Skip to main content
Log in

Phenoxyalkyl cyclic and acyclic amine derivatives: what do they teach us about scaffold-based drug design?

  • Review Article
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Fragment-based drug design of new bioactive scaffolds is a recent aspect of medicinal chemistry that provides a faster and more efficient road in drug discovery. Phenoxyethyl piperidine and morpholine derivatives have various pharmacological activities, from antitussive to anticancer properties. They are also widely used in selective estrogen receptor modulator (SERM) drugs and can be used to prevent osteoporosis in postmenopausal women. Also, other recent findings suggest that these compounds exhibit high anticholinergic and H3 inverse agonistic activities. We outlined the process of developing novel medications for Alzheimer’s disease, malaria, cancer, and various other illnesses, which could entail modifying or incorporating these structures into a different biologically active framework. Pharmacokinetic assessment and organic pathways for synthesizing these scaffolds are also indicated. This review will discuss the recent pharmaceutical advances of phenoxyethyl cyclic amine derivatives in experimental, investigational, and FDA-approved drugs to draw an apparent viewpoint for future drug research and discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

FBDD:

Fragment-Based Drug Design

SBDD:

Scaffold-Based Drug Design

SERM:

Selective Estrogen Receptor Modulatory

AF1:

Activation Function Domain I

AF2:

Activating Function Domain II

ER:

Estrogen Receptor

HSP90:

Heat Shock Protein 90

EREs:

Estrogen-Responsive Elements

QSAR:

Quantitative Structure-Activity Relationship

ESR1:

Estrogen Receptor 1

U.S.:

United States

FDA:

Food and Drug Administration

AChE:

Acetylcholinesterase

BChE:

Butyrylcholinesterase

eeAChE:

Electric Eel Acetylcholinesterase

eqBuChE:

Equine Butyrylcholinesterase

MAO:

Monoamine oxidase

CAS:

Catalytic Anionic Site

Erα:

estrogen receptor alpha

GERD:

gastroesophageal reflux disease

UGTs:

UDP-glucuronosyltransferases

References

  1. Zhang KYJ, Milburn MV, Artis DR. Scaffold-based drug discovery. Struct Based Drug Discov. 2007. p. 129–53. https://doi.org/10.1007/1-4020-4407-0_6.

  2. Hu Y, Stumpfe D, Bajorath J. Computational exploration of molecular scaffolds in medicinal chemistry. J Med Chem. 2016;59:4062–76. https://doi.org/10.1021/acs.jmedchem.5b01746.

    Article  CAS  PubMed  Google Scholar 

  3. Doak BC, Norton RS, Scanlon MJ. The ways and means of fragment-based drug design. Pharm Ther. 2016;167:28–37. https://doi.org/10.1016/j.pharmthera.2016.07.003.

    Article  CAS  Google Scholar 

  4. Mello JDFRE, Gomes RA, Vital-Fujii DG, Ferreira GM, Trossini GHG. Fragment-based drug discovery as alternative strategy to the drug development for neglected diseases. Chem Biol Drug Des. 2017;90:1067–78. https://doi.org/10.1111/cbdd.13030.

    Article  CAS  PubMed  Google Scholar 

  5. Bon M, Bilsland A, Bower J, McAulay K. Fragment‐based drug discovery—the importance of high‐quality molecule libraries. Mol Oncol. 2022;16:3761–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Li Q. Application of fragment-based drug discovery to versatile targets. Front Mol Biosci. 2020;7:180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Erlanson DA, Fesik SW, Hubbard RE, Jahnke W, Jhoti H. Twenty years on: the impact of fragments on drug discovery. Nat Rev Drug Discov. 2016;15:605–19.

    Article  CAS  PubMed  Google Scholar 

  8. Murray CW, Rees DC. The rise of fragment-based drug discovery. Nat Chem. 2009;1:187–92.

    Article  CAS  PubMed  Google Scholar 

  9. Jhoti H, Leach AR, Zhang KYJ, Milburn MV, DR Artis. Scaffold-based drug discovery. Struct Based Drug Discov. 2007. p. 129–53. https://doi.org/10.1007/1-4020-4407-0_6.

  10. Gizzo S, Saccardi C, Patrelli TS, Berretta R, Capobianco G, Gangi SD, et al. Update on raloxifene: mechanism of action, clinical efficacy, adverse effects, and contraindications. Obstet Gynecol Surv. 2013;68:467–81. https://doi.org/10.1097/OGX.0b013e31828baef9.

    Article  PubMed  Google Scholar 

  11. Fallah-Tafti A, Foroumadi A, Tiwari R, Shirazi AN, Hangauer DG, Bu Y, et al. Thiazolyl N-benzyl-substituted acetamide derivatives: Synthesis, Src kinase inhibitory and anticancer activities. Eur J Med Chem. 2011;46:4853–8. https://doi.org/10.1016/j.ejmech.2011.07.050.

    Article  CAS  PubMed  Google Scholar 

  12. Mehrabi F, Pourshojaei Y, Moradi A, Sharifzadeh M, Khosravani L, Sabourian R, et al. Design, synthesis, molecular modeling and anticholinesterase activity of benzylidene-benzofuran-3-ones containing cyclic amine side chain. Future Med Chem. 2017;9:659–71. https://doi.org/10.4155/fmc-2016-0237.

    Article  CAS  PubMed  Google Scholar 

  13. Phyo AP, Jittamala P, Nosten FH, Pukrittayakamee S, Imwong M, White NJ, et al. Antimalarial activity of artefenomel (OZ439), a novel synthetic antimalarial endoperoxide, in patients with Plasmodium falciparum and Plasmodium vivax malaria: an open-label phase 2 trial. Lancet Infect Dis. 2016;16:61–69. https://doi.org/10.1016/S1473-3099(15)00320-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Florvaag E, Johansson SGO. The Pholcodine case. cough medicines, IgE-sensitization, and anaphylaxis: a devious connection. World Allergy Organ J. 2012;5:73–78. https://doi.org/10.1097/WOX.0b013e318261eccc.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Singh RK, Singh AK, Singh AK. Synthesis and biological activity of novel tert-butyl and tert-pentylphenoxyalkyl piperazine derivatives as histamine H3R ligands. Eur J Med Chem. 2016. https://doi.org/10.1016/j.molstruc.2016.09.072.This.

  16. Jameera Begam A, Jubie S, Nanjan MJ. Estrogen receptor agonists/antagonists in breast cancer therapy: A critical review. Bioorg Chem. 2017;71:257–74. https://doi.org/10.1016/j.bioorg.2017.02.011.

    Article  CAS  PubMed  Google Scholar 

  17. Kulkarni J, Butler S, Riecher-Rössler A. Estrogens and SERMS as adjunctive treatments for schizophrenia. Front Neuroendocrinol. 2019;53. https://doi.org/10.1016/j.yfrne.2019.03.002.

  18. Lewis-Wambi J, Jordan VC. Raloxifene. Comprehensive Medicinal Chemistry II (Elsevier, 2007), 103–21. https://doi.org/10.1016/B0-08-045044-X/00294-7.

  19. Mukherjee S, Nagar S, Mullick S, Mukherjee A, Saha A. Pharmacophore mapping of arylbenzothiophene derivatives for MCF cell inhibition using classical and 3D space modeling approaches. J Mol Graph Model. 2008;26:884–92. https://doi.org/10.1016/j.jmgm.2007.06.003.

    Article  CAS  PubMed  Google Scholar 

  20. Jones CD, Goettel ME. Process for preparing 3-(4-aminoethoxybenzoyl) benzo [b] thiophenes, 1982.

  21. Ariazi EA, Craig Jordan V. Estrogen receptors as therapeutic targets in breast cancer. Nucl Recept Drug Targets. 2008;39:127–99. https://doi.org/10.1002/9783527623297.ch5.

    Article  CAS  Google Scholar 

  22. Cosman F, Lindsay R. Selective estrogen receptor modulators. Treatment of the Postmenopausal Woman (Elsevier, 2007), pp. 837–45. https://doi.org/10.1016/B978-012369443-0/50073-9.

  23. Jatoi I, Kaufmann M. Management of breast diseases (Springer, 2016).

  24. Bailey HH, Heckman-Stoddard BM, Fabian CJ, Kimler BF, Zalles CM, Phillips TA, et al. Clinical trial of acolbifene in premenopausal women at high risk for breast cancer. Cancer Prev Res. 2015;8:1146–55. https://doi.org/10.1158/1940-6207.CAPR-15-0109.

    Article  CAS  Google Scholar 

  25. Degregorio MW, Zerbe RL, Wurz GT. Ospemifene: a first-in-class, non-hormonal selective estrogen receptor modulator approved for the treatment of dyspareunia associated with vulvar and vaginal atrophy. Steroids. 2014;90:82–93. https://doi.org/10.1016/J.STEROIDS.2014.07.012.

    Article  CAS  PubMed  Google Scholar 

  26. Buzdar A, Hayes D, El-Khoudary A, Yan S, Lønning P, Lichinitser M, et al. Phase III randomized trial of droloxifene and tamoxifen as first-line endocrine treatment of ER/PgR-positive advanced breast cancer. Breast cancer Res Treat. 2002;73:161–75.

    Article  CAS  PubMed  Google Scholar 

  27. NCT03781063, Evaluation of Lasofoxifene Versus Fulvestrant in Advanced or Metastatic ER+/HER2− Breast Cancer With an ESR1 Mutation. https://clinicaltrials.gov/show/NCT03781063 2018.

  28. Gara R, Sundram V, Chauhan S, Jaggi M. Anti-cancer potential of a novel SERM ormeloxifene. Curr Med Chem. 2013. https://doi.org/10.2174/09298673113209990197.

  29. Pati T, Chanania K, Marandi S, Hansa J. Ormeloxifene-Looking beyond contraception. J Life Health. 2017;8:17–20. https://doi.org/10.4103/jmh.JMH_71_16.

    Article  Google Scholar 

  30. Hu H. Different Strategies to Improve Drug Tissue Selectivity for Better Efficacy/Toxicity Profile (Doctoral dissertation). 2022.

  31. SWJ Lamberts & AWVANDEN Beld, Chapter 27—Endocrinology and aging. Williams Textbook Endocrinol. 2018:1234–51. https://doi.org/10.1016/B978-0-323-29738-7.00027-7.

  32. Jayaraman S, Reid JM, Hawse JR, Goetz MP. Endoxifen, an estrogen receptor targeted therapy: from bench to bedside. Endocrinology. 2021;162.

  33. Pourshojaei Y, Gouranourimi A, Hekmat S, Asadipour A, Rahmani-Nezhad S, Moradi A, et al. Design, synthesis and anticholinesterase activity of novel benzylidenechroman-4-ones bearing cyclic amine side chain. Eur J Med Chem. 2015;97:181–9.

    Article  CAS  PubMed  Google Scholar 

  34. Liu Q-H, Wu J-J, Li F, Cai P, Yang X-L, Kong L-Y, et al. Synthesis and pharmacological evaluation of multi-functional homoisoflavonoid derivatives as potent inhibitors of monoamine oxidase B and cholinesterase for the treatment of Alzheimer’s disease. MedChemComm. 2017;8:1459–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pourshojaei Y, Abiri A, Eskandari K, Haghighijoo Z, Edraki N, Asadipour A. Phenoxyethyl piperidine/morpholine derivatives as PAS and CAS inhibitors of cholinesterases: insights for future drug design. Sci Rep. 2019;9:19855. https://doi.org/10.1038/s41598-019-56463-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rosenthal PJ. Artefenomel: a promising new antimalarial drug. Lancet Infect Dis. 2015;3099:5–6. https://doi.org/10.1016/S1473-3099(15)00343-6.

    Article  Google Scholar 

  37. Tilley L, Straimer J, Gnädig NF, Ralph SA, Fidock DA. Artemisinin action and resistance in plasmodium falciparum. Trends Parasitol. 2016;32:682–96. https://doi.org/10.1016/j.pt.2016.05.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Charman SA, Arbe-Barnes S, Bathurst IC, Brun R, Campbell M, Charman WN. et al. Synthetic ozonide drug candidate OZ439 offers new hope for a single-dose cure of uncomplicated malaria. Proc Natl Acad Sci. 2011;108:4400–5. https://doi.org/10.1073/pnas.1015762108.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kim S, Im S-A, Min A, Lee M, Jang H, Lee K-H, et al. Antitumor effect of KX-01, a novel Src and tubulin inhibitor, in triple negative breast cancer cells. Cancer Res. 2014;74:5479.

    Article  Google Scholar 

  40. BU Y, Smolinski M, Qu J, Kazim L, Gelman I, Dyster L, et al. Mechanism of action KX01 (KX2-391), a novel tubulin polymerization and Src signaling inhibitor proceeding to Phase II clinical trials. Cancer Res. 2010;70:2487.

    Article  Google Scholar 

  41. Brusch AM, Clarke RC, Platt PR, Phillips EJ. Exploring the link between pholcodine exposure and neuromuscular blocking agent anaphylaxis. Br J Clin Pharmacol. 2014;78:14–23.

    Article  CAS  PubMed  Google Scholar 

  42. Anbalagan M, Sheng M, Fleischer B, Zhang Y, Gao Y, Hoang V, et al. Dual Src kinase/pretubulin inhibitor KX-01, sensitizes ERα-negative breast cancers to tamoxifen through ERα reexpression. Mol Cancer Res. 2017;15:1491–502. https://doi.org/10.1158/1541-7786.MCR-16-0297-T

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gerostamoulos D. Opioids. Wiley Encyclopedia of Forensic Science. Chichester UK: John Wiley & Sons, Ltd, 2009. https://doi.org/10.1002/9780470061589.fsa422.

  44. Jończyk J, Malawska B, Bajda M. Hybrid approach to structure modeling of the histamine H3 receptor: Multi-level assessment as a tool for model verification. PLoS ONE. 2017;12. https://doi.org/10.1371/journal.pone.0186108.

  45. Syed YY. Pitolisant: first global approval. Drugs. 2016;76:1313–8. https://doi.org/10.1007/s40265-016-0620-1.

    Article  CAS  PubMed  Google Scholar 

  46. Johnston SRD, Gumbrell LA, Evans TRJ, Coleman RE, Smith IE, Twelves CJ, et al. A cancer research (UK) randomized phase II study of idoxifene in patients with locally advanced/metastatic breast cancer resistant to tamoxifen. Cancer Chemother Pharmacol. 2004;53:341–8. https://doi.org/10.1007/s00280-003-0733-6.

    Article  CAS  PubMed  Google Scholar 

  47. Waters EA, McNeel TS, Stevens WM, Freedman AN. Use of tamoxifen and raloxifene for breast cancer chemoprevention in 2010. Breast Cancer Res Treat. 2012;134:875–80. https://doi.org/10.1007/s10549-012-2089-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jain N, Kanojia RM, Xu J, Jian-Zhong G, Pacia E, Lai MT, et al. Novel chromene-derived selective estrogen receptor modulators useful for alleviating hot flushes and vaginal dryness. J Med Chem. 2006;49:3056–9. https://doi.org/10.1021/jm060353u.

    Article  CAS  PubMed  Google Scholar 

  49. Kuder KJ, Łażewska D, Kaleta M, Latacz G, Kottke T, Olejarz A, et al. Synthesis and biological activity of novel tert-amylphenoxyalkyl (homo)piperidine derivatives as histamine H3R ligands. Bioorg Med Chem. 2017;25:2701–12. https://doi.org/10.1016/j.bmc.2017.03.031.

    Article  CAS  PubMed  Google Scholar 

  50. Kuder K, Łażewska D, Latacz G, Schwed JS, Karcz T, Stark H, et al. Chlorophenoxy aminoalkyl derivatives as histamine H3R ligands and antiseizure agents. Bioorg Med Chem. 2016;24:53–72. https://doi.org/10.1016/j.bmc.2015.11.021.

    Article  CAS  PubMed  Google Scholar 

  51. Bajda M, Kuder KJ, Łewska D, Kieć-Kononowicz K, Wiȩckowska A, Ignasik M, et al. Dual-acting diether derivatives of piperidine and homopiperidine with histamine H3 receptor antagonistic and anticholinesterase activity. Arch Pharm. 2012;345:591–7. https://doi.org/10.1002/ardp.201200018.

    Article  CAS  Google Scholar 

  52. Sadek BS, Saad A, Latacz G, Kuder K, Olejarz A, Karcz T, et al. Non-imidazole-based histamine H3 receptor antagonists with anticonvulsant activity in different seizure models in male adult rats. Drug Des Dev Ther. 2016;10:3879–98. https://doi.org/10.2147/DDDT.S116192.

    Article  CAS  Google Scholar 

  53. Young TA, Patel TS, Camacho F, Clark A, Freedman BI, Kaur M, et al. A pramoxine-based anti-itch lotion is more effective than a control lotion for the treatment of uremic pruritus in adult hemodialysis patients. J Dermatol Treat. 2009;20:76–81.

    Article  CAS  Google Scholar 

  54. Boehlke C, Joos L, Coune B, Becker C, Meerpohl JJ, Buroh S, et al. Pharmacological interventions for pruritus in adult palliative care patients. Cochrane Database Syst Rev. 2023;4. https://doi.org/10.1002/14651858.CD008320.PUB4/INFORMATION/EN.

  55. Kucukoglu K, Tanol M. Synthesis of some pramoxine-based compounds as possible local anesthetic and anticholinergic agents. Asian J Chem. 2010;22:3404–12.

    CAS  Google Scholar 

  56. Loch JI, Bonarek P, Polit A, Jabłoński M, Czub M, Ye X, et al. β-Lactoglobulin interactions with local anaesthetic drugs - Crystallographic and calorimetric studies. Int J Biol Macromol. 2015;80:87–94. https://doi.org/10.1016/j.ijbiomac.2015.06.013.

    Article  CAS  PubMed  Google Scholar 

  57. Castriconi F, Paolino M, Giuliani G, Anzini M, Campiani G, Mennuni L, et al. Synthesis and structure-activity relationship studies in serotonin 5-HT4 receptor ligands based on a benzo[de][2,6]naphthridine scaffold. Eur J Med Chem. 2014;82:36–46. https://doi.org/10.1016/j.ejmech.2014.05.015.

    Article  CAS  PubMed  Google Scholar 

  58. Chun E, Han CK, Yoon JH, Sim TB, Kim YK, Lee KY. Novel inhibitors targeted to methionine aminopeptidase 2 (MetAP2) strongly inhibit the growth of cancers in xenografted nude model. Int J Cancer. 2005;114:124–30. https://doi.org/10.1002/ijc.20687.

    Article  CAS  PubMed  Google Scholar 

  59. Kim EJ, Shin WH. General pharmacology of CKD-732, a new anticancer agent: effects on central nervous, cardiovascular, and respiratory system. Biol Pharm Bull. 2005;28:217–23. https://doi.org/10.1248/bpb.28.217.

    Article  CAS  PubMed  Google Scholar 

  60. Hughes TE, Kim DD, Marjason J, Proietto J, Whitehead JP, Vath JE. Ascending dose‐controlled trial of beloranib, a novel obesity treatment for safety, tolerability, and weight loss in obese women. Obesity. 2013;21:1782–8.

    Article  CAS  PubMed  Google Scholar 

  61. Saad MF, Greco S, Osei K, Lewin AJ, Edwards C, Nunez M, et al. Ragaglitazar improves glycemic control and lipid profile in type 2 diabetic subjects. Diabetes Care. 2004;27:1324–9. https://doi.org/10.2337/diacare.27.6.1324.

    Article  CAS  PubMed  Google Scholar 

  62. Rubin CJ, Viraswami-Appanna K, Fiedorek FT. Efficacy and safety of muraglitazar: a double-blind, 24-week, dose-ranging study in patients with type 2 diabetes. Diabetes Vasc Dis Res. 2009;6:205–15. https://doi.org/10.1177/1479164109336048.

    Article  Google Scholar 

  63. Younes S, Baziard-Mouysset G, de Saqui-Sannes G, Stigliani J, Payard M, Bonnafous R, et al. Synthesis and pharmacological study of new calcium antagonists, analogues of cinnarizine and flunarizine. Eur J Med Chem. 1993;28:943–8. https://doi.org/10.1016/0223-5234(93)90049-K.

    Article  CAS  Google Scholar 

  64. Özkaya E, Yazganoğlu KD. Beta Adrenergic Receptor Blockers (Class II Antiarrhythmics). Adverse Cutan Drug React Cardiovas Drugs. 2014:111–21. https://doi.org/10.1007/978-1-4471-6536-1_6.

  65. Hasegawa M, Yasuda Y, Tanaka M, Nakata K, Umeda E, Wang Y, et al. A novel tamoxifen derivative, ridaifen-F, is a nonpeptidic small-molecule proteasome inhibitor. Eur J Med Chem. 2014. https://doi.org/10.1016/j.ejmech.2013.11.009.

  66. Sun D, Jones NR, Manni A, Lazarus P. Characterization of raloxifene glucuronidation: potential role of UGT1A8 genotype on raloxifene metabolism in vivo. Cancer Prev Res. 2013;6:719–30. https://doi.org/10.1158/1940-6207.CAPR-12-0448.

    Article  CAS  Google Scholar 

  67. Findlay J, Fowle A, Butz R, Jones E, Weatherley B, Welch R, et al. Comparative disposition of codeine and pholcodine in man after single oral doses. Br J Clin Pharmacol. 1986;22:61–71. https://doi.org/10.1111/j.1365-2125.1986.tb02881.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Calik MW. Update on the treatment of narcolepsy: Clinical efficacy of pitolisant. Nat Sci Sleep. 2017;9:127–33. https://doi.org/10.2147/NSS.S103462.

    Article  PubMed  PubMed Central  Google Scholar 

  69. MP Smolinski, Y Bu, J Clements, IH Gelman, T Hegab, DL Cutler, et al. Discovery of novel dual mechanism of action src signaling and tubulin polymerization inhibitors (KX2-391 and KX2-361). J Med Chem. 2018. https://doi.org/10.1021/acs.jmedchem.8b00164.

  70. Rautio J, Mannhold R, Kubinyi H. Prodrugs and targeted delivery: towards better ADME properties. Methods and Principles in Medicinal Chemistry. 2011. p. 31–60. https://doi.org/10.1002/9783527633166.

  71. Faber K. Biotransformations in Organic Chemistry, 7th ed. Cham: Springer International Publishing; 2018. 10.1007/978-3-319-61590-5

    Book  Google Scholar 

  72. Chrzanowski FA, Ahmad K. The preparation and evaluation of salt forms of linogliride with reduced solubilities as candidates for extended release. Drug Dev Ind Pharm. 2017;43:421–31. https://doi.org/10.1080/03639045.2016.1257019.

    Article  CAS  PubMed  Google Scholar 

  73. Liu R. Water-Insoluble Drug Formulation. 3rd ed. Bioscience. Boca Raton: CRC Press, 2018. p. 672.

  74. Mannhold R, Poda GI, Ostermann C, Tetko IV. Calculation of molecular lipophilicity: State-of-the-art and comparison of log P methods on more than 96,000 compounds. J Pharm Sci. 2009;98:861–93. https://doi.org/10.1002/jps.21494.

    Article  CAS  PubMed  Google Scholar 

  75. Nagarapu L, Aneesa, Satyender A, Chandana G, Bantu R. Synthesis and antimicrobial activity of novel analogs of trifenagrel. J Heterocycl Chem. 2009;46:195–200. https://doi.org/10.1002/jhet.47.

    Article  CAS  Google Scholar 

  76. Gandhi A, DiMartino J, Chopra R, Celgene Corp, assignee. Methods for the treatment of locally advanced breast cancer. 2017.

  77. Wu Y, Karna S, Choi CH, Tong M, Tai H-H, Na DH. et al. Synthesis and biological evaluation of novel thiazolidinedione analogues as 15-hydroxyprostaglandin dehydrogenase inhibitors. J Med Chem. 2011;54: 5260–4.

  78. Son Nhat B, Dinh Hoa V, Anh Tuan L, Thi Luyen L. Population pharmacokinetics of rifampicin on pulmonary tuberculosis patients. VNU J Sci Med Pharm Sci. 2019. https://doi.org/10.25073/2588-1132/vnumps.4168.

  79. Rang MM, Dale HP. Rang and Dale’s Pharmacology. 7th ed. Edinburgh: Elsevier/Churchill Livingstone; 2012.

    Google Scholar 

  80. Moore CD, Reilly CA, Yost GS. CYP3A4-mediated oxygenation versus dehydrogenation of raloxifene. Biochemistry. 2010. https://doi.org/10.1021/bi902213r.

  81. Heringa M. Review on raloxifene: Profile of a selective estrogen receptor modulator. Int J Clin Pharmacol Ther. 2003. https://doi.org/10.5414/CPP41331.

  82. Sanchez-Spitman AB, Swen JJ, Dezentje VO, Moes DJAR, Gelderblom H, Guchelaar HJ. Clinical pharmacokinetics and pharmacogenetics of tamoxifen and endoxifen. Expert Rev Clin Pharmacol. 2019. https://doi.org/10.1080/17512433.2019.1610390.

  83. Morello KC, Wurz GT, DeGregorio MW. Pharmacokinetics of selective estrogen receptor modulators. Clin Pharmacokinet. 2003;42:361–72. https://doi.org/10.2165/00003088-200342040-00004.

    Article  CAS  PubMed  Google Scholar 

  84. Cronin-Fenton DP, Damkier P, Lash TL. Metabolism and transport of tamoxifen in relation to its effectiveness: New perspectives on an ongoing controversy. Future Oncol. 2014. https://doi.org/10.2217/fon.13.168.

  85. Kim C-S, Choi S-J, Park C-Y, Li C, Choi J-S. Effects of silybinin on the pharmacokinetics of tamoxifen and its active metabolite, 4-hydroxytamoxifen in rats. Anticancer Res. 2010;30:79–85.

    CAS  PubMed  Google Scholar 

  86. Lien EA, Solheim E, Lea OA, Lundgren S, Kvinnsland S, Ueland PM. Distribution of 4-hydroxy-N-desmethyltamoxifen and other tamoxifen metabolites in human biological fluids during tamoxifen treatment. Cancer Res. 1989;49(8):2175–83

  87. Coombes RC, Haynes BP, Dowsett M, Quigley M, English J, Judson IR, et al. Idoxifene: report of a phase I study in patients with metastatic breast cancer. Cancer Res. 1995;55(5):1070–4.

  88. Johnston SRD, Boeddinghaus IM, Riddler S, Haynes BP, Hardcastle IR, Rowlands M, et al. Idoxifene antagonizes estradiol-dependent MCF-7 breast cancer xenograft growth through sustained induction of apoptosis. Cancer Res. 1999;59:3646–51.

    CAS  PubMed  Google Scholar 

  89. Münster PN, Buzdar A, Dhingra K, Enas N, Ni L, Major M, et al. Phase I study of a third-generation selective estrogen receptor modulator, LY353381.HCl, in metastatic breast cancer. J Clin Oncol. 2001. https://doi.org/10.1200/JCO.2001.19.7.2002.

  90. Martinkovich S, Shah D, Planey SL, Arnott JA. Selective estrogen receptor modulators: tissue specificity and clinical utility. Clin Intervent Aging. 2014;9:1437–52.

  91. Munster PN. Arzoxifene: the development and clinical outcome of an ideal SERM. Expert Opin Investig Drugs. 2006;15:317–26.

    Article  CAS  PubMed  Google Scholar 

  92. Oettel M, Schillinger, E. (eds.) Estrogens and Antiestrogens II: Pharmacology and Clinical Application of Estrogens and Antiestrogen. 2012.

  93. Marzolini C, Gibbons S, Khoo S, Back D. Cobicistat versus ritonavir boosting and differences in the drug–drug interaction profiles with co-medications. J Antimicrob Chemother. 2016;71:1755–8.

    Article  CAS  PubMed  Google Scholar 

  94. Dehal SS, Kupfer D. Cytochrome P-450 3A and 2D6 catalyze orthohydroxylation of 4-hydroxytamoxifen and 3-hydroxytamoxifen (droloxifene) yielding tamoxifen catechol: involvement of catechols in covalent binding to hepatic proteins. Drug Metab Dispos. 1999;27:681–8.

    CAS  PubMed  Google Scholar 

  95. Nickerson DF, Tess DA, Toler SM. First-pass metabolism and biliary recirculation of droloxifene in the female Sprague-Dawley rat. Xenobiotica. 1997;27:257–64.

    Article  CAS  PubMed  Google Scholar 

  96. DeVita VT, Lawrence TS, Rosenberg SA. (eds.) DeVita, Hellman, and Rosenberg’s cancer: principles & practice of oncology (Vol. 2). Lippincott Williams & Wilkins; 2008.

  97. Taras TL, Wurz GT, Linares GR, DeGregorio MW. Clinical pharmacokinetics of toremifene. Clin Pharmacokinet. 2000. https://doi.org/10.2165/00003088-200039050-00002.

  98. Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2018;46:D1074–82.

    Article  CAS  PubMed  Google Scholar 

  99. Liu J, Liu H, van Breemen RB, Thatcher GRJ, Bolton JL. Bioactivation of the selective estrogen receptor modulator acolbifene to quinone methides. Chem Res Toxicol. 2005;18:174–82.

    Article  CAS  PubMed  Google Scholar 

  100. Gennari L, Merlotti D, Paola V De, Nuti R. Lasofoxifene: evidence of its therapeutic value in osteoporosis. Core Evid. 2009. https://doi.org/10.2147/ce.s6001.

  101. Lewiecki EM. Lasofoxifene for the prevention and treatment of postmenopausal osteoporosis. Ther Clin Risk Manag. 2009;5:817–27.

  102. Prakash C, Johnson KA, Gardner MJ. Disposition of lasofoxifene, a next-generation selective estrogen receptor modulator, in healthy male subjects. Drug Metab Dispos. 2008. https://doi.org/10.1124/dmd.108.020404.

  103. Bramson C, Ouellet D, Roman D, Randinitis E, Gardner MJ. A single-dose pharmacokinetic study of lasofoxifene in healthy volunteers and subjects with mild and moderate hepatic impairment. J Clin Pharmacol. 2006. https://doi.org/10.1177/0091270005283278.

  104. Ghosh R, Kamboj VP, Singh MM. Interaction with anti-implantation and estrogen antagonistic activities of dl-ormeloxifene, a selective estrogen receptor modulator, by tetracycline in female Sprague-Dawley rats. Contraception. 2001;64:261–9.

    Article  CAS  PubMed  Google Scholar 

  105. Lal J, Asthana OP, Nityanand S, Gupta RC. Pharmacokinetics of centchroman in healthy female subjects after oral administration. Contraception. 1995. https://doi.org/10.1016/0010-7824(95)00213-T.

  106. Attardi B, Palumbo LEEA. Effects of nafoxidine on the luteinizing hormone surge: temporal distribution of estrogen receptors and induction of cytoplasmic progestin receptors in the hypothalamus-preoptic area, pituitary, and uterus of the immature rat. Endocrinology. 1981;109:1365–74.

    Article  CAS  PubMed  Google Scholar 

  107. Cada DJ, Baker DE. Conjugated estrogens and bazedoxifene. Hosp Pharmacy. 2014. https://doi.org/10.1310/hpj4903-273.

  108. Ahmad A, Shahabuddin S, Sheikh S, Kale P, Krishnappa M, Rane RC, et al. Endoxifen, a new cornerstone of breast cancer therapy: Demonstration of safety, tolerability, and systemic bioavailability in healthy human subjects. Clin Pharmacol Ther. 2010. https://doi.org/10.1038/clpt.2010.196.

  109. Koubek EJ, Buhrow SA, Safgren SL, Jia L, Goetz MP, Ames MM, et al. Bioavailability and pharmacokinetics of endoxifen in female rats and dogs: evidence to support the use of endoxifen to overcome the limitations of CYP2D6-mediated tamoxifen metabolism. Drug Metab Dispos. 2023;51:183–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Pfizer, ARICEPT Oral Solution (Donepezil Hydrochloride). FDA drug Approval Label, (n.d.) 3–22.

  111. Asiri YA, Mostafa GAE. Donepezil. Profiles Drug Subst Excip Relat Methodol. 2010. https://doi.org/10.1016/S1871-5125(10)35003-5.

  112. McCarthy JS, Rückle T, Elliott SL, Ballard E, Collins KA, Marquart L, et al. A single-dose combination study with the experimental antimalarials artefenomel and DSM265 to determine safety and antimalarial activity against blood-stage plasmodium falciparum in healthy volunteers. Antimicrobial Agents Chemother. 2020. https://doi.org/10.1128/AAC.01371-19.

  113. Shackleford DM, Chiu FCK, Katneni K, Blundell S, McLaren J, Wang X, et al. Cytochrome P450-mediated metabolism and CYP inhibition for the synthetic peroxide antimalarial OZ439. ACS Infect Dis. 2021;7:1885–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Chen Z, Bochner F, Somogyi A. Pharmacokinetics of pholcodine in healthy volunteers: single and chronic dosing studies. Br J Clin Pharmacol. 1988. https://doi.org/10.1111/j.1365-2125.1988.tb03404.x.

  115. Esnault P, Prunet B, Lacroix G, D’Aranda E, Gaillard Y, Boret H. Instantaneous rigor after fatal pholcodine intoxication. Br J Clin Pharmacol. 2014. https://doi.org/10.1111/bcp.12183.

  116. Pharma B. Highlights of prescribing information wakix® (pitolisant) tablets, for oral use. FDA Drug Approval Label. 2019.

  117. Harwell V, Fasinu PS. Pitolisant and other histamine-3 receptor antagonists—an update on therapeutic potentials and clinical prospects. Medicines. 2020;7:55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Zhang W, Voloudakis G, Rajagopal VM, Readhead B, Dudley JT, Schadt EE, et al. Integrative transcriptome imputation reveals tissue-specific and shared biological mechanisms mediating susceptibility to complex traits. Nat Commun. 2019. https://doi.org/10.1038/s41467-019-11874-7.

  119. Grudzinskas C. Design of clinical development programs. Princ Clin Pharmacol. 2007. https://doi.org/10.1016/B978-012369417-1/50073-0.

  120. Arora V, Spino M. Cisapride: a novel gastroprokinetic drug. Can J Hosp Pharm. 1991;44(4). https://doi.org/10.4212/cjhp.v44i4.2754.

  121. Skrumsager BK, Nielsen KK, Müller M, Pabst G, Drake PG, Edsberg B. Ragaglitazar: the pharmacokinetics, pharmacodynamics, and tolerability of a novel dual PPARα and γ agonist in healthy subjects and patients with type 2 diabetes. J Clin Pharmacol. 2003;43:1244–56.

    Article  CAS  PubMed  Google Scholar 

  122. Jagannath K, Chaluvadi MR, Mullangi R, Mamidi NVSR, Srinivas NR. Intravenous pharmacokinetics, oral bioavailability and dose proportionality of ragaglitazar, a novel PPAR‐dual activator in rats. Biopharm Drug Dispos. 2004;25:323–8.

    Article  CAS  PubMed  Google Scholar 

  123. Barlocco D. Muraglitazar Bristol-Myers Squibb/Merck. Curr Opin Investig Drugs. 2005;6:427–34.

    CAS  PubMed  Google Scholar 

  124. Li J. Peroxisome Proliferator‐Activated Receptor (PPAR) Agonists for Type 2 Diabetes. Art Drug Synthesis. 2007:115–27. https://doi.org/10.1002/9780470134979.ch8.

  125. Zhang D, Wang L, Chandrasena G, Ma L, Zhu M, Zhang H, et al. Involvement of multiple cytochrome P450 and UDP-glucuronosyltransferase enzymes in the in vitro metabolism of muraglitazar. Drug Metab Dispos. 2007. https://doi.org/10.1124/dmd.106.011932.

  126. Ratner RE, Parikh S, Tou C. Efficacy, safety and tolerability of tesaglitazar when added to the therapeutic regimen of poorly controlled insulin-treated patients with type 2 diabetes. Diabetes Vasc Dis Res. 2007;4:214–21.

    Article  Google Scholar 

  127. Sturm S, Seiberling M, Weick I, Paehler A, Funk C, Ruf T. Metabolism, excretion, and pharmacokinetics of [14C]-radiolabeled aleglitazar: a phase I, nonrandomized, open-label, single-center, single-dose study in healthy male volunteers. Clin Ther. 2012. https://doi.org/10.1016/j.clinthera.2011.12.009.

    Article  PubMed  Google Scholar 

  128. Sanwald-Ducray P, Liogier D’Ardhuy X, Jamois C, Banken L. Pharmacokinetics, pharmacodynamics, and tolerability of aleglitazar in patients with type 2 diabetes: Results from a randomized, placebo-controlled clinical study. Clin Pharmacol Ther. 2010. https://doi.org/10.1038/clpt.2009.259.

    Article  PubMed  Google Scholar 

  129. Routledge PA, Davies DM, Rawlins MD. Pharmacokinetics of tolamolol in the treatment of hypertension. Eur J Clin Pharm. 1977. https://doi.org/10.1007/BF00609855.

  130. Faulkner J, Stopher D, Walden R. Pharmacokinetic and pharmacological studies with tolamolol in man. Br J Clin Pharmacol. 1975. https://doi.org/10.1111/j.1365-2125.1975.tb00551.x.

  131. Balant L, Gorgia A, Marmy A, Tschopp JM. Clearance concept applied to pharmacokinetics: 2. Experience with tolamolol (beta-blocking agent) in renal insufficiency (author’s transl). Nephrologie. 1980;1(4):177–82.

  132. Canale V, Kurczab R, Partyka A, Satała G, Słoczyńska K, Kos T, et al. N-Alkylated arylsulfonamides of (aryloxy) ethyl piperidines: 5-HT7 receptor selectivity versus multireceptor profile. Bioorg Med Chem. 2016;24:130–9.

    Article  CAS  PubMed  Google Scholar 

  133. Pascale R, Carocci A, Catalano A, Lentini G, Spagnoletta A, Cavalluzzi MM, et al. New N-(phenoxydecyl) phthalimide derivatives displaying potent inhibition activity towards α-glucosidase. Bioorg Med Chem. 2010;18:5903–14.

    Article  CAS  PubMed  Google Scholar 

  134. Shagufta SAK, Sharma R, Mishra R, Balapure AK, Murthy PS, Panda G. Substituted phenanthrenes with basic amino side chains: a new series of anti-breast cancer agents. Bioorg Med Chem. 2006;14:1497–505.

    Article  CAS  PubMed  Google Scholar 

  135. Waszkielewicz AM, Gunia-Krzyżak A, Powroźnik B, Słoczyńska K, Pękala E, Walczak M. et al. Design, physico-chemical properties and biological evaluation of some new N-[(phenoxy) alkyl]-and N-{2-[2-(phenoxy) ethoxy] ethyl} aminoalkanols as anticonvulsant agents. Bioorg Med Chem. 2016;24:1793–810.

  136. Canale V, Kurczab R, Partyka A, Satała G, Lenda T, Jastrzębska-Więsek M, et al. Towards new 5-HT7 antagonists among arylsulfonamide derivatives of (aryloxy) ethyl-alkyl amines: multiobjective based design, synthesis, and antidepressant and anxiolytic properties. Eur J Med Chem. 2016;108:334–46.

    Article  CAS  PubMed  Google Scholar 

  137. Quaglia W, Santoni G, Pigini M, Piergentili A, Gentili F, Buccioni M.et al. Structure−Activity Relationships in 1,4-Benzodioxan-Related Compounds. 8. {2-[2-(4-Chlorobenzyloxy)phenoxy]ethyl}-[2-(2,6-dimethoxyphenoxy)ethyl]amine (Clopenphendioxan) as a Tool to Highlight the Involvement of α 1D - and α 1B -Adrenoreceptor Subtypes in the Regulation of Human PC-3 Prostate Cancer Cell Apoptosis and Proliferation. Journal of Medicinal Chemistry. 2005;48:7750–63. https://doi.org/10.1021/jm0580398.

  138. Pachón Angona I, Martin H, Daniel S, Moraleda I, Bonet A, Wnorowski A, et al. Synthesis of Hantzsch adducts as cholinesterases and calcium flux inhibitors, antioxidants and neuroprotectives. Int J Mol Sci. 2020;21:7652.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Staszewski M, Walczyński K. Synthesis and preliminary pharmacological investigation of new N‐Substituted‐N‐[ω‐(ω‐phenoxy‐alkylpiperazin‐1‐yl) alkyl] guanidines as non‐imidazole histamine H3 antagonists. Arch Pharm. 2012;345:431–43.

    Article  CAS  Google Scholar 

  140. Novikov MS, Babkov DA, Paramonova MP, Khandazhinskaya AL, Ozerov AA, Chizhov AO, et al. Synthesis and anti-HCMV activity of 1-[ω-(phenoxy) alkyl] uracil derivatives and analogues thereof. Bioorg Med Chem. 2013;21:4151–7.

  141. Robert S, Graciela A. Synthesis and antiviral properties of 1-Substituted 3-[ω-(4-Oxoquinazolin-4 (3H)-yl) alkyl] uracil Derivatives. Acta Nat (англоязычная версия). 2020;12:134–9.

  142. Hirschfeld J, Buschauer A, Elz S, Schunack W, Ruat M, Traiffort E, et al. Iodoaminopotentidine and related compounds: a new class of ligands with high affinity and selectivity for the histamine H2 receptor. J Med Chem. 1992;35:2231–8.

    Article  CAS  PubMed  Google Scholar 

  143. Soubhye J, Meyer F, Furtmüller P, Obinger C, Dufrasne F, Van Antwerpen P. Characterization of chemical features of potent myeloperoxidase inhibitors. Future Med Chem. 2016;8:1163–77.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaghoub Pourshojaei.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaeifar, M.M., Abiri, A., Rezaiezadeh, H. et al. Phenoxyalkyl cyclic and acyclic amine derivatives: what do they teach us about scaffold-based drug design?. Med Chem Res (2024). https://doi.org/10.1007/s00044-024-03215-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00044-024-03215-1

Keywords

Navigation