Skip to main content
Log in

Reacting Multi-component Fluids: Regular Solutions in Lorentz Spaces

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

The paper deals with the analysis of a model of a multi-component fluid admitting chemical reactions. The flow is considered in the incompressible regime. The main result shows the global existence of regular solutions under the assumption of suitable smallness conditions. In order to control the solutions a special structure condition on the derivatives of chemical production functions determining the reactions is required. The existence is shown in a new critical functional framework of Lorentz spaces of type \(L_{p,r}(0,T;L_q)\), which allows to control the integral \(\int _0^\infty \Vert \nabla u(t)\Vert _{\infty } dt\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Availability of data and materials

Does not apply to this work.

References

  1. Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der Mathematischen Wissenschaften, vol. 343. Springer, Berlin (2011)

    Book  Google Scholar 

  2. Beirao da Veiga, H., Serapioni, R., Valli, A.: On the motion of nonhomogeneous fluids in the presence of diffusion. J. Math. Anal. Appl. 85(1), 179–191 (1982)

    Article  MathSciNet  Google Scholar 

  3. Beirao da Veiga, H.: Diffusion on viscous fluids existence and asymptotic properties of solutions. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 10(2), 341–355 (1983)

    MathSciNet  MATH  Google Scholar 

  4. Beirao da Veiga, H.: Long time behaviour of the solutions to the Navier–Stokes equations with diffusion. Nonlinear Anal. 27(11), 1229–1239 (1996)

    Article  MathSciNet  Google Scholar 

  5. Bothe, D., Druet, P.E.: Mass transport in multicomponent compressible fluids: Local and global well-posedness in classes of strong solutions for general class-one models. arXiv:2001.08970

  6. Bothe, D., Prüss, J.: Modeling and analysis of reactive multi-component two-phase flows with mass transfer and phase transition the isothermal incompressible case. DCDS 10(4), 673–696 (2017)

    Article  MathSciNet  Google Scholar 

  7. Bothe, D.: On the Maxwell-Stefan approach to multicomponent diffusion. In: Parabolic Problems, vol. 80 of Progress in Nonlinear Differential Equations Applications, pp. 81–93. Birkhäuser, Basel (2011)

  8. Bennett, C., Sharpley, R.: Interpolation of Operators. Pure and Applied Mathematics, 129. Academic Press, Inc., Boston (1988)

    MATH  Google Scholar 

  9. Chen, X., Jüngel, A.: Analysis of an incompressible Navier–Stokes–Maxwell–Stefan system. Commun. Math. Phys. 340(2), 471–497 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  10. Danchin, R., Mucha, P.B.: A critical functional framework for the inhomogeneous Navier–Stokes equations in the half-space. J. Funct. Anal. 256(3), 881–927 (2009)

    Article  MathSciNet  Google Scholar 

  11. Danchin, R., Mucha, P.B.: A Lagrangian approach for the incompressible Navier–Stokes equations with variable density. Commun. Pure Appl. Math. 65(10), 1458–1480 (2012)

    Article  MathSciNet  Google Scholar 

  12. Danchin, R., Mucha, P.B., Tolksdorf, P.: Lorentz spaces in action on pressureless systems arising from models of collective behavior. J. Evol. Equ. 21(3), 3103–3127 (2021)

    Article  MathSciNet  Google Scholar 

  13. Denk, R., Hieber, M., Prüss, J.: R-boundedness, Fourier multipliers and problems of elliptic and parabolic type. Mem. Am. Math. Soc. 166(788) (2003)

  14. Feireisl, E., Petzeltová, H., Trivisa, K.: Multicomponent reactive flows: global-in-time existence for large data. Commun. Pure Appl. Anal. 7(5), 1017–1047 (2008)

    Article  MathSciNet  Google Scholar 

  15. Giovangigli, V.: Multicomponent Flow Modeling. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser Boston Inc., Boston, MA (1999)

    Book  Google Scholar 

  16. Grafakos, L.: Classical and Modern Fourier Analysis. Prentice Hall, Englewood Cliffs (2006)

    MATH  Google Scholar 

  17. Herberg, M., Meyries, M., Prüss, J., Wilke, M.: Reaction-diffusion systems of Maxwell–Stefan type with reversible mass-action kinetics. Nonlinear Anal. 159, 264–284 (2017)

    Article  MathSciNet  Google Scholar 

  18. Jüngel, A.: Entropy Methods for Diffusive Partial Differential Equations. Springer Briefs in Mathematics, Springer, Berlin (2016)

    Book  Google Scholar 

  19. Jüngel, A., Stelzer, I.V.: Existence analysis of Maxwell–Stefan systems for multicomponent mixtures. SIAM J. Math. Anal. 45(4), 2421–2440 (2013)

    Article  MathSciNet  Google Scholar 

  20. Marion, M., Temam, R.: Global existence for fully nonlinear reaction-diffusion systems describing multicomponent reactive flows. J. Math. Pures Appl. (9) 104(1), 102–138 (2015)

    Article  MathSciNet  Google Scholar 

  21. Mucha, P.B., Pokorný, M., Zatorska, E.: Heat-conducting, compressible mixtures with multicomponent diffusion: construction of a weak solution. SIAM J. Math. Anal. 47(5), 3747–3797 (2015)

    Article  MathSciNet  Google Scholar 

  22. Mucha, P.B., Pokorný, M., Zatorska, E.: Chemically reacting mixtures in terms of degenerated parabolic setting. J. Math. Phys. 54(7), 071501 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  23. Mucha, P.B., Xue, L.: Boussinesq system with measure forcing. Math. Ann. (2020). https://doi.org/10.1007/s00208-020-02084-4

    Article  Google Scholar 

  24. Piasecki, T., Shibata, Y., Zatorska, E.: On strong dynamics of compressible two-component mixture flow. SIAM J. Math. Anal. 51(4), 2793–2849 (2019)

    Article  MathSciNet  Google Scholar 

  25. Piasecki, T., Shibata, Y., Zatorska, E.: On the maximal Lp-Lq regularity of solutions to a general linear parabolic system. J. Differ. Equ. 268(7), 3332–3369 (2020)

    Article  Google Scholar 

  26. Piasecki, T., Shibata, Y., Zatorska, E.: On the isothermal compressible multi-component mixture flow: the local existence and maximal Lp-Lq regularity of solutions. Nonlinear Anal. 189, 111571 (2019)

    Article  MathSciNet  Google Scholar 

  27. Shibata, Y., Shimizu, S.: On the Lp-Lq maximal regularity of the Neumann problem for the Stokes equations in a bounded domain. J. Reine Angew. Math. 615, 157–209 (2008)

    MathSciNet  MATH  Google Scholar 

  28. Sohr, H.: The Navier–Stokes equations. An elementary functional analytic approach. Birkhäuser Verlag, Basel (2001)

    MATH  Google Scholar 

  29. Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators, North-Holland Mathematics Library, vol. 18. North-Holland Publishing Co., Amsterdam (1978)

    Google Scholar 

  30. Weis, L.: Operator-valued Fourier multiplier theorems and maximal \(L_p\)-regularity. Math. Ann. 319, 735–758 (2001)

    Article  MathSciNet  Google Scholar 

  31. Zatorska, E.: On the steady flow of a multicomponent, compressible, chemically reacting gas. Nonlinearity 24(11), 3267–3278 (2011)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors have been partially supported by National Science Centre Grant No2018/29/B/ST1/00339 (Opus). The authors would also like to thank the anonymous Referees who pointed out several important points in the first version of the manuscript. Their careful lecture of the manuscript contributed a lot to the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Bogusław Mucha.

Ethics declarations

Conflict of interest

the authors declare no conflict of interest.

Additional information

Communicated by T. Ozawa.

Dedicated to Professor Yoshihiro Shibata on occasion of his 70th anniversary.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection “Yoshihiro Shibata”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mucha, P.B., Piasecki, T. Reacting Multi-component Fluids: Regular Solutions in Lorentz Spaces. J. Math. Fluid Mech. 24, 37 (2022). https://doi.org/10.1007/s00021-022-00670-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00021-022-00670-x

Keywords

Navigation