Skip to main content
Log in

Fidelity of CMIP6 Models in Simulating June–September Rainfall Climatology, Spatial and Trend Patterns Over Complex Topography of Greater Horn of Africa

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

This study focuses on evaluating the High-Resolution Model Inter-comparison Project (HighResMIP), Atmospheric Model Intercomparison Project (AMIP), and Coupled Model simulations within the framework of the Coupled Model Intercomparison Project (CMIP) Phase 6 (CMIP6). We used fifteen Models to explore how CMIP6 reproduced the June–September (JJAS) precipitation features over the Greater Horn of Africa (GHA) during the 1979–2014 historical simulation periods. Rainfall from the Global Precipitation Climatology Center (GPCC) and Climatic Research Unit (CRU) are used to validate the model simulations. Overall, the AMIP multi-model ensemble mean (MME) is able to reproduce the observed seasonal mean, the annual cycle, the frequency distribution of cumulative rainfall, spatial and trend patterns of precipitation over GHA. Particularly, long-term mean of JJAS season precipitation is well reproduced over the western part of Sudan Republic, much of South Sudan, over some isolated parts of north-western Uganda, Ethiopian Highlands, and western Ethiopia. However, consistent with previous studies, coupled models MME shows substantial discrepancies compared to AMIP in simulating JJAS rainfall climatology by exhibiting dry bias relative to both GPCC and CRU rainfall. In contrast, the HighresMIP experiments reveal wet bias over most parts of the GHA. The annual cycles of observed rainfall are well captured in AMIP, CMIP, and HighresMIP experiments and with further improvement in MMEs mean. In addition, the spatial rainfall pattern correlation between GPCC (CRU) and model simulations is as high as 0.89 (0.94), whereas the maximum trend pattern correlation is 0.47(0.72) with GPCC (CRU) respectively. Employing a multicriteria decision-making algorithm (MCDM) based on eight performance metrics as the selection criterion, we identified four, three, and two models and their MMEs out of AMIP, CMIP, and HighresMIP experiments, respectively, having superior skills over Ethiopian Highlands. In contrast, the study shows substantial biases in a number of models from AMIP, CMIP and HighresMIP experiments over GHA relative to GPCC and CRU observations that need to be improved with either bias correction or through further tuning of the models to improve their skills.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure14
Figure 15

Similar content being viewed by others

Data Availability

All the data for precipitation used in the present study for both CMIP6 GCMs and GPCC are freely available through the https://esgf-node.llnl.gov/search/cmip6/ and http://www.dwd.de/en/FundE/Klima/KLIS/int/GPCC/GPCC.htm, respectively.

References

  • Ahmed, K., Shahid, S., Wang, X., Nawaz, N., & Khan, N. (2019). Evaluation of gridded precipitation datasets over arid regions of Pakistan. Water, 11(2), 210.

    Article  Google Scholar 

  • Ajibola, F. O., Zhou, B., TchalimGnitou, G., & Onyejuruwa, A. (2020). Evaluation of the performance of cmip6 highresmip on west African precipitation. Atmosphere, 11, 1053.

    Article  ADS  Google Scholar 

  • Akinsanola, A., Kooperman, G., Reed, K., Pendergrass, A., & Hannah, W. (2020). Projected changes in seasonal precipitation extremes over the united states in CMIP6 simulations. Mental Research Letters, 15, 104078.

    Article  ADS  Google Scholar 

  • Akinsanola, A. A., Ongoma, V., & Kooperman, G. J. (2021). Evaluation of CMIP6 models in simulating the statistics of extreme precipitation over eastern Africa. Atmospheric Research, 254, 105–509.

    Article  Google Scholar 

  • Almazroui, M., Saeed, F., Saeed, S., Islam, M. N., Ismail, M., Klutse, N. A. B., & Siddiqui, M. H. (2020). Projected change in temperature and precipitation over Africa from CMIP6. Earth Systems and Environment, 4, 455–475.

    Article  ADS  Google Scholar 

  • Almazroui, M., Saeed, F., Saeed, S., Ismail, M., Ehsan, M. A., Islam, M. N., Abid, M. A., O’Brien, E., Kamil, S., Rashid, I. U., et al. (2021). Projected changes in climate extremes using CMIP6 simulations over srex regions. Earth Systems and Environment, 5, 481–497.

    Article  Google Scholar 

  • Assamnew, A. D., & MengistuTsidu, G. (2020). The performance of regional climate models driven by various general circulation models in reproducing observed rainfall over east Africa. Theoretical and Applied Climatology, 142, 1169–1189.

    Article  ADS  Google Scholar 

  • Assamnew, A. D., & MengistuTsidu, G. (2023). Assessing improvement in the fifth-generation ECMWF atmospheric reanalysis precipitation over East Africa. International Journal of Climatology, 43(1), 17–37.

    Article  ADS  Google Scholar 

  • Ayugi, B., Tan, G., Gnitou, G. T., Ojara, M., & Ongoma, V. (2020). Historical evaluations and simulations of precipitation over east Africa from rossby centre regional climate model. Atmospheric Research, 232, 104705.

    Article  Google Scholar 

  • Ayugi, B., Zhihong, J., Zhu, H., Ngoma, H., Babaousmail, H., Rizwan, K., & Dike, V. (2021). Comparison of cmip6 and cmip5 models in simulating mean and extreme precipitation over east Africa. International Journal of Climatology, 41, 6474–6496.

    Article  ADS  Google Scholar 

  • Babaousmail, H., Hou, R., Ayugi, B., Ojara, M., Ngoma, H., Karim, R., Rajasekar, A., & Ongoma, V. (2021). Evaluation of the performance of cmip6 models in reproducing rainfall patterns over north Africa. Atmosphere, 12, 475.

    Article  ADS  Google Scholar 

  • Bahaga, T. K., Fink, A. H., & Knippertz, P. (2019). Revisiting interannual to decadal teleconnections influencing seasonal rainfall in the greater horn of Africa during the 20th century. Journal of Climatology., 39, 2765–2785.

    Article  Google Scholar 

  • Bock, L., Lauer, A., Schlund, M., Barreiro, M., Bellouin, N., Jones, C., Meehl, G., Predoi, V., Roberts, M., & Eyring, V. (2020). Quantifying progress across different CMIP phases with the esmvaltool. Journal of Geophysical Research: Atmospheres, 125, e2019JD032321.

    Article  ADS  Google Scholar 

  • Butchart, N., Anstey, J. A., Hamilton, K., Osprey, S., McLandress, C., Bushell, A. C., Kawatani, Y., Kim, Y.-H., Lott, F., Scinocca, J., et al. (2018). Overview of experiment design and comparison of models participating in phase 1 of the sparc quasi-biennial oscillation initiative (QBOI). Geoscientific Model Development, 11, 1009–1032.

    Article  ADS  CAS  Google Scholar 

  • Camberlin, P. (2018). Climate of eastern Africa. In Oxford Research Encyclopedia of Climate Science.

  • Camberlin, P., Moron, V., Okoola, R., Philippon, N., & Gitau, W. (2009). Components of rainy seasons’ variability in equatorial east Africa: Onset, cessation, rainfall frequency and intensity. Theoretical and Applied Climatology, 98, 237–249.

    Article  ADS  Google Scholar 

  • Cherchi, A., Fogli, P. G., Lovato, T., Peano, D., Iovino, D., Gualdi, S., Masina, S., Scoccimarro, E., Materia, S., Bellucci, A., et al. (2019). Global mean climate and main patterns of variability in the cmcc-cm2 coupled model. Journal of Advances in Modelling Earth Systems, 11, 185–209.

    Article  ADS  Google Scholar 

  • Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., & Taylor, K. E. (2016). Overview of the coupled model intercomparison project phase 6 (cmip6) experimental design and organization. Geoscientific Model Development, 9, 1937–1958.

    Article  ADS  Google Scholar 

  • Firpo, M. A. F., Guimarães, B. d. S., Dantas, L. G., Silva, M. G. B. d., Alves, L. M., Chadwick, R., Llopart, M. P., and Oliveira, G. S. d. (2022). Assessment of cmip6 models' performance in simulating present day climate in Brazil. Frontiers in Climate. Pp. 170.

  • Gampe, D., & Ludwig, R. (2017). Evaluation of gridded precipitation data products for hydrological applications in complex topography. Hydrology, 4, 53.

    Article  Google Scholar 

  • Gettelman, A., Hannay, C., Bacmeister, J., Neale, R., Pendergrass, A., Danabasoglu, G., Lamarque, J.-F., Fasullo, J., Bailey, D., Lawrence, D., et al. (2019). High climate sensitivity in the community earth system model version 2 (CESM2). Geophysical Research Letters, 46, 8329–8337.

    Article  ADS  Google Scholar 

  • Golaz, J.-C., Caldwell, P. M., Van Roekel, L. P., Petersen, M. R., Tang, Q., Wolfe, J. D., Abeshu, G., Anantharaj, V., Asay-Davis, X. S., Bader, D. C., et al. (2019). The doe e3sm coupled model version 1: Overview and evaluation at standard resolution. Journal of Advances in Modelling Earth Systems, 11, 2089–2129.

    Article  ADS  Google Scholar 

  • Guo, Y., Yu, Y., Lin, P., Liu, H., He, B., Bao, Q., Zhao, S., & Wang, X. (2020). Overview of the cmip6 historical experiment datasets with the climate system model cas fgoals-f3-l. Advances in Atmospheric Sciences, 37, 1057–1066.

    Article  ADS  Google Scholar 

  • Haarsma, R., Acosta, M., Bakhshi, R., Bretonnière, P.-A., Caron, L.-P., Castrillo, M., Corti, S., Davini, P., Exarchou, E., Fabiano, F., et al. (2020). Highresmip versions of EC-Earth: EC-Earth3p and EC-Earth3p-hr-description, model computational performance and basic validation. Geoscientific Model Development, 13, 3507–3527.

    Article  ADS  CAS  Google Scholar 

  • Haile, G. G., Tang, Q., Leng, G., Jia, G., Wang, J., Cai, D., Sun, S., Baniya, B., & Zhang, Q. (2020). Long-term spatio-temporal variation of drought patterns over the Greater Horn of Africa. Science of the Total Environment., 704, 135299.

    Article  ADS  Google Scholar 

  • Harris, I., Osborn, T. J., Jones, P., & Lister, D. (2020). Version 4 of the cru ts monthly high-resolution gridded multivariate climate dataset. Scientific Data, 7(1), 1–18.

    Article  Google Scholar 

  • Harrop, B. E., Lu, J., Liu, F., Garuba, O. A., & Leung, L. R. (2018). Sensitivity of the itcz location to ocean forcing via q-flux green’s function experiments. Geophysical Research Letters, 45, 13–116.

    Article  Google Scholar 

  • Hastenrath, S., Polzin, D., & Mutai, C. (2011). Circulation mechanisms of kenya rainfall anomalies. Journal of Climate, 24, 404–412.

    Article  ADS  Google Scholar 

  • Hazeleger, W., Wang, X., Severijns, C., Ştefănescu, S., Bintanja, R., Sterl, A., Wyser, K., Semmler, T., Yang, S., Van den Hurk, B., et al. (2012). EC-Earth v2. 2: Description and validation of a new seamless earth system prediction model. Climate dynamics, 39, 2611–2629.

    Article  ADS  Google Scholar 

  • He, B., Bao, Q., Wang, X., Zhou, L., Wu, X., Liu, Y., Wu, G., Chen, K., He, S., Hu, W., et al. (2019). Cas FGOALS-f3-l model datasets for cmip6 historical atmospheric model intercomparison project simulation. Advances in Atmospheric Sciences, 36, 771–778.

    Article  ADS  Google Scholar 

  • Hirota, N., & Takayabu, Y. N. (2013). Reproducibility of precipitation distribution over the tropical oceans in cmip5 multi-climate models compared to cmip3. Climate Dynamics, 41, 2909–2920.

    Article  ADS  Google Scholar 

  • Horwitz, W., & Albert, R. (2006). The Horwitz ratio (HorRat): A useful index of method performance with respect to precision. Journal of AOAC International, 89(4), 1095–1109.

    Article  CAS  PubMed  Google Scholar 

  • Jolliff, J. K., Kindle, J. C., Shulman, I., Penta, B., Friedrichs, M. A., Helber, R., & Arnone, R. A. (2009). Summary diagrams for coupled hydrodynamic-ecosystem model skill assessment. Journal of Marine Systems, 76(1–2), 64–82.

    Article  ADS  Google Scholar 

  • Jury, M. R. (2015). Statistical evaluation of cmip5 climate change model simulations for the Ethiopian highlands. International Journal of Climatology, 35, 37–44.

    Article  ADS  Google Scholar 

  • Koutsouris, A. J., Seibert, J., & Lyon, S. W. (2017). Utilization of global precipitation datasets in data limited regions: A case study of Kilombero Valley. Tanzania. Atmosphere, 8(12), 246.

    Article  ADS  Google Scholar 

  • Krasting, J., John, J., Blanton, C., McHugh, C., Nikonov, S., Radhakrishnan, A., Rand, K., Zadeh, N., Balaji, V., Durachta, J., et al. (2018). NOAA-GFDLGFDL-ESM4 model output prepared for CMIP6. Earth System Grid Federation, 10.

  • Lee, W.-L., Wang, Y.-C., Shiu, C.-J., Tsai, I.-C., Tu, C.-Y., Lan, Y.-Y., Chen, J.-P., Pan, H.-L., Hsu, H.-H., et al. (2020). Taiwan earth system model version 1: Description and evaluation of mean state. Geoscientific Model Development, 13, 3887–3904.

    Article  ADS  Google Scholar 

  • Liang-Liang, L., Jian, L., & Ru-Cong, Y. (2022). Evaluation of CMIP6 HighresMIP models in simulating precipitation over central Asia. Advances in Climate Change Research, 13, 1–13.

    Article  Google Scholar 

  • Mauritsen, T., Bader, J., Becker, T., Behrens, J., Bittner, M., Brokopf, R., Brovkin, V., Claussen, M., Crueger, T., Esch, M., et al. (2019). Developments in the MPI-M earth system model version 1.2 (MPI-ESM1.2) and its response to increasing CO2. Journal of Advances in Modelling Earth Systems, 11, 998–1038.

    Article  ADS  Google Scholar 

  • MengistuTsidu, G. (2012). High-resolution monthly rainfall database for Ethiopia: Homogenization, reconstruction, and gridding. Journal of Climate, 25, 8422–8443.

    Article  Google Scholar 

  • MengistuTsidu, G., Blumenstock, T., & Hase, F. (2015). (2015): Observations of precipitable water vapour over complex topography of Ethiopia from ground-based GPS, FTIR, radiosonde and ERA-Interim reanalysis. Atmospheric Measurement Techniques., 8, 3277–3295. https://doi.org/10.5194/amt-8-3277-2015

    Article  ADS  Google Scholar 

  • Nicholson, S. E. (2000). The nature of rainfall variability over Africa on time scales of decades to millenia. Global and Planetary Change, 26, 137–158.

    Article  ADS  Google Scholar 

  • Nicholson, S. E. (2017). Climate and climatic variability of rainfall over eastern Africa. Reviews of Geophysics, 55, 590–635.

    Article  ADS  Google Scholar 

  • Nicholson, S. E. (2018). The ITCZ and the seasonal cycle over equatorial Africa. Bulletin of the American Meteorological Society, 99, 337–348.

    Article  ADS  Google Scholar 

  • Osima, S., Indasi, V. S., Zaroug, M., Endris, H. S., Gudoshava, M., Misiani, H. O., Nimusiima, A., Anyah, R. O., Otieno, G., Ogwang, B. A., et al. (2018). Projected climate over the greater horn of Africa under 1.5 c and 2 c global warming. Environmental Research Letters, 13, 065004.

    Article  ADS  Google Scholar 

  • Park, S., Shin, J., Kim, S., Oh, E., & Kim, Y. (2019). Global climate simulated by the seoul national university atmosphere model version 0 with a unified convection scheme (sam0-unicon). Journal of Climate, 32, 2917–2949.

    Article  ADS  Google Scholar 

  • Philip, S., Kew, S. F., van Oldenborgh, G. J., Otto, F., O’Keefe, S., Haustein, K., et al. (2018). Attribution analysis of the Ethiopian drought of 2015. Journal of Climate, 31(6), 2465–2486.

    Article  ADS  Google Scholar 

  • Pörtner, H.-O., Roberts, D. C., Adams, H., Adler, C., Aldunce, P., Ali, E., Begum, R. A., Betts, R., Kerr, R. B., Biesbroek, R., et al. (2022). Climate change 2022: Impacts, adaptation and vulnerability. IPCC Sixth Assessment Report.

  • Qi, Y., Zhang, R., Rong, X., Li, J., & Li, L. (2019). Boreal summer intraseasonal oscillation in the Asian-pacific monsoon region simulated in CAMS-CSM. Journal of Meteorological Research, 33, 66–79.

    Article  ADS  Google Scholar 

  • Qiao, F., Song, Z., Bao, Y., Song, Y., Shu, Q., Huang, C., & Zhao, W. (2013). Development and evaluation of an earth system model with surface gravity waves. Journal of Geophysical Research: Oceans, 118, 4514–4524.

    Article  ADS  Google Scholar 

  • Roberts, M. J., Baker, A., Blockley, E. W., Calvert, D., Coward, A., Hewitt, H. T., Jackson, L. C., Kuhlbrodt, T., Mathiot, P., Roberts, C. D., et al. (2019). Description of the resolution hierarchy of the global coupled HadGEM3-GC31 model as used in CMIP6 highresmip experiments. Geoscientific Model Development, 12, 4999–5028.

    Article  ADS  Google Scholar 

  • Schneider, U., Ziese, M., Becker, A., Finger, P., Meyer-Christoffer, A., Schamm, K., Schröder, M., & Stender, P. (2014). Global gridded precipitation over land: A description of the new GPCC first guess daily product. Earth System Science Data, 6, 49–60.

    Article  ADS  Google Scholar 

  • Schober, P., Boer, C., & Schwarte, L. A. (2018). interpretation. Correlation Coefficients: Appropriate Use and Anesthesia & Analgesia, 126, 1763–1768.

    Google Scholar 

  • Seleshi, Y., & Zanke, U. (2004). Recent changes in rainfall and rainy days in Ethiopia. International Journal of Climatology, 24(8), 973–983.

    Article  ADS  Google Scholar 

  • Shiferaw, A., Tadesse, T., Rowe, C., & Oglesby, R. (2018). Precipitation extremes in dynamically downscaled climate scenarios over the greater horn of Africa. Atmosphere, 9, 112.

    Article  ADS  Google Scholar 

  • Taylor, K. E. (2001). Summarizing multiple aspects of model performance in a single diagram. Journal of Geophysical Research: Atmospheres, 106, 7183–7192.

    Article  Google Scholar 

  • Tongwen, W. U., & Qunjie, Z. U. (2018). A simulation comparison study on the climatic characteristics of the south Asia high by the bcc climate system model. Plateau Meteorology, 37, 455–468.

    Google Scholar 

  • Volodin, E. M., Mortikov, E. V., Kostrykin, S. V., Galin, V. Y., Lykossov, V. N., Gritsun, A. S., Diansky, N. A., Gusev, A. V., Iakovlev, N. G., Shestakova, A. A., et al. (2018). Simulation of the modern climate using the INM-CM4-8 climate model. Russian Journal of Numerical Analysis and Mathematical Modelling, 33, 367–374.

    Article  MathSciNet  Google Scholar 

  • Williams, A. P., Funk, C., Michaelsen, J., Rauscher, S. A., Robertson, I., Wils, T. H. G., Koprowski, M., Eshetu, Z., & Loader, N. J. (2012). Recent summer precipitation trends in the greater horn of Africa and the emerging role of Indian Ocean sea surface temperature. Climate Dynamics, 39(9–10), 2307–2328.

    Article  ADS  Google Scholar 

  • Yang, W., Seager, R., Cane, M. A., & Lyon, B. (2014). The East African long rains in observations and models. Journal of Climate, 27, 7185–7202.

    Article  ADS  Google Scholar 

  • Yang, W., Seager, R., Cane, M. A., & Lyon, B. (2015). The annual cycle of east african precipitation. Journal of Climate, 28, 2385–2404.

    Article  ADS  Google Scholar 

  • Yurdakul, M., & TanseliÇ, Y. (2009). Application of correlation test to criteria selection for multi criteria decision making (mcdm) models. The International Journal of Advanced Manufacturing Technology, 40, 403–412.

    Article  Google Scholar 

  • Zeleke, T., Giorgi, F., MengistuTsidu, G., & Diro, G. T. (2013). Spatial and Temporal Variability of Summer Rainfall over Ethiopia from Observations and a Regional Climate Model Experiment. Theoretical and Applied Climatology, 111, 665–681.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the support of Ethiopian Space Science and Technology Institute(ESSTI), and Department of Environmental Science Mada-walabu University, Ethiopia. The first and the third authors would like to acknowledge that this work was carried out with the aid of a grant from the O.R.Tambo Africa Research Chairs Initiative as supported by the Botswana International University of Science and Technology,the Ministry of Tertiary Education, Science and Technology; the National Research Foundation of South Africa (NRF); the Department of Science and Innovation of South Africa (DSI); the International Development Research Center of Canada (IDRC); and the Oliver & Adelaide Tambo Foundation (OATF). The second author was supported by the European Union's Horizon 2020 research and innovation programme under grant agreement no. 869730 (CONFER). In addition, we acknowledge all respective centers providing datasets: CMIP6 simulations used in our analyses are freely available from the Earth System Grid Federation (https://esgf-node.llnl.gov/search/cmip6/), GPCC data is freely available from (https://psl.noaa.gov/data/gridded/data.gpcc.html),

Funding

The work was carried out with the aid of a grant from the O.R.Tambo Africa Research Chairs Initiative as supported by the Botswana International University of Science and Technology,the Ministry of Tertiary Education, Science and Technology; the National Research Foundation of South Africa (NRF); the Department of Science and Innovation of South Africa (DSI); the International Development Research Center of Canada (IDRC); and the Oliver & Adelaide Tambo Foundation (OATF).

Author information

Authors and Affiliations

Authors

Contributions

Wogayehu Legese Jima: worked on conceptualization; methodology; statistical data analysis and visualization; writing original draft; review and editing. Titike Kassa Bahaga worked on conceptualization; methodology; visualization; supervising. Gizaw Mengistu Tsidu: on conceptualization; methodology; statistical data analysis and visualization; supervising; writing, review and editing. All authors read and approved the final manuscript and involved in the review and editing.

Corresponding authors

Correspondence to Wogayehu Legese Jima or Gizaw Mengistu Tsidu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicting interests.

Ethical Approval and Consent to Participate

The authors confirm that this article is an original study and has not previously been published in any journal. All authors consent to participate.

Consent for Publication

All authors consent to publish this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jima, W.L., Bahaga, T.K. & Tsidu, G.M. Fidelity of CMIP6 Models in Simulating June–September Rainfall Climatology, Spatial and Trend Patterns Over Complex Topography of Greater Horn of Africa. Pure Appl. Geophys. 181, 577–609 (2024). https://doi.org/10.1007/s00024-023-03414-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-023-03414-8

Keywords

Navigation