Skip to main content

Advertisement

Log in

DUSP1 interacts with and dephosphorylates VCP to improve mitochondrial quality control against endotoxemia-induced myocardial dysfunction

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Dual specificity phosphatase 1 (DUSP1) and valosin-containing protein (VCP) have both been reported to regulate mitochondrial homeostasis. However, their impact on mitochondrial quality control (MQC) and myocardial function during LPS-induced endotoxemia remains unclear. We addressed this issue by modeling LPS-induced endotoxemia in DUSP1 transgenic (DUSP1TG) mice and in cultured DUSP1-overexpressing HL-1 cardiomyocytes. Accompanying characteristic structural and functional deficits, cardiac DUSP1 expression was significantly downregulated following endotoxemia induction in wild type mice. In contrast, markedly reduced myocardial inflammation, cardiomyocyte apoptosis, cardiac structural disorder, cardiac injury marker levels, and normalized systolic/diastolic function were observed in DUSP1TG mice. Furthermore, DUSP1 overexpression in HL-1 cells significantly attenuated LPS-mediated mitochondrial dysfunction by preserving MQC, as indicated by normalized mitochondrial dynamics, improved mitophagy, enhanced biogenesis, and attenuated mitochondrial unfolded protein response. Molecular assays showed that VCP was a substrate of DUSP1 and the interaction between DUSP1 and VCP primarily occurred on the mitochondria. Mechanistically, DUSP1 phosphatase domain promoted the physiological DUSP1/VCP interaction which prevented LPS-mediated VCP Ser784 phosphorylation. Accordingly, transfection with a phosphomimetic VCP mutant abolished the protective actions of DUSP1 on MQC and aggravated inflammation, apoptosis, and contractility/relaxation capacity in HL-1 cardiomyocytes. These findings support the involvement of the novel DUSP1/VCP/MQC pathway in the pathogenesis of endotoxemia-caused myocardial dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data supporting the findings of this study are found within the article and the supplementary material. All relevant raw data will be made available from the corresponding author upon reasonable request.

References

  1. Vieillard-Baron A (2011) Septic cardiomyopathy. Ann Intensive Care 1:6

    Article  PubMed  PubMed Central  Google Scholar 

  2. Martin L, Derwall M, Al Zoubi S, Zechendorf E, Reuter DA, Thiemermann C, Schuerholz T (2019) The septic heart: current understanding of molecular mechanisms and clinical implications. Chest 155:427–437

    Article  PubMed  Google Scholar 

  3. Tan Y, Chen S, Zhong J, Ren J, Dong M (2019) Mitochondrial injury and targeted intervention in septic cardiomyopathy. Curr Pharm Des 25:2060–2070

    Article  CAS  PubMed  Google Scholar 

  4. Cimolai MC, Alvarez S, Bode C, Bugger H (2015) Mitochondrial mechanisms in septic cardiomyopathy. Int J Mol Sci 16:17763–17778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shang X, Zhang Y, Xu J, Li M, Wang X, Yu R (2020) SRV2 promotes mitochondrial fission and Mst1-Drp1 signaling in LPS-induced septic cardiomyopathy. Aging (Albany NY) 12:1417–1432

    Article  CAS  PubMed  Google Scholar 

  6. Durand A, Duburcq T, Dekeyser T, Neviere R, Howsam M, Favory R, Preau S (2017) Involvement of mitochondrial disorders in septic cardiomyopathy. Oxid Med Cell Longev 2017:4076348

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ji L, He Q, Liu Y, Deng Y, Xie M, Luo K, Cai X, Zuo Y, Wu W, Li Q, Zhou R, Li T (2022) Ketone body β-hydroxybutyrate prevents myocardial oxidative stress in septic cardiomyopathy. Oxid Med Cell Longev 2022:2513837

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zhong J, Tan Y, Lu J, Liu J, Xiao X, Zhu P, Chen S, Zheng S, Chen Y, Hu Y, Guo Z (2019) Therapeutic contribution of melatonin to the treatment of septic cardiomyopathy: a novel mechanism linking Ripk3-modified mitochondrial performance and endoplasmic reticulum function. Redox Biol 26:101287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jiang X, Cai S, Jin Y, Wu F, He J, Wu X, Tan Y, Wang Y (2021) Irisin attenuates oxidative stress, mitochondrial dysfunction, and apoptosis in the H9C2 cellular model of septic cardiomyopathy through augmenting Fundc1-dependent mitophagy. Oxid Med Cell Longev 2021:2989974

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wang Y, Jasper H, Toan S, Muid D, Chang X, Zhou H (2021) Mitophagy coordinates the mitochondrial unfolded protein response to attenuate inflammation-mediated myocardial injury. Redox Biol 45:102049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Teng CH, Huang WN, Meng TC (2007) Several dual specificity phosphatases coordinate to control the magnitude and duration of JNK activation in signaling response to oxidative stress. J Biol Chem 282:28395–28407

    Article  CAS  PubMed  Google Scholar 

  12. Shen J, Zhang Y, Yu H, Shen B, Liang Y, Jin R, Liu X, Shi L, Cai X (2016) Role of DUSP1/MKP1 in tumorigenesis, tumor progression and therapy. Cancer Med 5:2061–2068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Keyse SM (2008) Dual-specificity MAP kinase phosphatases (MKPs) and cancer. Cancer Metastasis Rev 27:253–261

    Article  CAS  PubMed  Google Scholar 

  14. Jin Q, Li R, Hu N, Xin T, Zhu P, Hu S, Ma S, Zhu H, Ren J, Zhou H (2018) DUSP1 alleviates cardiac ischemia/reperfusion injury by suppressing the Mff-required mitochondrial fission and Bnip3-related mitophagy via the JNK pathways. Redox Biol 14:576–587

    Article  CAS  PubMed  Google Scholar 

  15. Bermúdez-Muñoz JM, Celaya AM, García-Mato Á, Muñoz-Espín D, Rodríguez-De La Rosa L, Serrano M, Varela-Nieto I (2021) Dual-specificity phosphatase 1 (DUSP1) has a central role in redox homeostasis and inflammation in the mouse cochlea. Antioxidants (Basel) 10:1351

    Article  PubMed  Google Scholar 

  16. Sheng J, Li H, Dai Q, Lu C, Xu M, Zhang J, Feng J (2019) DUSP1 recuses diabetic nephropathy via repressing JNK-Mff-mitochondrial fission pathways. J Cell Physiol 234:3043–3057

    Article  CAS  PubMed  Google Scholar 

  17. Hou X, Li L, Chen S, Ge C, Shen M, Fu Z (2021) MKP-1 overexpression reduces postischemic myocardial damage through attenuation of ER stress and mitochondrial damage. Oxid Med Cell Longev 2021:8905578

    Article  PubMed  PubMed Central  Google Scholar 

  18. Huang D, Jiang Y (2020) MKP1 reduces neuroinflammation via inhibiting endoplasmic reticulum stress and mitochondrial dysfunction. J Cell Physiol 235:4316–4325

    Article  CAS  PubMed  Google Scholar 

  19. Lawan A, Min K, Zhang L, Canfran-Duque A, Jurczak MJ, Camporez JPG, Nie Y, Gavin TP, Shulman GI, Fernandez-Hernando C, Bennett AM (2018) Skeletal muscle-specific deletion of MKP-1 reveals a p38 MAPK/JNK/Akt signaling node that regulates obesity-induced insulin resistance. Diabetes 67:624–635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ding YH, Miao RX, Zhang Q (2021) Hypaphorine exerts anti-inflammatory effects in sepsis induced acute lung injury via modulating DUSP1/p38/JNK pathway. Kaohsiung J Med Sci 37:883–893

    Article  CAS  PubMed  Google Scholar 

  21. Hammer M, Mages J, Dietrich H, Servatius A, Howells N, Cato AC, Lang R (2006) Dual specificity phosphatase 1 (DUSP1) regulates a subset of LPS-induced genes and protects mice from lethal endotoxin shock. J Exp Med 203:15–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang J, Xu X, Wang M (2021) Clinical significance of serum miR-101-3p expression in patients with neonatal sepsis. Per Med 18:541–550

    Article  CAS  PubMed  Google Scholar 

  23. Brudecki L, Ferguson DA, Mccall CE, El Gazzar M (2013) Mitogen-activated protein kinase phosphatase 1 disrupts proinflammatory protein synthesis in endotoxin-adapted monocytes. Clin Vaccine Immunol 20:1396–1404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Frazier WJ, Wang X, Wancket LM, Li XA, Meng X, Nelin LD, Cato AC, Liu Y (2009) Increased inflammation, impaired bacterial clearance, and metabolic disruption after gram-negative sepsis in Mkp-1-deficient mice. J Immunol 183:7411–7419

    Article  CAS  PubMed  Google Scholar 

  25. Watts GD, Wymer J, Kovach MJ, Mehta SG, Mumm S, Darvish D, Pestronk A, Whyte MP, Kimonis VE (2004) Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein. Nat Genet 36:377–381

    Article  CAS  PubMed  Google Scholar 

  26. Nalbandian A, Llewellyn KJ, Gomez A, Walker N, Su H, Dunnigan A, Chwa M, Vesa J, Kenney MC, Kimonis VE (2015) In vitro studies in VCP-associated multisystem proteinopathy suggest altered mitochondrial bioenergetics. Mitochondrion 22:1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ide Y, Horie T, Saito N, Watanabe S, Otani C, Miyasaka Y, Kuwabara Y, Nishino T, Nakao T, Nishiga M, Nishi H, Nakashima Y, Nakazeki F, Koyama S, Kimura M, Tsuji S, Rodriguez RR, Xu S, Yamasaki T, Watanabe T, Yamamoto M, Yanagita M, Kimura T, Kakizuka A, Ono K (2019) Cardioprotective effects of VCP modulator KUS121 in murine and porcine models of myocardial infarction. JACC Basic Transl Sci 4:701–714

    Article  PubMed  PubMed Central  Google Scholar 

  28. Guo X, Sun X, Hu D, Wang YJ, Fujioka H, Vyas R, Chakrapani S, Joshi AU, Luo Y, Mochly-Rosen D, Qi X (2016) VCP recruitment to mitochondria causes mitophagy impairment and neurodegeneration in models of Huntington’s disease. Nat Commun 7:12646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ogor P, Yoshida T, Koike M, Kakizuka A (2021) VCP relocalization limits mitochondrial activity, GSH depletion and ferroptosis during starvation in PC3 prostate cancer cells. Genes Cells 26:570–582

    Article  CAS  PubMed  Google Scholar 

  30. Kim NC, Tresse E, Kolaitis RM, Molliex A, Thomas RE, Alami NH, Wang B, Joshi A, Smith RB, Ritson GP, Winborn BJ, Moore J, Lee JY, Yao TP, Pallanck L, Kundu M, Taylor JP (2013) VCP is essential for mitochondrial quality control by PINK1/Parkin and this function is impaired by VCP mutations. Neuron 78:65–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yu CC, Yang JC, Chang YC, Chuang JG, Lin CW, Wu MS, Chow LP (2013) VCP phosphorylation-dependent interaction partners prevent apoptosis in Helicobacter pylori-infected gastric epithelial cells. PLoS ONE 8:e55724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shao J (2020) Ser(784) phosphorylation: a clinically relevant enhancer of VCP function in the DNA damage response. Mol Cell Oncol 7:1796179

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zhu C, Rogers A, Asleh K, Won J, Gao D, Leung S, Li S, Vij KR, Zhu J, Held JM, You Z, Nielsen TO, Shao J (2020) Phospho-Ser(784)-VCP is required for dna damage response and is associated with poor prognosis of chemotherapy-treated breast cancer. Cell Rep 31:107745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sun X, Zhou N, Ma B, Wu W, Stoll S, Lai L, Qin G, Qiu H (2021) Functional inhibition of valosin-containing protein induces cardiac dilation and dysfunction in a new dominant-negative transgenic mouse model. Cells 10:2891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Brody MJ, Vanhoutte D, Bakshi CV, Liu R, Correll RN, Sargent MA, Molkentin JD (2019) Disruption of valosin-containing protein activity causes cardiomyopathy and reveals pleiotropic functions in cardiac homeostasis. J Biol Chem 294:8918–8929

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zhou N, Chen X, Xi J, Ma B, Leimena C, Stoll S, Qin G, Wang C, Qiu H (2020) Novel genomic targets of valosin-containing protein in protecting pathological cardiac hypertrophy. Sci Rep 10:18098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lizano P, Rashed E, Stoll S, Zhou N, Wen H, Hays TT, Qin G, Xie LH, Depre C, Qiu H (2017) The valosin-containing protein is a novel mediator of mitochondrial respiration and cell survival in the heart in vivo. Sci Rep 7:46324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhou N, Stoll S, Qiu H (2017) VCP represses pathological cardiac hypertrophy. Aging (Albany NY) 9:2469–2470

    Article  PubMed  Google Scholar 

  39. Kho DH, Uddin MH, Chatterjee M, Vogt A, Raz A, Wu GS (2019) GP78 cooperates with dual-specificity phosphatase 1 to stimulate epidermal growth factor receptor-mediated extracellular signal-regulated kinase signaling. Mol Cell Biol 39:e00485-18

    Article  PubMed  PubMed Central  Google Scholar 

  40. Li Y, Xu S, Xu Q, Chen Y (2020) Clostridium difficile toxin B induces colonic inflammation through the TRIM46/DUSP1/MAPKs and NF-κB signalling pathway. Artif Cells Nanomed Biotechnol 48:452–462

    Article  PubMed  Google Scholar 

  41. Hammer M, Echtenachter B, Weighardt H, Jozefowski K, Rose-John S, Männel DN, Holzmann B, Lang R (2010) Increased inflammation and lethality of Dusp1-/- mice in polymicrobial peritonitis models. Immunology 131:395–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rodriguez N, Dietrich H, Mossbrugger I, Weintz G, Scheller J, Hammer M, Quintanilla-Martinez L, Rose-John S, Miethke T, Lang R (2010) Increased inflammation and impaired resistance to Chlamydophila pneumoniae infection in Dusp1(-/-) mice: critical role of IL-6. J Leukoc Biol 88:579–587

    Article  CAS  PubMed  Google Scholar 

  43. Chang W, Feng M, Li Y, Sun Y, Sun L (2019) MKP1 overexpression reduces TNF-α-induced cardiac injury via suppressing mitochondrial fragmentation and inhibiting the JNK-MIEF1 pathways. J Cell Physiol. https://doi.org/10.1002/jcp.28273

    Article  PubMed  PubMed Central  Google Scholar 

  44. Cooper LT, Hare JM, Tazelaar HD, Edwards WD, Starling RC, Deng MC, Menon S, Mullen GM, Jaski B, Bailey KR, Cunningham MW, Dec GW (2008) Usefulness of immunosuppression for giant cell myocarditis. Am J Cardiol 102:1535–1539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Frustaci A, Russo MA, Chimenti C (2009) Randomized study on the efficacy of immunosuppressive therapy in patients with virus-negative inflammatory cardiomyopathy: the TIMIC study. Eur Heart J 30:1995–2002

    Article  CAS  PubMed  Google Scholar 

  46. Wojnicz R, Nowalany-Kozielska E, Wojciechowska C, Glanowska G, Wilczewski P, Niklewski T, Zembala M, Polonski L, Rozek MM, Wodniecki J (2001) Randomized, placebo-controlled study for immunosuppressive treatment of inflammatory dilated cardiomyopathy: two-year follow-up results. Circulation 104:39–45

    Article  CAS  PubMed  Google Scholar 

  47. Kwon HJ, Coté TR, Cuffe MS, Kramer JM, Braun MM (2003) Case reports of heart failure after therapy with a tumor necrosis factor antagonist. Ann Intern Med 138:807–811

    Article  PubMed  Google Scholar 

  48. Mann DL, Mcmurray JJ, Packer M, Swedberg K, Borer JS, Colucci WS, Djian J, Drexler H, Feldman A, Kober L, Krum H, Liu P, Nieminen M, Tavazzi L, Van Veldhuisen DJ, Waldenstrom A, Warren M, Westheim A, Zannad F, Fleming T (2004) Targeted anticytokine therapy in patients with chronic heart failure: results of the Randomized Etanercept Worldwide Evaluation (RENEWAL). Circulation 109:1594–1602

    Article  CAS  PubMed  Google Scholar 

  49. Chung ES, Packer M, Lo KH, Fasanmade AA, Willerson JT (2003) Randomized, double-blind, placebo-controlled, pilot trial of infliximab, a chimeric monoclonal antibody to tumor necrosis factor-alpha, in patients with moderate-to-severe heart failure: results of the anti-TNF Therapy Against Congestive Heart Failure (ATTACH) trial. Circulation 107:3133–3140

    Article  CAS  PubMed  Google Scholar 

  50. Wang J, Zhou H (2020) Mitochondrial quality control mechanisms as molecular targets in cardiac ischemia-reperfusion injury. Acta Pharm Sin B 10:1866–1879

    Article  PubMed  PubMed Central  Google Scholar 

  51. Zhou H, Ren J, Toan S, Mui D (2021) Role of mitochondrial quality surveillance in myocardial infarction: from bench to bedside. Ageing Res Rev 66:101250

    Article  CAS  PubMed  Google Scholar 

  52. Picca A, Mankowski RT, Burman JL, Donisi L, Kim JS, Marzetti E, Leeuwenburgh C (2018) Mitochondrial quality control mechanisms as molecular targets in cardiac ageing. Nat Rev Cardiol 15:543–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ikeda Y, Shirakabe A, Maejima Y, Zhai P, Sciarretta S, Toli J, Nomura M, Mihara K, Egashira K, Ohishi M, Abdellatif M, Sadoshima J (2015) Endogenous Drp1 mediates mitochondrial autophagy and protects the heart against energy stress. Circ Res 116:264–278

    Article  CAS  PubMed  Google Scholar 

  54. Qiu Z, Wei Y, Song Q, Du B, Wang H, Chu Y, Hu Y (2019) The role of myocardial mitochondrial quality control in heart failure. Front Pharmacol 10:1404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Shirakabe A, Zhai P, Ikeda Y, Saito T, Maejima Y, Hsu CP, Nomura M, Egashira K, Levine B, Sadoshima J (2016) Drp1-dependent mitochondrial autophagy plays a protective role against pressure overload-induced mitochondrial dysfunction and heart failure. Circulation 133:1249–1263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yu LM, Dong X, Xue XD, Xu S, Zhang X, Xu YL, Wang ZS, Wang Y, Gao H, Liang YX, Yang Y, Wang HS (2021) Melatonin attenuates diabetic cardiomyopathy and reduces myocardial vulnerability to ischemia-reperfusion injury by improving mitochondrial quality control: role of SIRT6. J Pineal Res 70:e12698

    Article  CAS  PubMed  Google Scholar 

  57. Viswanathan MC, Blice-Baum AC, Sang TK, Cammarato A (2016) Cardiac-restricted expression of VCP/TER94 RNAi or disease alleles perturbs drosophila heart structure and impairs function. J Cardiovasc Dev Dis 3:19

    PubMed  PubMed Central  Google Scholar 

  58. Yi P, Higa A, Taouji S, Bexiga MG, Marza E, Arma D, Castain C, Le Bail B, Simpson JC, Rosenbaum J, Balabaud C, Bioulac-Sage P, Blanc JF, Chevet E (2012) Sorafenib-mediated targeting of the AAA+ ATPase p97/VCP leads to disruption of the secretory pathway, endoplasmic reticulum stress, and hepatocellular cancer cell death. Mol Cancer Ther 11:2610–2620

    Article  CAS  PubMed  Google Scholar 

  59. Zhu K, Cai Y, Si X, Ye Z, Gao Y, Liu C, Wang R, Ma Z, Zhu H, Zhang L, Li S, Zhang H, Yue J (2022) The phosphorylation and dephosphorylation switch of VCP/p97 regulates the architecture of centrosome and spindle. Cell Death Differ. https://doi.org/10.1038/s41418-022-01000-4

    Article  PubMed  PubMed Central  Google Scholar 

  60. Zou R, Tao J, Qiu J, Lu H, Wu J, Zhu H, Li R, Mui D, Toan S, Chang X, Zhou H, Fan X (2022) DNA-PKcs promotes sepsis-induced multiple organ failure by triggering mitochondrial dysfunction. J Adv Res 41:39–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wang S, Zhu H, Li R, Mui D, Toan S, Chang X, Zhou H (2022) DNA-PKcs interacts with and phosphorylates Fis1 to induce mitochondrial fragmentation in tubular cells during acute kidney injury. Sci Signal 15:eabh1121

    Article  CAS  PubMed  Google Scholar 

  62. Silva JF, Olivon VC, Mestriner FLAC, Zanotto CZ, Ferreira RG, Ferreira NS, Silva CAA, Luiz JPM, Alves JV, Fazan R, Cunha FQ, Alves-Filho JC, Tostes RC (2020) Acute increase in O-GlcNAc improves survival in mice with LPS-induced systemic inflammatory response syndrome. Front Physiol. https://doi.org/10.3389/fphys.2019.01614

    Article  PubMed  PubMed Central  Google Scholar 

  63. Chu M, Qian L, Zhu M, Yao J, Xu D, Chen M (2018) Circumferential strain rate to detect lipopolysaccharide-induced cardiac dysfunction: a speckle tracking echocardiography study. Quant Imaging Med Surg 9:151–159

    Article  Google Scholar 

  64. Elsawy H, Almalki M, Elmenshawy O, Abdel-Moneim A (2022) In vivo evaluation of the protective effects of arjunolic acid against lipopolysaccharide-induced septic myocardial injury. PeerJ 10:e12986

    Article  PubMed  PubMed Central  Google Scholar 

  65. Sun Y, Yao X, Zhang QJ, Zhu M, Liu ZP, Ci B, Xie Y, Carlson D, Rothermel BA, Sun Y, Levine B, Hill JA, Wolf SE, Minei JP, Zang QS (2018) Beclin-1-dependent autophagy protects the heart during sepsis. Circulation 138:2247–2262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhou H, Toan S, Zhu P, Wang J, Ren J, Zhang Y (2020) DNA-PKcs promotes cardiac ischemia reperfusion injury through mitigating BI-1-governed mitochondrial homeostasis. Basic Res Cardiol 115:11

    Article  PubMed  Google Scholar 

  67. Zhou H, Zhu P, Wang J, Zhu H, Ren J, Chen Y (2018) Pathogenesis of cardiac ischemia reperfusion injury is associated with CK2alpha-disturbed mitochondrial homeostasis via suppression of FUNDC1-related mitophagy. Cell Death Differ 25:1080–1093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Guo W, Jiang L, Bhasin S, Khan SM, Swerdlow RH (2009) DNA extraction procedures meaningfully influence qPCR-based mtDNA copy number determination. Mitochondrion 9:261–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhou H, Wang J, Zhu P, Zhu H, Toan S, Hu S, Ren J, Chen Y (2018) NR4A1 aggravates the cardiac microvascular ischemia reperfusion injury through suppressing FUNDC1-mediated mitophagy and promoting Mff-required mitochondrial fission by CK2alpha. Basic Res Cardiol 113:23

    Article  PubMed  Google Scholar 

Download references

Funding

This study was supported by grants from the NSFC (Nos. 82270279 and 82200296) and Youth Innovative Talents Training Program of Tianjin First Central Hospital Young Talents.

Author information

Authors and Affiliations

Authors

Contributions

JW and HZ conceived the original experiments. TX and YL contributed to the manuscript revision. SC and RH, and HZ, carried out all the in vivo experiments and molecular investigation in vitro. HZ and MZ wrote the whole manuscript. HZ, MZ, HZ revised the final version of manuscript. All the authors read the article and approved the submission.

Corresponding authors

Correspondence to Mingming Zhang or Hao Zhou.

Ethics declarations

Conflict of interest

The authors declared no conflict of interest.

Ethical statement

Experiments were performed under a project license (Beijing, China) granted by the committee on the Ethics of Chinese PLA General Hospital, in compliance with the Guidelines for the Management and Use of Laboratory Animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2178 KB)

Supplementary file2 (PDF 18203 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, H., Wang, J., Xin, T. et al. DUSP1 interacts with and dephosphorylates VCP to improve mitochondrial quality control against endotoxemia-induced myocardial dysfunction. Cell. Mol. Life Sci. 80, 213 (2023). https://doi.org/10.1007/s00018-023-04863-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-023-04863-z

Keywords

Navigation