Skip to main content
Log in

Analysis of an Incompressible Navier–Stokes–Maxwell–Stefan System

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The Maxwell–Stefan equations for the molar fluxes, supplemented by the incompressible Navier–Stokes equations governing the fluid velocity dynamics, are analyzed in bounded domains with no-flux boundary conditions. The system models the dynamics of a multicomponent gaseous mixture under isothermal conditions. The global-in-time existence of bounded weak solutions to the strongly coupled model and their exponential decay to the homogeneous steady state are proved. The mathematical difficulties are due to the singular Maxwell–Stefan diffusion matrix, the cross-diffusion terms, and the different molar masses of the fluid components. The key idea of the proof is the use of a new entropy functional and entropy variables, which allows for a proof of positive lower and upper bounds of the mass densities without the use of a maximum principle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amundson N., Morano E., Sanders R.: Techniques for the numerical solution of steady reaction–diffusion systems employing Stefan–Maxwell diffusion. East–West J. Numer. Math. 6, 9–25 (1998)

    MATH  MathSciNet  Google Scholar 

  2. Amundson N., Pan T.-W., Paulsen V.: Diffusing with Stefan and Maxwell. AIChE J. 49, 813–830 (2003)

    Article  Google Scholar 

  3. Andries P., Aoki K., Perthame B.: A consistent BGK-type model for gas mixtures. J. Stat. Phys. 106, 993–1018 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bothe, D.: On the Maxwell–Stefan equations to multicomponent diffusion. In: Escher, J., Guidotti, P., Hieber, M., Mucha, P., Prüss, J.W., Shibata, Y., Simonett, G., Walker, C., Zajaczkowski, W. (eds.) Progress in Nonlinear Differential Equations and their Applications, pp. 81–93. Springer, Basel (2011)

  5. Bothe D., Dreyer W.: Continuum thermodynamics of chemically reacting fluid mixtures. Acta Mech. 226, 1757–1805 (2015)

    Article  MathSciNet  Google Scholar 

  6. Bothe D., Fischer A., Saal J.: Global well-posedness and stability of electro-kinetic flows. SIAM J. Math. Anal. 46, 1263–1316 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  7. Boudin L., Grec B., Salvarani F.: A mathematical and numerical analysis of the Maxwell–Stefan diffusion equations. Discret. Contin. Dyn. Sys. B 5, 1427–1440 (2012)

    Article  MathSciNet  Google Scholar 

  8. Chen L., Jüngel A.: Analysis of a multi-dimensional parabolic population model with strong cross-diffusion. SIAM J. Math. Anal. 36, 301–322 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dreher M., Jüngel A.: Compact families of piecewise constant functions in L p(0, T; B). Nonlinear Anal. 75, 3072–3077 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  10. Giovangigli V.: Convergent iterative methods for multicomponent diffusion. IMPACT Comput. Sci. Eng. 3, 244–276 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  11. Giovangigli V.: Multicomponent Flow Modeling. Birkhäuser, Basel (1999)

    Book  MATH  Google Scholar 

  12. Giovangigli V.: Plane flames with multicomponent transport and complex chemistry. Math. Models Methods Appl. Sci. 9, 337–378 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  13. Griepentrog J.: On the unique solvability of a nonlocal phase separation problem for multicomponent systems. Banach Center Publ. 66, 153–164 (2004)

    Article  MathSciNet  Google Scholar 

  14. Herberg, M., Meyries, M., Prüss, J., Wilke, M.: Reaction–diffusion systems of Maxwell–Stefan type with reversible mass-action kinetics (2013). arXiv:1310.4723 (Preprint)

  15. Jüngel, A.: Entropy dissipation methods for nonlinear partial differential equations. In: Lecture Notes (2012). http://www.jungel.at.vu. Accessed 01 Sept 2015

  16. Jüngel A., Stelzer I.: Existence analysis of Maxwell–Stefan systems for multicomponent mixtures. SIAM J. Math. Anal. 45, 2421–2440 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  17. Manley O., Marion M., Temam R.: Fully nonlinear multispecies reaction–diffusion equations. Appl. Math. Lett. 8, 7–11 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  18. Marion M., Temam R.: Global existence for fully nonlinear reaction–diffusion systems describing multicomponent reactive flows. J. Math. Pures Appl. 104(1), 102–138 (2015)

    Article  MathSciNet  Google Scholar 

  19. Mucha P., Pokorný M., Zatorska E.: Approximate solutions to a model of two-component reactive flow. Discret. Contin. Dyn. Syst. Ser. 7, 1079–1099 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  20. Mucha, P., Pokorný, M., Zatorska, E.: Chemically reacting mixtures in terms of degenerated parabolic setting. J. Math. Phys. 54, 071501 (2013). (17 pages)

  21. Temam R.: Navier–Stokes Equations. In: Theory and Numerical Analysis, 3rd edn. North-Holland, Amsterdam (1984)

    Google Scholar 

  22. Unterreiter A., Arnold A., Markowich P., Toscani G.: On generalized Csiszár–Kullback inequalities. Monatshefte Math. 131, 235–253 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  23. Wesselingh J., Krishna R.: Mass Transfer in Multicomponent Mixtures. Delft University Press, Delft (2000)

    Google Scholar 

  24. Zatorska E.: On the steady flow of a multicomponent, compressible, chemically reacting gas. Nonlinearity 24, 3267–3278 (2011)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  25. Zatorska E.: On the flow of chemically reacting gaseous mixture. J. Differ. Equ. 253, 3471–3500 (2012)

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ansgar Jüngel.

Additional information

Communicated by L. Caffarelli

The first author acknowledges support from the National Natural Science Foundation of China, Grants 11101049 and 11471050. The second author was partially supported by the Austrian Science Fund (FWF), Grants P22108, P24304, P27352, I395, and W1245, and the Austrian–French Project of the Austrian Exchange Service (ÖAD).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Jüngel, A. Analysis of an Incompressible Navier–Stokes–Maxwell–Stefan System. Commun. Math. Phys. 340, 471–497 (2015). https://doi.org/10.1007/s00220-015-2472-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-015-2472-z

Keywords

Navigation