Skip to main content
Log in

Holonomic functions and prehomogeneous spaces

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

A function that is analytic on a domain of \({\mathbb {C}}^n\) is holonomic if it is the solution to a holonomic system of linear homogeneous differential equations with polynomial coefficients. We define and study the Bernstein–Sato polynomial of a holonomic function on a smooth algebraic variety. We analyze the structure of certain sheaves of holonomic functions, such as the algebraic functions along a hypersurface, determining their direct sum decompositions into indecomposables, that further respect decompositions of Bernstein–Sato polynomials. When the space is endowed with the action of a linear algebraic group G, we study the class of G-finite analytic functions, i.e. functions that under the action of the Lie algebra of G generate a finite dimensional rational G-module. These are automatically algebraic functions on a variety with a dense orbit. When G is reductive, we give several representation-theoretic techniques toward the determination of Bernstein–Sato polynomials of G-finite functions. We classify the G-finite functions on all but one of the irreducible reduced prehomogeneous vector spaces, and compute the Bernstein–Sato polynomials for distinguished G-finite functions. The results can be used to construct explicitly equivariant \({\mathcal {D}}\)-modules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. This explains the relation \(b_{h}(s) \mid b_{h_0}(s)\). The same reasoning explains why the b-function (4.1) divides that of f.

  2. We have tried using smaller subgroups and also \({\text {SL}}_2\) (on the second factor), but the computations did not terminate then.

  3. We believe that this is actually an equality, and while this would simplify the argument a bit, it is not essential.

  4. We have implemented also various Gröbner methods, but none of these computations terminated.

  5. Technically, \(({\text {det}}V)^\frac{1}{n_2}\) is only a \({\mathfrak {g}}\)-module, but we will continue calling \(V'\) a G-module. The twist by \(({\text {det}}V)^\frac{1}{n_2}\) is convenient to give G-equivariant correspondences, otherwise [18, Proposition 2.1] does not hold as stated. For example, take \(n_1=n_2=1, n=2,\) with \(G=\mathbb {C}^*\) acting on \(V=\mathbb {C}^2\) and \(W=\mathbb {C}\) by scalar multiplication.

References

  1. Andres, D., Brickenstein, M., Levandovskyy, V., Martín-Morales, J., Schönemann, H.: Constructive \(D\)-module theory with SINGULAR. Math. Comput. Sci. 4(2–3), 359–383 (2010)

    MathSciNet  MATH  Google Scholar 

  2. Adamer, M.F., Lőrincz, A.C., Sattelberger, A.-L., Sturmfels, B.: Algebraic analysis on rotation data. Algebr. Stat. 11(2), 189–211 (2020)

    MathSciNet  MATH  Google Scholar 

  3. Björk, J.-E.: Rings of Differential Operators. North-Holland Mathematical Library, vol. 21. North-Holland Publishing Co., Amsterdam (1979)

    Google Scholar 

  4. Bapat, A., Walters, R.: The strong topological monodromy conjecture for Weyl hyperplane arrangements. Math. Res. Lett. 24(4), 947–954 (2017)

    MathSciNet  MATH  Google Scholar 

  5. Connell, I.G.: On the group ring. Can. J. Math. 15, 650–685 (1963)

    MATH  Google Scholar 

  6. Decker, W., Greuel, G.-M., Pfister, G., Schönemann, H.: Singular 4-2-0—a computer algebra system for polynomial computations. http://www.singular.uni-kl.de (2020)

  7. Dimca, A.: Singularities and Topology of Hypersurfaces. Springer, New York (1992)

    MATH  Google Scholar 

  8. Gabriel, P.: Des catégories abéliennes. Bull. Soc. Math. France 90, 323–448 (1962)

    MathSciNet  MATH  Google Scholar 

  9. Ginsburg, V.: Characteristic varieties and vanishing cycles. Invent. Math. 84(2), 327–402 (1986)

    MathSciNet  MATH  Google Scholar 

  10. Grayson, D.R., Stillman, M.E.: Macaulay2, a software system for research in algebraic geometry. Available at http://www.math.uiuc.edu/Macaulay2/

  11. Granger, M., Schulze, M.: On the symmetry of \(b\)-functions of linear free divisors. Publ. Res. Inst. Math. Sci. 46(3), 479–506 (2010)

    MathSciNet  MATH  Google Scholar 

  12. Gyoja, A.: Theory of prehomogeneous vector spaces without regularity condition. Publ. RIMS 27, 861–922 (1991)

    MathSciNet  MATH  Google Scholar 

  13. Gyoja, A.: Bernstein–Sato’s polynomial on several analytic functions. J. Math. Kyoto Univ. 33, 399–411 (1993)

    MathSciNet  MATH  Google Scholar 

  14. Gyoja, A.: Theory of prehomogeneous vector spaces. II. A supplement. Publ. Res. Inst. Math. Sci. 33(1), 33–57 (1997)

    MathSciNet  MATH  Google Scholar 

  15. Gel’fand, I.M., Zelevinskiĭ, A.V., Kapranov, M.M.: Hypergeometric functions and toric varieties. Funktsional. Anal. I Prilozhen. 23(2), 12–26 (1989)

    MathSciNet  Google Scholar 

  16. Higman, G.: A finitely generated infinite simple group. J. Lond. Math. Soc. 26, 61–64 (1951)

    MathSciNet  MATH  Google Scholar 

  17. Hotta, R., Takeuchi, K., Tanisaki, T.: \(D\)-modules, perverse sheaves, and representation theory, volume 236 Progress in Mathematics. Birkhäuser Boston, Inc., Boston, MA (2008). Translated from the 1995 Japanese edition by Takeuchi

  18. Kac, V.: Infinite root systems, representations of graphs and invariant theory. Invent. Math. 56, 57–92 (1980)

    MathSciNet  MATH  Google Scholar 

  19. Kashiwara, M.: B-functions and holonomic systems, rationality of roots of B-functions. Invent. Math. 38, 33–53 (1976)

    MathSciNet  MATH  Google Scholar 

  20. Kashiwara, M.: On the holonomic systems of linear differential equations II. Invent. Math. 49(2), 121–135 (1978)

    MathSciNet  MATH  Google Scholar 

  21. Kashiwara, M.: Vanishing cycle sheaves and holonomic systems of differential equations. In: Algebraic Geometry (Tokyo/Kyoto, 1982), vol. 1016. Lecture Notes in Mathematics, pp. 134–142. Springer, Berlin (1983)

  22. Kauers, M.: The holonomic toolkit. Available at http://www3.risc.jku.at/publications/download/risc_4710/author.pdf

  23. Kimura, T.: The b-functions and holonomy diagrams of irreducible regular prehomogeneous vector spaces. Nagoya Math. J. 85, 1–80 (1982)

    MathSciNet  MATH  Google Scholar 

  24. Kimura, T.: Introduction to Prehomogeneous Vector Spaces. Translations of Mathematical Monographs, vol. 215. American Mathematical Society, Providence (2003)

    MATH  Google Scholar 

  25. Kimura, T., Muro, M.: On some series of regular irreducible prehomogeneous vector spaces. Proc. Japan Acad. Ser. A Math. Sci. 55(10), 384–389 (1979)

    MathSciNet  MATH  Google Scholar 

  26. Koutschan, C.: Holonomic Functions (User’s guide). Tech. Rep. 10–01, RISC Report Series, University of Linz, Austria, 2010. Available at https://www3.risc.jku.at/publications/download/risc_3934/hf.pdf

  27. Koutschan, C.: Advanced applications of the holonomic systems approach. PhD thesis, RISC, Johannes Kepler University, Linz, Austria (2009)

  28. Lőrincz, A.C.: The \(b\)-functions of semi-invariants of quivers. J. Algebra 482, 346–363 (2017)

    MathSciNet  MATH  Google Scholar 

  29. Lőrincz, A.C.: Decompositions of Bernstein-Sato polynomials and slices. Transform. Groups 25, 577–607 (2020)

    MathSciNet  MATH  Google Scholar 

  30. Lőrincz, A.C., Perlman, M.: Equivariant \({\cal{D}}\)-modules on alternating senary 3-tensors. Nagoya Math. J. 243, 61–82 (2021)

  31. Lőrincz, A.C., Raicu, C.: Iterated local cohomology groups and Lyubeznik numbers for determinantal rings. Algebra Number Theory 14(9), 2533–2569 (2020)

    MathSciNet  MATH  Google Scholar 

  32. Lőrincz, A.C., Raicu, C., Weyman, J.: Equivariant \({\cal{D} }\)-modules on binary cubic forms. Commun. Algebra 47, 2457–2487 (2019)

    MathSciNet  MATH  Google Scholar 

  33. Leykin, A., Tsai, H.: The \(D\)-module package for Macaulay 2. Available at http://people.math.gatech.edu/~aleykin3/Dmodules/

  34. Luna, D.: Slices étales. Sur les groupes algébriques, pages 81–105. Bull. Soc. Math. France, Paris, Mémoire 33 (1973)

  35. Luna, D.: Fonctions différentiables invariantes sous l’opération d’un groupe réductif. Ann. Inst. Fourier (Grenoble) 26(1), 33–49 (1976)

    MathSciNet  MATH  Google Scholar 

  36. Lőrincz, A.C., Walther, U.: On categories of equivariant \({\cal{D} }\)-modules. Adv. Math. 351, 429–478 (2019)

    MathSciNet  MATH  Google Scholar 

  37. Lőrincz, A.C., Weyman, J.: Local cohomology on a subexceptional series of representations. Ann. Inst. Fourier (Grenoble) 73(2), 747–782 (2023)

  38. Lê Dũng, T., Saito, K.: The local \(\pi _{1}\) of the complement of a hypersurface with normal crossings in codimension \(1\) is abelian. Ark. Mat. 22(1), 1–24 (1984)

    MathSciNet  MATH  Google Scholar 

  39. Malgrange, : Polynômes de Bernstein-Sato et cohomologie évanescente. Analysis and topology on singular spaces, II, III (Luminy, 1981), volume 101Astérisque, pages 243–267. Soc. Math. France, Paris (1983)

  40. Matsushima, Y.: Espaces homogènes de Stein des groupes de Lie complexes. Nagoya Math. J. 16, 205–218 (1960)

    MathSciNet  MATH  Google Scholar 

  41. Mayr, K.: Über die Auflösung algebraischer Gleichungssysteme durch hypergeometrische Funktionen. Monatsh. Math. Phys. 45, 280–313 (1937)

    MATH  Google Scholar 

  42. MacPherson, R., Vilonen, K.: Elementary construction of perverse sheaves. Invent. Math. 84(2), 403–435 (1986)

    MathSciNet  MATH  Google Scholar 

  43. Macarro, L.N.: A duality approach to the symmetry of Bernstein–Sato polynomials of free divisors. Adv. Math. 281, 1242–1273 (2015)

    MathSciNet  MATH  Google Scholar 

  44. Nilsson, N.: Monodromy and asymptotic properties of certain multiple integrals. Ark. Mat. 18(2), 181–198 (1980)

    MathSciNet  MATH  Google Scholar 

  45. Nakayama, H., Nishiyama, K., Noro, M., Ohara, K., Sei, T., Takayama, N., Takemura, A.: Holonomic gradient descent and its application to the Fisher–Bingham integral. Adv. Appl. Math. 47(3), 639–658 (2011)

    MathSciNet  MATH  Google Scholar 

  46. Opdam, E.M.: Some applications of hypergeometric shift operators. Invent. Math. 98(1), 1–18 (1989)

    MathSciNet  MATH  Google Scholar 

  47. Ozeki, I.: On the microlocal structure of the regular prehomogeneous vector space associated with \({\rm SL}(5)\times {\rm GL}(4)\). Proc. Japan Acad. Ser. A Math. Sci. 55(2), 37–40 (1979)

    MathSciNet  MATH  Google Scholar 

  48. Ozeki, I.: On the microlocal structure of the regular prehomogeneous vector space associated with \({\rm SL}(5)\times {\rm GL}(4)\). Publ. Res. Inst. Math. Sci. 26(3), 539–584 (1990)

    MathSciNet  MATH  Google Scholar 

  49. Paquette, C.: Generators versus projective generators in abelian categories. J. Pure Appl. Algebra 222(12), 4189–4198 (2018)

    MathSciNet  MATH  Google Scholar 

  50. Perlman, M.: Equivariant \({\cal{D} }\)-modules on \(2\times 2\times 2\) hypermatrices. J. Algebra 544, 391–416 (2020)

    MathSciNet  MATH  Google Scholar 

  51. Perlman, L.: Lyubeznik numbers for Pfaffian rings. J. Pure Appl. Algebra 224(5), 106247 (2020)

    MathSciNet  MATH  Google Scholar 

  52. Popescu, N., Gabriel, P.: Caractérisation des catégories abéliennes avec générateurs et limites inductives exactes. C. R. Acad. Sci. Paris 258, 4188–4190 (1964)

    MathSciNet  MATH  Google Scholar 

  53. Raicu, C.: Characters of equivariant \({\cal{D} }\)-modules on Veronese cones. Trans. Am. Math. Soc. 369(3), 2087–2108 (2017)

    MathSciNet  MATH  Google Scholar 

  54. Sabbah, C.: \(D\)-modules et cycles évanescents (d’après B. Malgrange et M. Kashiwara). Géométrie algébrique et applications, III (La Rábida, 1984), volume 24 Travaux en Cours, pages 53–98. Hermann, Paris (1987)

  55. Sabbah, C.: Polynômes de Bernstein-Sato à plusieurs variables. Séminaire sur les équations aux dérivées partielles 1986–1987, pages Exp. No. XIX, 6. École Polytech., Palaiseau (1987)

  56. Sabbah, C.: Proximité évanescente. II. Équations fonctionnelles pour plusieurs fonctions analytiques. Compositio Math. 64(2), 213–241 (1987)

    MathSciNet  MATH  Google Scholar 

  57. Saito, M.: On b-function, spectrum and rational singularity. Math. Ann. 295, 51–74 (1993)

    MathSciNet  MATH  Google Scholar 

  58. Sasada, A.: Generic isotropy subgroups of irreducible prehomogeneous vector spaces with relative invariants. Kyoto-Math, Kyoto University 98-06 (1998)

  59. Sato, M.: Theory of prehomogeneous vector spaces (algebraic part)—the English translation of Sato’s lecture from Shintani’s note. Note by Takuro Shintani. Translated from Japanese by Masakazu Muro. Nagoya Math. J. 120, 1–34 (1990)

  60. Schwarz, G.W.: Lifting smooth homotopies of orbit spaces. Inst. Hautes Études Sci. Publ. Math. 51, 37–135 (1980)

    MathSciNet  MATH  Google Scholar 

  61. Sato, M., Kimura, T.: A classification of irreducible prehomogeneous vector spaces and their relative invariants. Nagoya Math. J. 65, 1–155 (1977)

    MathSciNet  MATH  Google Scholar 

  62. Sato, M., Kashiwara, M., Kimura, T., Oshima, T.: Micro-local analysis of prehomogeneous vector spaces. Invent. Math. 62, 117–179 (1980)

    MathSciNet  MATH  Google Scholar 

  63. Sato, F., Ochiai, H.: Castling transforms of prehomogeneous vector spaces and functional equations. Comment. Math. Sancti Pali 40, 61–82 (1991)

    MathSciNet  MATH  Google Scholar 

  64. Saito, M., Sturmfels, B., Takayama, N.: Gröbner Deformations of Hypergeometric Differential Equations. Algorithms and Computation in Mathematics, vol. 6. Springer, Berlin (2000)

    MATH  Google Scholar 

  65. Sturmfels, B.: Solving algebraic equations in terms of \(A\)-hypergeometric series. Discrete Math. 210, 171–181 (2000)

    MathSciNet  MATH  Google Scholar 

  66. Torrelli, T.: Intersection homology \(D\)-module and Bernstein polynomials associated with a complete intersection. Publ. Res. Inst. Math. Sci. 45(2), 645–660 (2009)

    MathSciNet  MATH  Google Scholar 

  67. Tsai, H.: Algorithms for algebraic analysis. ProQuest LLC, Ann Arbor, MI (2000). Thesis (Ph.D.), University of California, Berkeley

  68. Vilonen, K.: Perverse sheaves and finite-dimensional algebras. Trans. Am. Math. Soc. 341(2), 665–676 (1994)

    MathSciNet  MATH  Google Scholar 

  69. Vinberg, È.B., Popov, V.L.: Invariant theory. Algebraic geometry, 4 (Russian), Itogi Nauki i Tekhniki, pp.s 137–314, 315. Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow (1989)

  70. Walther, U.: \(D\)-modules and cohomology of varieties. In: Computations in Algebraic Geometry with Macaulay 2, volume 8 Algorithms Computation Mathematics, pp. 281–323. Springer, Berlin (2002)

  71. Yano, T., Ozeki, I.: The \(b\)-function of a prehomogeneous vector space \(({\rm SL}(5)\times {\rm GL}(4),\Lambda _2\otimes \Lambda _1)\). Microlocal structure of the regular prehomogeneous vector space associated with \({\rm SL}(5)\times {\rm GL}(4)\). II. Number 999, pp. 92–115 (1997). Research on prehomogeneous vector spaces (Japanese), Kyoto (1996)

  72. Zeilberger, D.: A holonomic systems approach to special functions identities. J. Comput. Appl. Math. 32(3), 321–368 (1990)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I am grateful to Bernd Sturmfels for inspirational conversations about Weyl closure and holonomic functions. I thank Uli Walther for providing me valuable suggestions and comments. I also thank Nero Budur for pointing out some of the relevant literature concerning V-filtrations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to András Cristian Lőrincz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lőrincz, A.C. Holonomic functions and prehomogeneous spaces. Sel. Math. New Ser. 29, 69 (2023). https://doi.org/10.1007/s00029-023-00874-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00029-023-00874-7

Mathematics Subject Classification

Navigation