Skip to main content

Advertisement

Log in

Synthesis and pharmacological activities of Schiff bases with some transition metal complexes: a review

  • Review Article
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Schiff bases transition metal complexes have received significant attentions in the scientific community for their versatile applications. The incorporation of metals to Schiff base ligands attracts much attention, since the metals and Schiff base ligands coordinated via bonding. Thus, chelation effects will enhance and improve the biological activities of the derivatives of title compound. Most of these derivatives displayed broad range bioactivities including antibacterial, antifungal, antituberclosis, antimalarial, antioxidant, antidiabetic, anti-inflammatory and anticancer activities. Up to date, continuous efforts are being made in various research groups to design the outcomes of more potent, novel and safe synthetic protocols towards the Schiff base metal complexes. Therefore, this review summarizes the various synthetic protocols and pharmacological activities of Schiff base metal complexes and their derivatives. Here, the synthesis of Schiff base ligands and their complexes with metals Cu(II), Pt(II), Ni(II), Pd(II), Ru(II, III), V(III), Cd (II), Zn(II), Co(II, III) and Mn(II, III) will be presented (2013–2022).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Scheme 19
Scheme 20
Scheme 21
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Dalia SA, Afsan F, Hossain MS, Khan MN, Zakaria C, Zahan MKE, Ali M. A short review on chemistry of schiff base metal complexes and their catalytic application. Int J Chem Stud. 2018;6:2859–2866.

    Google Scholar 

  2. Yernale NG, Bennikallu Hire Mathada M. Synthesis, characterization, antimicrobial, DNA cleavage, and in vitro cytotoxic studies of some metal complexes of Schiff base ligand derived from thiazole and quinoline moiety. Bioinorg Chem Appl. 2014;2014:314963.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Raman N, Sobha S, Mitu L. Design, synthesis, DNA binding ability, chemical nuclease activity and antimicrobial evaluation of Cu (II), Co (II), Ni (II) and Zn (II) metal complexes containing tridentate Schiff base. J Saudi Chem Soc. 2013;17:151–159.

    Article  CAS  Google Scholar 

  4. Boceiri N, Benabdallah T, Hadj Youcef M, Reffas H. Synthesis and characterization of a novel series of amphiphilic mercapto-1, 2, 4-triazole Schiff base ligands: investigation of their behavior in hydro-organic solutions. J Surfactants Deterg. 2016;19:583–597.

    Article  CAS  Google Scholar 

  5. Ramadhan UH, Haddad HM, Ezaria ZG. Synthesis of Schiff bases complexes as anti-inflammatory agents. World J Pharm Pharm Sci. 2016;5:98–108.

    CAS  Google Scholar 

  6. Liu X, Manzur C, Novoa N, Celedón S, Carrillo D, Hamon JR. Multidentate unsymmetrically-substituted Schiff bases and their metal complexes: synthesis, functional materials properties, and applications to catalysis. Coord Chem Rev. 2018;357:144–172.

    Article  CAS  Google Scholar 

  7. Uddin MN, Ahmed SS, Alam SR. Biomedical applications of Schiff base metal complexes. J Coord Chem. 2020;73:3109–3149.

    Article  CAS  Google Scholar 

  8. Yadav P, Sarkar A, Kumar A. Synthesis and biological activities of schiff bases and their derivatives: a review of recent work. J Basic Appl Eng Res. 2019;6:62–65.

    Google Scholar 

  9. Joseph J, Nagashri K, Rani GAB. Synthesis, characterization and anti-microbial activities of copper complexes derived from 4-aminoantipyrine derivatives. J Saudi Chem Soc. 2013;17:285–294.

    Article  CAS  Google Scholar 

  10. Abood HS, Ramadhan UH, Hamza H. Synthesis and anti-inflammatory activity study of Schiff bases complexes. Biochem Cell Arch 2020;20:5627–5631.

    Google Scholar 

  11. Abu-Dief AM, Mohamed IM. A review on versatile applications of transition metal complexes incorporating Schiff bases. Beni-suef Univ J Basic Appl Sci. 2015;4:119–133.

    PubMed  PubMed Central  Google Scholar 

  12. Adam MSS, Abdel-Rahman LH, Abu-Dief AM, Hashem NA. Synthesis, catalysis, antimicrobial activity, and DNA interactions of new Cu (II)-Schiff base complexes. Inorg Nano-Met Chem. 2020;50:136–150.

    Article  CAS  Google Scholar 

  13. Ibrahim FM. Polyether hexadentate Schiff base ligand with trivalent chromium, iron, cobalt ions. J Al-Nahrain Univ Sci. 2017;20:1–6.

    Article  Google Scholar 

  14. Hassan AS, Mady MF, Awad HM, Hafez TS. Synthesis and antitumor activity of some new pyrazolo [1, 5-a] pyrimidines. Chin Chem Lett. 2017;28:388–393.

    Article  CAS  Google Scholar 

  15. Nayak SG and Poojary B, Synthesis of novel Schiff bases containing arylpyrimidines as promising antibacterial agents. Heliyon, 2019:5.

  16. Sahoo CR, Paidesetty SK, Sarathbabu S, Dehury B, Senthil Kumar N, Padhy RN. Molecular dynamics simulation, synthesis and topoisomerase inhibitory actions of vanillin derivatives: a systematic computational structural integument. J Biomolecular Struct Dyn. 2022;40:11653–11663.

    Article  CAS  Google Scholar 

  17. Aragon-Muriel A, Liscano Y, Upegui Y, Robledo SM, Ramírez-Apan MT, Morales-Morales D, Oñate-Garzón J, Polo-Cerón D. In vitro evaluation of the potential pharmacological activity and molecular targets of new benzimidazole-based schiff base metal complexes. Antibiotics. 2021;10:728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. El‐Sonbati AZ, Mahmoud WH, Mohamed GG, Diab MA, Morgan SM, Abbas SY. Synthesis, characterization of Schiff base metal complexes and their biological investigation. Appl Organomet Chem. 2019;33:e5048.

    Article  Google Scholar 

  19. Al Zoubi W, Al‐Hamdani AAS, Ahmed SD, Ko YG. A new azo‐Schiff base: Synthesis, characterization, biological activity and theoretical studies of its complexes. Appl Organomet Chem. 2018;32:e3895.

    Article  Google Scholar 

  20. Abdel‐Rahman LH, Adam MSS, Abu‐Dief AM, Moustafa H, Basha MT, Aboraia AS, Al‐Farhan BS, Ahmed HES. Synthesis, theoretical investigations, biocidal screening, DNA binding, in vitro cytotoxicity and molecular docking of novel Cu (II), Pd (II) and Ag (I) complexes of chlorobenzylidene Schiff base: promising antibiotic and anticancer agents. Appl Organomet Chem. 2018;32:e4527.

    Article  Google Scholar 

  21. Kiwaan HA, El-Mowafy AS, El-Bindary AA. “Synthesis, spectral characterization, DNA binding, catalytic and in vitro cytotoxicity of some metal complexes”. J Mol Liq. 2021;326:115381.

    Article  CAS  Google Scholar 

  22. El-Gammal OA, Mohamed FS, Rezk GN, El-Bindary AA. “Synthesis, characterization, catalytic, DNA binding and antibacterial activities of Co(II), Ni(II) and Cu(II) complexes with new Schiff base ligand”. J Mol Liq. 2021;326:115223.

    Article  CAS  Google Scholar 

  23. El-Gammal OA, Mohamed FS, Rezk GN, El-Bindary AA. “Structural characterization and biological activity of a new metal complexes based of Schiff base”. J Mol Liq. 2021;330:115522.

    Article  CAS  Google Scholar 

  24. Bushra N, Miana GA, Shahid K, Asghar M, Tanveer S, Sarwar A. Iron (III) and zinc (II) monodentate Schiff base metal complexes: synthesis, characterisation and biological activities. J Mol Struct. 2021;1231:129946.

    Article  Google Scholar 

  25. Köse M, Ceyhan G, Tümer M, Demirtaş I, Gönül İ. Monodentate Schiff base ligands: their structural characterization, photoluminescence, anticancer, electrochemical and sensor properties. Spectrochim Acta Part A Mol Biomol Spectrosc. 2015;137:477–85.

    Article  ADS  Google Scholar 

  26. El-Gammal OA, Mohamed FS, Rezk GN, El-Bindary AA. “Synthesis, characterization, design, molecular docking, anti COVID-19 activity, DFT calculations of novel Schiff base with some transition metal complexes”. J Mol Liq. 2022;346:117850.

    Article  CAS  Google Scholar 

  27. El-Bindary MA, El-Bindary AA. “Synthesis, characterization, DNA binding, and biological action of dimedone arylhydrazone chelates”. Appl Organomet Chem. 2022;36:e6576.

    Article  CAS  Google Scholar 

  28. Lamia AI, Zakaria R, Eman MH, Mohammad YA, Ali AS, Serag Eldin IE, El-Bindary AA, Elshaarawy RFM. “Novel imidazolium-thiohydantoin hybrids and their Mn(III) complexes for antimicrobial and anti-liver cancer applications. RSC Adv 2022;12:28364–75.

    Article  ADS  Google Scholar 

  29. Al-Hazmi GAA, Abou-Melha KS, Ismail Althagafi, NashwaM. El-Metwaly. Fathy Shaaban, Mansour S. Abdul Galil, Ashraf A. El-Bindary “Synthesis and structural characterization of oxovanadium(IV) complexes of dimedone derivatives”. Appl Organomet Chem. 2020;34:e5672.

    Article  CAS  Google Scholar 

  30. El-Bindary AA, Toson EA, Shoueir KR, Aljohani HA, Magy M. Abo-Ser“Metal–organic frameworks as efficient materials for drug delivery: synthesis, characterization, antioxidant, anticancer, antibacterial and molecular docking investigation”. Appl Organomet Chem. 2020;34:e5905.

    Article  CAS  Google Scholar 

  31. Devi J, Batra N. Synthesis, characterization and antimicrobial activities of mixed ligand transition metal complexes with isatin monohydrazone Schiff base ligands and heterocyclic nitrogen base. Spectrochim Acta Part A Mol Biomol Spectrosc. 2015;135:710–719.

    Article  CAS  ADS  Google Scholar 

  32. Subbaraj P, Ramu A, Raman C N, Dharmaraja J. “Synthesis, characterization, DNA interaction and pharmacological studies of substituted benzophenone derived Schiff base metal(II) complexes”. J Saudi Chem Soc. 2015;19:207–16.

    Article  Google Scholar 

  33. Kumaravel G, Utthra PP, Raman N. “Exploiting the biological efficacy of benzimidazole based Schiff base complexes with L-Histidine as a co-ligand: Combined molecular docking, DNA interaction, antimicrobial and cytotoxic studies”. Bioorg Chem. 2018;77:269–79.

    Article  CAS  PubMed  Google Scholar 

  34. Samuel M, Raman N. “Comprehensive biological evaluation (DNA-binding, cleavage, and antimicrobial activity) of β-diketimine Schiff base ligands and their Cu (II) and Zn (II) complexes.”. J Coord Chem. 2021;74.12:2069–91.

    Article  Google Scholar 

  35. Deepika P, Vinusha HM, Begum M, Ramu R, Shirahatti PS, Prasad MNN. “ 2-methoxy-4-(((5-nitropyridin-2-yl)imino)methyl)phenol Schiff base ligand and its Cu(II) and Zn(II) complexes: synthesis, characterization and biological investigations”. Heliyon. 2022;9:e09648.

    Article  Google Scholar 

  36. Chandrasekar T, Alagarraj A, Raman N. “Synthesis, spectral characterization, DNA-binding and antimicrobial profile of biological active mixed ligand Schiff base metal (II) complexes incorporating 1, 8-diaminonaphthalene.”. J Coord Chem. 2021;74.4-6:804–22.

    Article  Google Scholar 

  37. Meenachi S, Chitra S. A review of chemistry and biological importance of Schiff base. ChemInform. 2015;46:08–18.

    Article  Google Scholar 

  38. Singh A, Barman P. Recent advances in Schiff base ruthenium metal complexes: synthesis and applications. Top Curr Chem. 2021;379:1–71.

    Google Scholar 

  39. Naureen B, Miana GA, Shahid K, Asghar M, Tanveer S, Sarwar A. Iron (III) and zinc (II) monodentate Schiff base metal complexes: synthesis, characterization and biological activities. J Mol Struct. 2021;1231:129946.

    Article  CAS  Google Scholar 

  40. Aggoun D, Fernández-García M, López D, Bouzerafa B, Ouennoughi Y, Setifi F, Ourari A. New nickel (II) and copper (II) bidentate Schiff base complexes, derived from dihalogenated salicylaldehyde and alkylamine: synthesis, spectroscopic, thermogravimetry, crystallographic determination and electrochemical studies. Polyhedron. 2020;187:114640.

    Article  CAS  Google Scholar 

  41. Sakthi M, Ramu A. Synthesis, structure, DNA/BSA binding and antibacterial studies of NNO tridentate Schiff base metal complexes. J Mol Struct. 2017;1149:727–735.

    Article  CAS  ADS  Google Scholar 

  42. Saranya J, Jone Kirubavathy S, Chitra S, Zarrouk A, Kalpana K, Lavanya K, Ravikiran B. Tetradentate Schiff base complexes of transition metals for antimicrobial activity. Arab J Sci Eng. 2020;45:4683–4695.

    Article  CAS  Google Scholar 

  43. Warad I, Suboh H, Al-Zaqri N, Alsalme A, Alharthi FA, Aljohani MM, Zarrouk A. Synthesis and physicochemical, DFT, thermal and DNA-binding analysis of a new pentadentate N3S2 Schiff base ligand and its [CuN3S2] 2+ complexes. RSC Adv. 2020;10:21806–21821.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  44. Keypour H, Mahmoudabadi M, Shooshtari A, Bayat M, Ghassemzadeh M, Hosseinzadeh L, Mohsenzadeh F, Harms K. Synthesis and characterization of two new N4O2 macroacyclic Schiff-base ligands containing piperazine moiety and mononuclear Co (III) and Cu (II) complexes, spectral, X-ray crystal structural, theoretical studies, cytotoxic and antibacterial properties. Polyhedron. 2017;129:189–198.

    Article  CAS  Google Scholar 

  45. Chow MJ, Babak MV, Wong DYQ, Pastorin G, Gaiddon C, Ang WH. Structural determinants of p53-independence in anticancer ruthenium-arene Schiff-base complexes. Mol Pharm. 2016;13:2543–2554.

    Article  CAS  PubMed  Google Scholar 

  46. Ejidike IP, Ajibade PA. Synthesis, characterization, and in vitro antioxidant and anticancer studies of ruthenium (III) complexes of symmetric and asymmetric tetradentate Schiff bases. J Coord Chem. 2015;68:2552–2564.

    Article  CAS  Google Scholar 

  47. Akila E, Usharani M, Rajavel R. Potentially bioactive schiff base transition metal (ii) complexes as selective dna binding, cleavage, in vitro antimicrobial and in vitro antioxidant agents synthesis of schiff base ligand and their metal complexes. Int J Med Pharm Sci. 2013;3:95–112.

    Google Scholar 

  48. Ribeiro N, Roy S, Butenko N, Cavaco I, Pinheiro T, Alho I, Marques F, Avecilla F, Pessoa JC, Correia I. New Cu (II) complexes with pyrazolyl derived Schiff base ligands: synthesis and biological evaluation. J Inorg Biochem. 2017;174:63–75.

    Article  CAS  PubMed  Google Scholar 

  49. Terbouche A, Ait-Ramdane-Terbouche C, Bendjilali Z, Berriah H, Lakhdari H, Lerari D, Bachari K, Mezaoui D, Bensiradj NEH, Guegan JP, Hauchard D. Synthesis, spectral characterization, molecular modeling, antibacterial and antioxidant activities and stability study of binuclear Pd(II) and Ru(III) complexes with novel bis-[1-(2-[(2-hydroxynaphthalen-1-yl)methylidene]amino}ethyl)-1-ethyl-3-phenylthiourea] ligand: application to detection of cholesterol. Spectrochim Acta Part A Mol Biomolecul Spectrosc. 2018;205:146–159. https://doi.org/10.1016/j.saa.2018.07.010.

  50. Layek S, Agrahari B, Pathak DD. Synthesis and characterization of a new Pd (II)-Schiff base complex [Pd (APD) 2]: an efficient and recyclable catalyst for Heck-Mizoroki and Suzuki-Miyaura reactions. J Organomet Chem. 2017;846:105–112.

    Article  CAS  Google Scholar 

  51. Biswas B, Choudhury P, Ghosh A, Dubey SK, Rizzoli C, Saha R, Bhattacharjee S. A water soluble Ni-Schiff base complex for homogeneous green catalytic CS cross-coupling reactions. Inorg Chim Acta. 2022;532:120755.

    Article  CAS  Google Scholar 

  52. Kuchtanin V, Kleščíková L, Šoral M, Fischer R, Růžičková Z, Rakovský E, Moncoľ J, Segľa P. Nickel (II) Schiff base complexes: Synthesis, characterization and catalytic activity in Kumada-Corriu cross-coupling reactions. Polyhedron. 2016;117:90–96.

    Article  CAS  Google Scholar 

  53. Shiju C, Arish D, Bhuvanesh N, Kumaresan S. Synthesis, characterization, and biological evaluation of Schiff base-platinum (II) complexes. Spectrochim Acta Part A Mol Biomol Spectrosc. 2015;145:213–222.

    Article  CAS  ADS  Google Scholar 

  54. Peng Y, Zhong H, Chen ZF, Liu YC, Zhang GH, Qin QP, Liang H. A planar schiff base platinum (II) complex: Crystal structure, cytotoxicity and interaction with DNA. Chem Pharm Bull. 2014;62:221–228.

    Article  CAS  Google Scholar 

  55. Luo XQ, Liu QR, Han YJ, Xue LW. Vanadium complexes derived from fluoro-substituted Schiff bases: Synthesis, crystal structures, and antimicrobial activity. Inorg Nano-Met Chem. 2020;50:836–841.

    Article  CAS  Google Scholar 

  56. Prasad PS, Kumar SP, Bharathi K, Narayanan V. Determination of vitamin-B6 by vanadium (III) Schiff base complex modified GCE. Mater Today Proc. 2018;5:9026–9032.

    Article  Google Scholar 

  57. Dey D, Kaur G, Ranjani A, Gayathri L, Chakraborty P, Adhikary J, Pasan J, Dhanasekaran D, Choudhury AR, Akbarsha MA, Kole N. A trinuclear zinc-schiff base complex: biocatalytic activity and cytotoxicity. Eur J Inorg Chem. 2014;2014:3350–3358.

    Article  CAS  Google Scholar 

  58. Kılınç D, Şahin Ö. Performance of Zn-Schiff Base complex catalyst in NaBH4 hydrolysis reaction. Int J Hydrog Energy. 2020;45:34783–34792.

    Article  Google Scholar 

  59. Irfan RM, Shaheen MA, Saleem M, Tahir MN, Munawar KS, Ahmad S, Rubab SL, Tahir T, Kotwica-Mojzych K, Mojzych M. Synthesis of new cadmium (II) complexes of Schiff bases as alkaline phosphatase inhibitors and their antimicrobial activity. Arab J Chem. 2021;14:103308.

    Article  CAS  Google Scholar 

  60. Ahmed RM, Yousif EI and Al-Jeboori MJ. Co (II) and Cd (II) complexes derived from heterocyclic schiff-bases: synthesis, structural characterisation, and biological activity. Sci. World J. 2013.

  61. Sethi R, Ahuja M. Synthesis, characterization and anti-bacterial activity of cobalt complex of 2-pyrazoline with pyridinyl moiety. Int J Pharm Tech Res. 2016;9:35–40.

    CAS  Google Scholar 

  62. Ghosh P, Chowdhury AR, Saha SK, Ghosh M, Pal M, Murmu NC, Banerjee P. Synthesis and characterization of redox non-innocent cobalt (III) complexes of a O, N, O donor ligand: Radical generation, semi-conductivity, antibacterial and anticancer activities. Inorg Chim Acta. 2015;429:99–108.

    Article  CAS  Google Scholar 

  63. Ghosh M, Layek M, Fleck M, Saha R, Bandyopadhyay D. Synthesis, crystal structure and antibacterial activities of mixed ligand copper (II) and cobalt (II) complexes of a NNS Schiff base. Polyhedron. 2015;85:312–319.

    Article  CAS  Google Scholar 

  64. Gaikwad KD, Ubale P, Khobragade R, Deodware S, Dhale P, Asabe MR, Ovhal RM, Singh P, Vishwanath P, Shivamallu C, Achar RR. Preparation, characterization and in vitro biological activities of new diphenylsulphone derived schiff base ligands and their Co (ii) complexes. Molecules. 2022;27:8576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Gaikwad KD, Khobragade RM, Deodware SA, Ubale PA, Dhale PC, Ovhal RM, Shivamallu C, Ankegowda VM, Raghavendra HL, Gaikwad SH, Kollur SP. Chemical synthesis, spectral characterization and biological activities of new diphenylsulphone derived Schiff base ligand and their Ni (II) complexes. Results Chem. 2022;4:100617.

    Article  CAS  Google Scholar 

  66. Ghosh K, Banerjee A, Bauzá A, Frontera A, Chattopadhyay S. One pot synthesis of two cobalt (III) Schiff base complexes with chelating pyridyltetrazolate and exploration of their bio-relevant catalytic activities. RSC Adv. 2018;8:28216–28237.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  67. Yahsi Y, Kara H. Synthesis and characterization of monomeric Mn (IV) and pseudo-tetrameric Mn (III) complexes: Magnetic properties of Mn (III) complex. Spectrochim Acta Part A Mol Biomol Spectrosc. 2014;127:25–31.

    Article  CAS  ADS  Google Scholar 

  68. Egekenze RN, Gultneh Y, Butcher R. Mn (III) and Mn (II) complexes of tridentate Schiff base ligands; synthesis, characterization, structure, electrochemistry and catalytic activity. Inorg Chim Acta. 2018;478:232–242.

    Article  CAS  Google Scholar 

  69. Alaghaz ANM, Zayed ME, Alharbi SA, Ammar RA, Chinnathambi A. Synthesis, spectroscopic identification, thermal, potentiometric and anti-bacterial activity studies of 4-amino-5-mercapto-S-triazole Schiff’s base complexes. J Mol Struct. 2015;1087:60–67.

    Article  CAS  ADS  Google Scholar 

  70. Chen S, Liu X, Huang J, Ge X, Wang Q, Yao M, Shao Y, Liu T, Yuan XA, Tian L, Liu Z. Triphenylamine/carbazole-modified ruthenium (II) Schiff base compounds: synthesis, biological activity and organelle targeting. Dalton Trans. 2020;49:8774–8784.

    Article  CAS  PubMed  Google Scholar 

  71. Liu C, Liu X, Ge X, Wang Q, Zhang L, Shang W, Zhang Y, Yuan XA, Tian L, Liu Z, You J. Fluorescent iridium (III) coumarin-salicylaldehyde Schiff base compounds as lysosome-targeted antitumor agents. Dalton Trans. 2020;49:5988–5998.

    Article  CAS  PubMed  Google Scholar 

  72. Raj P, Singh A, Singh A, Singh N. Syntheses and photophysical properties of Schiff base Ni (II) complexes: application for sustainable anti-bacterial activity and cytotoxicity. ACS Sustain Chem Eng. 2017;5:6070–6080.

    Article  CAS  Google Scholar 

  73. Jayaseelan P, Prasad S, Vedanayaki S, Rajavel R. Synthesis, characterization, anti-microbial, DNA binding and cleavage studies of Schiff base metal complexes. Arab J Chem. 2016;9:S668–S677.

    Article  CAS  Google Scholar 

  74. Ambhure RU, Mirgane SR, Thombal DU, Nawale RB, Marathe RP, Pawar RP. Synthesis and antibacterial study of some Schiff bases complexes. Mod Org Chem Res. 2017;2:11–16.

    Article  Google Scholar 

  75. Mahato S, Meheta N, Kotakonda M, Joshi M, Shit M, Choudhury AR, Biswas B. Synthesis, structure, polyphenol oxidase mimicking and bactericidal activity of a zinc-schiff base complex. Polyhedron. 2021;194:114933.

    Article  CAS  Google Scholar 

  76. Pervaiz M, Ahmad I, Yousaf M, Kirn S, Munawar A, Saeed Z, Adnan A, Gulzar T, Kamal T, Ahmad A, Rashid A. Synthesis, spectral and antimicrobial studies of amino acid derivative Schiff base metal (Co, Mn, Cu, and Cd) complexes. Spectrochimica Acta Part A Mol Biomol Spectrosc. 2019;206:642–649.

    Article  CAS  ADS  Google Scholar 

  77. Shiju C, Arish D, Kumaresan S. Novel water soluble Schiff base metal complexes: Synthesis, characterization, antimicrobial-, DNA cleavage, and anticancer activity. J Mol Struct. 2020;1221:128770.

    Article  CAS  Google Scholar 

  78. Nazirkar B, Mandewale M, Yamgar R. Synthesis, characterization and antibacterial activity of Cu (II) and Zn (II) complexes of 5-aminobenzofuran-2-carboxylate Schiff base ligands. J Taibah Univ Sci. 2019;13:440–449.

    Article  Google Scholar 

  79. Kargar H, Ardakani AA, Tahir MN, Ashfaq M, Munawar KS. Synthesis, spectral characterization, crystal structure and antibacterial activity of nickel (II), copper (II) and zinc (II) complexes containing ONNO donor Schiff base ligands. J Mol Struct. 2021;1233:130112.

    Article  CAS  Google Scholar 

  80. Arendrup MC, Patterson TF. Multidrug-resistant Candida: epidemiology, molecular mechanisms, and treatment. J Infect Dis. 2017;216:S445–S451.

    Article  CAS  PubMed  Google Scholar 

  81. Perlin DS, Rautemaa-Richardson R, Alastruey-Izquierdo A. The global problem of antifungal resistance: prevalence, mechanisms, and management. Lancet Infect Dis. 2017;17:e383–e392.

    Article  PubMed  Google Scholar 

  82. Berman J, Krysan DJ. Drug resistance and tolerance in fungi. Nat Rev Microbiol. 2020;18:319–331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Cowen LE, Sanglard D, Howard SJ, Rogers PD and Perlin DS. Mechanisms of antifungal drug resistance. Cold Spring Harb Perspect Med. 2015:5.

  84. Geddes‐McAlister J, Shapiro RS. New pathogens, new tricks: emerging, drug‐resistant fungal pathogens and future prospects for antifungal therapeutics. Ann N Y Acad Sci. 2019;1435:57–78.

    Article  PubMed  ADS  Google Scholar 

  85. Joshi KR, Rojivadiya AJ, Pandya JH. Synthesis and spectroscopic and antimicrobial studies of Schiff base metal complexes derived from 2-hydroxy-3-methoxy-5-nitrobenzaldehyde. Int J Inorg Chem. 2014;2014:8.

    Google Scholar 

  86. Hasi QM, Fan Y, Yao XQ, Hu DC, Liu JC. Synthesis, characterization, antioxidant and antimicrobial activities of a bidentate Schiff base ligand and its metal complexes. Polyhedron. 2016;109:75–80.

    Article  CAS  Google Scholar 

  87. Kumar S, Devi J, Dubey A, Kumar D, Jindal DK, Asija S, Sharma A. Co (II), Ni (II), Cu (II) and Zn (II) complexes of Schiff base ligands: Synthesis, characterization, DFT, in vitro antimicrobial activity and molecular docking studies. Res Chem Intermed. 2023;49:939–965.

    Article  CAS  Google Scholar 

  88. Frei A, King AP, Lowe GJ, Cain AK, Short FL, Dinh H, Elliott AG, Zuegg J, Wilson JJ, Blaskovich MA. Nontoxic cobalt (III) Schiff base complexes with broad‐spectrum anti-fungal activity. Chemistry. 2021;27:2021–2029.

    Article  CAS  PubMed  Google Scholar 

  89. Pahonțu E, Ilieș DC, Shova S, Paraschivescu C, Badea M, Gulea A, Roșu T. Synthesis, characterization, crystal structure and antimicrobial activity of copper (II) complexes with the Schiff base derived from 2-hydroxy-4-methoxybenzaldehyde. Molecules. 2015;20:5771–5792.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Mishra R, Shukla P, Huang W, Hu N. Gene mutations in mycobacterium tuberculosis: multidrug-resistant TB as an emerging global public health crisis. Tuberculosis. 2015;95:1–5.

    Article  CAS  PubMed  Google Scholar 

  91. Furin J, Cox H, Pai M. Tuberculosis. Lancet. 2019;393:1642–1656.

    Article  PubMed  Google Scholar 

  92. Fogel N. Tuberculosis: a disease without boundaries. Tuberculosis. 2015;95:527–531.

    Article  PubMed  Google Scholar 

  93. Koch A, Mizrahi V. Mycobacterium tuberculosis. Trends Microbiol. 2018;26:555–556.

    Article  CAS  PubMed  Google Scholar 

  94. More G, Bootwala S, Shenoy S, Mascarenhas J, Aruna K. Synthesis, Characterization and in vitro antitubercular and antimicrobial activities of new aminothiophene Schiff bases and their Co (II), Ni (II), Cu (II) and Zn (II) metal complexes. Orient J Chem. 2018;34:800.

    Article  CAS  Google Scholar 

  95. Yamgar RS, Nivid Y, Nalawade S, Mandewale M, Atram RG and Sawant SS. Novel zinc (II) complexes of heterocyclic ligands as antimicrobial agents: synthesis, characterisation, and antimicrobial studies. Bioinorg Chem Appl. 2014.

  96. Baliram TV, Sanjay KP, Arvind MP. Synthesis, spectral characterization and antitubercular study of novel quinoline schiff base and its metal complexes. Anal Chem Lett. 2021;11:523–538.

    Article  Google Scholar 

  97. More G, Bootwala SZ, Mascarenhas J, Aruna K. Anti-microbial and anti-tubercular activity evaluation of newly synthesized zinc complexes of aminothiophene schiff bases. Int J Pharm Sci Res. 2018;9:3029–3035.

    CAS  Google Scholar 

  98. Mandewale MC, Kokate S, Thorat B, Sawant S, Yamgar R. Zinc complexes of hydrazone derivatives bearing 3, 4-dihydroquinolin-2 (1H)-one nucleus as new anti-tubercular agents. Arab J Chem. 2019;12:4479–4489.

    Article  CAS  Google Scholar 

  99. Sies H, Berndt C, Jones DP. Oxidative stress. Annu Rev Biochem. 2017;86:715–748.

    Article  CAS  PubMed  Google Scholar 

  100. Hayes JD, Dinkova-Kostova AT, Tew KD. Oxidative stress in cancer. Cancer Cell. 2020;38:167–197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Liguori I, Russo G, Curcio F, Bulli G, Aran L, Della-Morte D, Gargiulo G, Testa G, Cacciatore F, Bonaduce D and Abete P. Oxidative stress, aging, and diseases. Clin Interv Aging. 2018:757–772.

  102. Salim S. Oxidative stress and the central nervous system. J Pharmacol Exp Ther. 2017;360:201–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Jafari M, Salehi M, Kubicki M, Arab A, Khaleghian A. DFT studies and anti-oxidant activity of Schiff base metal complexes of 2-aminopyridine. Crystal structures of cobalt (II) and zinc (II) complexes. Inorg Chim Acta. 2017;462:329–335.

    Article  CAS  Google Scholar 

  104. BHM M, Nagesh GY, Ramesh M, Priyanka B, Heena B. Synthesis, characterization and anti-oxidant activity of Schiff base ligand and its metal complexes containing thiazole moiety. Der Pharma Chem. 2015;7:556–62.

    Google Scholar 

  105. Yaqoob M, Jamil W, Taha M, Solangi S. Synthesis, characterization, anti-glycation, and anti-oxidant activities of sulfanilamide Schiff base metal chelates. Acta Chim Slov. 2022;69:772–778.

    Article  CAS  PubMed  Google Scholar 

  106. Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, Li Y, Wang X, Zhao L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 2018;9:7204.

    Article  PubMed  Google Scholar 

  107. Furman D, Campisi J, Verdin E, Carrera-Bastos P, Targ S, Franceschi C, Ferrucci L, Gilroy DW, Fasano A, Miller GW, Miller AH. Chronic inflammation in the etiology of disease across the life span. Nat Med. 2019;25:1822–1832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Shukla S, Mishra AP. Metal complexes used as anti-inflammatory agents: synthesis, characterization and anti-inflammatory action of VO (II)-complexes. Arab J Chem. 2019;12:1715–1721.

    Article  CAS  Google Scholar 

  109. Devi J, Yadav J, Singh N. Synthesis, characterisation, in vitro antimicrobial, antioxidant and anti-inflammatory activities of diorganotin (IV) complexes derived from salicylaldehyde Schiff bases. Res Chem Intermed. 2019;45:3943–3968.

    Article  CAS  Google Scholar 

  110. Elkanzi NA, Ali AM, Hrichi H, Abdou A. New mononuclear Fe (III), Co (II), Ni (II), Cu (II), and Zn (II) complexes incorporating 4‐{[(2 hydroxyphenyl) imino] methyl} phenyl‐4‐methylbenzenesulfonate (HL): Synthesis, characterization, theoretical, anti‐inflammatory, and molecular docking investigation. Appl Organomet Chem. 2022;36:e6665.

    Article  CAS  Google Scholar 

  111. Abdel-Rahman LH, Basha MT, Al-Farhan BS, Alharbi W, Shehata MR, Al Zamil NO, Abou El-ezz D. Synthesis, characterization, DFT Studies of Novel Cu (II), Zn (II), VO (II), Cr (III), and La (III) chloro-substituted Schiff base complexes: aspects of its antimicrobial, antioxidant, anti-inflammatory, and photodegradation of methylene blue. Molecules. 2023;28:4777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Matela G. Schiff bases and complexes: a review on anti-cancer activity. Anticancer Agents Med Chem. 2020;20:1908–1917.

    Article  CAS  PubMed  Google Scholar 

  113. Tadele KT, Tsega TW. Schiff Bases and their metal complexes as potential anticancer candidates: a review of recent works. Anticancer Agents Med Chem. 2019;19:1786–1795.

    Article  CAS  PubMed  Google Scholar 

  114. Bianchini G, Balko JM, Mayer IA, Sanders ME, Gianni L. Triple-negative breast cancer: challenges and opportunities of a heterogeneous disease. Nat Rev Clin Oncol. 2016;13:674–690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Crans DC, Koehn JT, Petry SM, Glover CM, Wijetunga A, Kaur R, Levina A, Lay PA. Hydrophobicity may enhance membrane affinity and anti-cancer effects of Schiff base vanadium (v) catecholate complexes. Dalton Trans. 2019;48:6383–6395.

    Article  CAS  PubMed  Google Scholar 

  116. Dasgupta S, Karim S, Banerjee S, Saha M, Saha KD, Das D. Designing of novel zinc (II) Schiff base complexes having acyl hydrazone linkage: study of phosphatase and anti-cancer activities. Dalton Trans. 2020;49:1232–1240.

    Article  CAS  PubMed  Google Scholar 

  117. Hassan AM, Said AO, Heakal BH, Younis A, Aboulthana WM, Mady MF. Green synthesis, characterization, antimicrobial and anticancer screening of new metal complexes incorporating Schiff base. ACS Omega. 2022;7:32418–32431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kacar S, Unver H, Sahinturk V. A mononuclear copper (II) complex containing benzimidazole and pyridyl ligands: Synthesis, characterization, and antiproliferative activity against human cancer cells. Arab J Chem. 2020;13:4310–4323.

    Article  CAS  Google Scholar 

  119. Sheikh A, Jan M, Gowhar Jan, Hussain A. Schiff base complexes, cancer cell lines, and anticancer evaluation: a review. J Coord Chem. 2022;75:2018–38.

    Article  Google Scholar 

  120. Kar K, Ghosh D, Kabi B, Chandra A. A concise review on cobalt Schiff base complexes as anticancer agents. Polyhedron. 2022;222:115890.

    Article  CAS  Google Scholar 

  121. Mbugua SN, Sibuyi NR, Njenga LW, Odhiambo RA, Wandiga SO, Meyer M, Lalancette RA, Onani MO. New palladium (II) and platinum (II) complexes based on pyrrole Schiff bases: synthesis, characterization, X-ray structure, and anticancer activity. ACS Omega. 2020;5:14942–14954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Das M, Mukherjee S, Islam MM, Choudhuri I, Bhattacharyya N, Samanta BC, Dutta B, Maity T. Response of ancillary azide ligand in designing a 1D copper (ii) polymeric complex along with the introduction of high dna-and has-binding efficacy, leading to impressive anticancer activity: a compact experimental and theoretical approach. ACS Omega. 2022;7:23276–23288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. He M, Zhai Y, Zhang Y, Xu S, Yu S, Wei Y, Xiao H, Song Y. Inhibition of α-glucosidase by trilobatin and its mechanism: Kinetics, interaction mechanism and molecular docking. Food Funct. 2022;13:857–866.

    Article  CAS  PubMed  Google Scholar 

  124. Alicic RZ, Rooney MT, Tuttle KR. Diabetic kidney disease: challenges, progress, and possibilities. Clin J Am Soc Nephrol. 2017;12:2032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Thomas MC, Brownlee M, Susztak K, Sharma K, Jandeleit-Dahm KA, Zoungas S, Rossing P, Groop PH, Cooper ME. Diabetic kidney disease. Nat Rev Dis Prim. 2015;1:1–20.

    Google Scholar 

  126. Singh A, Gogoi HP, Barman P, Das A, Pandey P. Tetracoordinated ONNO donor purine‐based Schiff base and its metal complexes: Synthesis, characterization, DNA binding, theoretical studies, and bioactivities. Appl Organomet Chem. 2022;36:e6852.

    Article  CAS  Google Scholar 

  127. Patel N, Prajapati AK, Jadeja RN, Patel RN, Patel SK, Tripathi IP, Dwivedi N, Gupta VK, Butcher RJ. Dioxidovanadium (V) complexes of a tridentate ONO Schiff base ligand: structural characterization, quantum chemical calculations and in-vitro antidiabetic activity. Polyhedron. 2020;180:114434.

    Article  CAS  Google Scholar 

  128. Freire C, Nunes M, Pereira C, Fernandes DM, Peixoto AF, Rocha M. Metallo(salen) complexes as versatile building blocks for the fabrication of molecular materials and devices with tuned properties. Coord Chem Rev 2019;394:104–34.

    Article  CAS  Google Scholar 

  129. Zhang J, Xu L, Wong W-Y. “Energy materials based on metal Schiff base complexes”. Coord Chem Rev. 2018;355:180–98.

    Article  CAS  Google Scholar 

  130. Zhong X, Li Z, Shi R, Yan L, Zhu Y, Li H. Schiff base-modified nanomaterials for ion detection: a review. ACS Appl Nano Mater. 2022;5:13998–4020.

    Article  CAS  Google Scholar 

  131. Jeevadason AW, Murugavel KK, Neelakantan MA. Review on Schiff bases and their metal complexes as organic photovoltaic materials. Renew Sustain Energy Rev. 2014;36:220–7.

    Article  Google Scholar 

  132. Karzan MA, Kamal A. “Synthesis, characterization, and reactivity of a novel magnetically recyclable triazine-based Cu-NNN-pincer complex”. Appl Organomet Chem. 2022;36:e6660.

    Google Scholar 

  133. Deswal Y, Asija S, Tufail A, Dubey A, Deswal L, Kumar N, Saroya S, Kirar JS, Gupta NM. Instigating the in vitro antidiabetic activity of new tridentates Schiff base ligand appended M (II) complexes: from synthesis, structural characterization, quantum computational calculations to molecular docking, and molecular dynamics simulation studies. Appl Organomet Chem. 2023;37:e7050.

    Article  CAS  Google Scholar 

Download references

Funding

The authors received no financial support for the research authorship and/or publication of this article

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Endale Mulugeta.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mezgebe, K., Mulugeta, E. Synthesis and pharmacological activities of Schiff bases with some transition metal complexes: a review. Med Chem Res 33, 439–463 (2024). https://doi.org/10.1007/s00044-024-03192-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-024-03192-5

Keywords

Navigation