroblast differentiation. J Cardiovasc Transl Res 5:794–804

    Article  PubMed  Google Scholar 

  70. Chai J, Norng M, Tarnawski AS, Chow J (2007) A critical role of serum response factor in myofibroblast differentiation during experimental oesophageal ulcer healing in rats. Gut 56:621–630

    Article  CAS  PubMed  Google Scholar 

  71. Qiu P, Feng X-H, Li L (2003) Interaction of Smad3 and SRF-associated complex mediates TGF-β1 signals to regulate SM22 transcription during myofibroblast differentiation. J Mol Cell Cardiol 35:1407–1420

    Article  CAS  PubMed  Google Scholar 

  72. Morizumi S, Sato S, Koyama K, Okazaki H, Chen Y, Goto H, Kagawa K, Ogawa H, Nishimura H, Kawano H (2020) Blockade of pan-fibroblast growth factor receptors mediates bidirectional effects in lung fibrosis. Am J Respir Cell Mol Biol 63:317–326

    Article  CAS  PubMed  Google Scholar 

  73. Guzy RD, Li L, Smith C, Dorry SJ, Koo HY, Chen L, Ornitz DM (2017) Pulmonary fibrosis requires cell-autonomous mesenchymal fibroblast growth factor (FGF) signaling. J Biol Chem 292:10364–10378. https://doi.org/10.1074/jbc.M117.791764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. MacKenzie B, Korfei M, Henneke I, Sibinska Z, Tian X, Hezel S, Dilai S, Wasnick R, Schneider B, Wilhelm J (2015) Increased FGF1-FGFRc expression in idiopathic pulmonary fibrosis. Respir Res 16:1–15

    Article  CAS  Google Scholar 

  75. Hamada N, Kuwano K, Yamada M, Hagimoto N, Hiasa K, Egashira K, Nakashima N, Maeyama T, Yoshimi M, Nakanishi Y (2005) Anti-vascular endothelial growth factor gene therapy attenuates lung injury and fibrosis in mice. J Immunol 175:1224–1231

    Article  CAS  PubMed  Google Scholar 

  76. Abdollahi A, Li M, Ping G, Plathow C, Domhan S, Kiessling F, Lee LB, McMahon G, Gröne H-J, Lipson KE (2005) Inhibition of platelet-derived growth factor signaling attenuates pulmonary fibrosis. J Exp Med 201:925–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Guzy R (2020) Fibroblast growth factor inhibitors in lung fibrosis: friends or foes? Amer Thorac Soc pp. 273–274.

  78. Mardhian DF, Vrynas A, Storm G, Bansal R, Prakash J (2020) FGF2 engineered SPIONs attenuate tumor stroma and potentiate the effect of chemotherapy in 3D heterospheroidal model of pancreatic tumor. Nanotheranostics 4:26

    Article  PubMed  PubMed Central  Google Scholar 

  79. Kurniawan DW, Booijink R, Pater L, Wols I, Vrynas A, Storm G, Prakash J, Bansal R (2020) Fibroblast growth factor 2 conjugated superparamagnetic iron oxide nanoparticles (FGF2-SPIONs) ameliorate hepatic stellate cells activation in vitro and acute liver injury in vivo. J Control Release 328:640–652

    Article  CAS  PubMed  Google Scholar 

  80. Borrelli MR, Shen AH, Griffin M, Mascharak S, Adem S, Deleon NMD, Ngaage LM, Longaker MT, Wan DC, Lorenz HP (2021) A novel xenograft model demonstrates human fibroblast behavior during skin wound repair and fibrosis. Adv Wound Care

  81. Jin H, Quesada C, Aliabouzar M, Kripfgans OD, Franceschi RT, Liu J, Putnam AJ, Fabiilli ML (2021) Release of basic fibroblast growth factor from acoustically-responsive scaffolds promotes therapeutic angiogenesis in the hind limb ischemia model. J Control Release 338:773–783

    Article  CAS  PubMed  Google Scholar 

  82. Wang Q, Dong X, Zhang H, Li P, Lu X, Wu M, Zhang W, Lin X, Zheng Y, Mao Y (2021) A novel hydrogel-based combination therapy for effective neuroregeneration after spinal cord injury. Chem Eng J 415: 128964

  83. Morscheid YP, Venkatesan JK, Schmitt G, Orth P, Zurakowski D, Speicher-Mentges S, Menger MD, Laschke MW, Cucchiarini M, Madry H (2021) rAAV-mediated human FGF-2 gene therapy enhances osteochondral repair in a clinically relevant large animal model over time in vivo. Am J Sports Med 49:958–969

    Article  PubMed  Google Scholar 

  84. Jiang P, Tang X, Wang H, Dai C, Su J, Zhu H, Song M, Liu J, Nan Z, Ru T (2019) Collagen-binding basic fibroblast growth factor improves functional remodeling of scarred endometrium in uterine infertile women: a pilot study. Science China Life Sciences 62:1617–1629

    Article  CAS  PubMed  Google Scholar 

  85. Feng M, Betti M (2018) A novel collagen glycopeptide, Pro-Hyp-CONH-GlcN, stimulates cell proliferation and hyaluronan production in cultured human dermal fibroblasts. J Funct Foods 45:277–287

    Article  CAS  Google Scholar 

  86. Gallego-Munoz P, Ibares-Frias L, Valsero-Blanco MC, Cantalapiedra-Rodriguez R, Merayo-Lloves J, Martinez-Garcia MC (2017) Effects of TGFbeta1, PDGF-BB, and bFGF, on human corneal fibroblasts proliferation and differentiation during stromal repair. Cytokine 96:94–101. https://doi.org/10.1016/j.cyto.2017.03.011

    Article  CAS  PubMed  Google Scholar 

  87. Liguori TTA, Liguori GR, Moreira LFP, Harmsen MC (2018) Fibroblast growth factor-2, but not the adipose tissue-derived stromal cells secretome, inhibits TGF-β1-induced differentiation of human cardiac fibroblasts into myofibroblasts. Sci Rep 8:1–10

    Article  CAS  Google Scholar 

  88. Matsumura T, Fujimoto T, Futakuchi A, Takihara Y, Watanabe-Kitamura F, Takahashi E, Inoue-Mochita M, Tanihara H, Inoue T (2020) TGF-β-induced activation of conjunctival fibroblasts is modulated by FGF-2 and substratum stiffness. PloS One 15: e0242626

  89. Yang L, Hashimoto K, Tohyama M, Okazaki H, Dai X, Hanakawa Y, Sayama K, Shirakata Y (2012) Interactions between myofibroblast differentiation and epidermogenesis in constructing human living skin equivalents. J Dermatol Sci 65:50–57

    Article  CAS  PubMed  Google Scholar 

  90. Yang L, Zhang D, Wu H, Xie S, Zhang M, Zhang B, Tang S (2018) Basic fibroblast growth factor influences epidermal homeostasis of living skin equivalents through affecting fibroblast phenotypes and functions. Skin pharmacology and physiology 31:229–237

    Article  CAS  PubMed  Google Scholar 

  91. Gonzalez Rodriguez A, Schroeder ME, Walker CJ, Anseth KS (2018) FGF-2 inhibits contractile properties of valvular interstitial cell myofibroblasts encapsulated in 3D MMP-degradable hydrogels. APL BioEngineering 2: 046104

  92. Maltseva O, Folger P, Zekaria D, Petridou S, Masur SK (2001) Fibroblast growth factor reversal of the corneal myofibroblast phenotype. Invest Ophthalmol Vis Sci 42:2490–2495

    CAS  PubMed  Google Scholar 

  93. Tall EG, Bernstein AM, Oliver N, Gray JL, Masur SK (2010) TGF-beta-stimulated CTGF production enhanced by collagen and associated with biogenesis of a novel 31-kDa CTGF form in human corneal fibroblasts. Invest Ophthalmol Vis Sci 51:5002–5011. https://doi.org/10.1167/iovs.09-5110

    Article  PubMed  PubMed Central  Google Scholar 

  94. Tan EM, Rouda S, Greenbaum SS, Moore JH Jr, Fox JWt, Sollberg S, (1993) Acidic and basic fibroblast growth factors down-regulate collagen gene expression in keloid fibroblasts. Am J Pathol 142:463–470

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Latif N, Quillon A, Sarathchandra P, McCormack A, Lozanoski A, Yacoub MH, Chester AH (2015) Modulation of human valve interstitial cell phenotype and function using a fibroblast growth factor 2 formulation. Plos One 10: e0127844. ARTN e0127844. http://doi.org/10.1371/journal.pone.0127844

  96. Cushing MC, Mariner PD, Liao JT, Sims EA, Anseth KS (2008) Fibroblast growth factor represses Smad-mediated myofibroblast activation in aortic valvular interstitial cells. FASEB J 22:1769–1777. https://doi.org/10.1096/fj.07-087627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Akatsu Y, Takahashi N, Yoshimatsu Y, Kimuro S, Muramatsu T, Katsura A, Maishi N, Suzuki HI, Inazawa J, Hida K (2019) Fibroblast growth factor signals regulate transforming growth factor-β-induced endothelial-to-myofibroblast transition of tumor endothelial cells via Elk1. Mol Oncol 13:1706–1724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kashpur O, LaPointe D, Ambady S, Ryder EF, Dominko T (2013) FGF2-induced effects on transcriptome associated with regeneration competence in adult human fibroblasts. BMC Genomics 14:656. https://doi.org/10.1186/1471-2164-14-656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wu B, Tang X, Zhou Z, Ke H, Tang S, Ke R (2021) RNA sequencing analysis of FGF2-responsive transcriptome in skin fibroblasts. PeerJ 9: e10671

  100. Xuan Y, Chi L, Tian H, Cai W, Sun C, Wang T, Zhou X, Shao M, Zhu Y, Niu C (2016) The activation of the NF-κB-JNK pathway is independent of the PI3K-Rac1-JNK pathway involved in the bFGF-regulated human fibroblast cell migration. J Dermatol Sci 82:28–37

    Article  CAS  PubMed  Google Scholar 

  101. Wang X, Zhu Y, Sun C, Wang T, Shen Y, Cai W, Sun J, Chi L, Wang H, Song N (2017) Feedback activation of basic fibroblast growth factor signaling via the Wnt/β-catenin pathway in skin fibroblasts. Front Pharmacol 8:32

    PubMed  PubMed Central  Google Scholar 

  102. Zhu ZX, Sun CC, Zhu YT, Wang Y, Wang T, Chi LS, Cai WH, Zheng JY, Zhou X, Cong WT (2017) Hedgehog signaling contributes to basic fibroblast growth factor-regulated fibroblast migration. Exp Cell Res 355:83–94

    Article  CAS  PubMed  Google Scholar 

  103. Fortier SM, Penke LR, King D, Pham TX, Ligresti G, Peters-Golden M (2021) Myofibroblast dedifferentiation proceeds via distinct transcriptomic and phenotypic transitions. JCI Insight 6

  104. Awan B, Turkov D, Schumacher C, Jacobo A, McEnerney A, Ramsey A, Xu G, Park D, Kalomoiris S, Yao W (2018) FGF2 induces migration of human bone marrow stromal cells by increasing core fucosylations on N-glycans of integrins. Stem cell reports 11:325–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Horton ER, Vallmajo-Martin Q, Martin I, Snedeker JG, Ehrbar M, Blache U (2020) Extracellular matrix production by mesenchymal stromal cells in hydrogels facilitates cell spreading and is inhibited by FGF-2. Adv Healthcare Mater 9:1901669

    Article  CAS  Google Scholar 

  106. Gao Y, Li N, Xue Q, Fan X, Liu X, Han L (2022) Basic fibroblast growth factor inhibits aortic valvular interstitial cells calcification via Notch1 pathway. J Investig Med

  107. Nowwarote N, Manokawinchoke J, Kanjana K, Fournier BP, Sukarawan W, Osathanon T (2020) Transcriptome analysis of basic fibroblast growth factor treated stem cells isolated from human exfoliated deciduous teeth. Heliyon 6: e04246

  108. Gupta S, M-Redmond T, Meng F, Tidball A, Akil H, Watson S, Parent JM, Uhler M, (2018) Fibroblast growth factor 2 regulates activity and gene expression of human post-mitotic excitatory neurons. J Neurochem 145:188–203

    Article  CAS  PubMed  Google Scholar 

  109. Benington L, Rajan G, Locher C, Lim LY (2020) Fibroblast growth factor 2—a review of stabilisation approaches for clinical applications. Pharmaceutics 12:508

    Article  CAS  PubMed Central  Google Scholar 

  110. Benington LR, Rajan G, Locher C, Lim LY (2021) Stabilisation of recombinant human basic fibroblast growth factor (FGF-2) against stressors encountered in medicinal product processing and evaluation. Pharmaceutics 13:1762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Vojtová L, Pavliňáková V, Muchová J, Kacvinská K, Brtníková J, Knoz M, Lipový B, Faldyna M, Göpfert E, Holoubek J (2021) Healing and angiogenic properties of collagen/chitosan scaffolds enriched with hyperstable FGF2-STAB® protein: in vitro, ex ovo and in vivo comprehensive evaluation. Biomedicines 9:590

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Dvorak P, Bednar D, Vanacek P, Balek L, Eiselleova L, Stepankova V, Sebestova E, Kunova Bosakova M, Konecna Z, Mazurenko S (2018) Computer-assisted engineering of hyperstable fibroblast growth factor 2. Biotechnol Bioeng 115:850–862

    Article  CAS  PubMed  Google Scholar 

  113. Benbow NL, Karpiniec S, Krasowska M, Beattie DA (2020) Incorporation of FGF-2 into pharmaceutical grade fucoidan/chitosan polyelectrolyte multilayers. Mar Drugs 18:531

    Article  CAS  PubMed Central  Google Scholar 

  114. Liu X, Liu W-C, Wang H-Y, Li VL, Chen Y-C, Wang A-N, Wu C-J, Li Y, Zhao G, Lin C (2021) Polyelectrolyte multilayer composite coating on 316 L stainless steel for controlled release of dual growth factors accelerating restoration of bone defects. Mater Sci Eng C 126: 112187

  115. Ding I, Peterson AM (2021) Half-life modeling of basic fibroblast growth factor released from growth factor-eluting polyelectrolyte multilayers. Sci Rep 11:1–13

    Article  CAS  Google Scholar 

  116. Mays EA, Kallakuri SS, Sundararaghavan HG (2020) Heparin-hyaluronic acid nanofibers for growth factor sequestration in spinal cord repair. J Biomed Mater Res, Part A 108:2023–2031

    Article  CAS  Google Scholar 

  117. Federico S, Pitarresi G, Palumbo FS, Fiorica C, Catania V, Schillaci D, Giammona G (2021) An asymmetric electrospun membrane for the controlled release of ciprofloxacin and FGF-2: evaluation of antimicrobial and chemoattractant properties. Mater Sci Eng C 123: 112001

  118. Clauder F, Zitzmann FD, Friebe S, Mayr SG, Robitzki AA, Beck-Sickinger AG (2020) Multifunctional coatings combining bioactive peptides and affinity-based cytokine delivery for enhanced integration of degradable vascular grafts. Biomater Sci 8:1734–1747

    Article  CAS  PubMed  Google Scholar 

  119. Nilasaroya A, Kop AM, Morrison DA (2021) Heparin-functionalized hydrogels as growth factor-signaling substrates. J Biomed Mater Res Part A 109:374–384

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I would like to thank the myriad researchers in the FGF community, across decades and continents, for their pivotal past, present, and future contributions to our understanding of FGF biology. Figures were made with Biorender.com.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Dolivo.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dolivo, D.M. Anti-fibrotic effects of pharmacologic FGF-2: a review of recent literature. J Mol Med 100, 847–860 (2022). https://doi.org/10.1007/s00109-022-02194-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-022-02194-3

Keywords

Navigation