Skip to main content

Advertisement

Log in

Pan-sarcoma characterization of lncRNAs in the crosstalk of EMT and tumour immunity identifies distinct clinical outcomes and potential implications for immunotherapy

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The epithelial-to-mesenchymal transition (EMT) is a reversible process that may interact with tumour immunity through multiple approaches. There is increasing evidence demonstrating the interconnections among EMT-related processes, the tumour microenvironment, and immune activity, as well as its potential influence on the immunotherapy response. Long non-coding RNAs (lncRNAs) are emerging as critical modulators of gene expression. They play fundamental roles in tumour immunity and act as promising biomarkers of immunotherapy response. However, the potential roles of lncRNA in the crosstalk of EMT and tumour immunity are still unclear in sarcoma. We obtained multi-omics profiling of 1440 pan-sarcoma patients from 19 datasets. Through an unsupervised consensus clustering approach, we categorised EMT molecular subtypes. We subsequently identified 26 EMT molecular subtype and tumour immune-related lncRNAs (EILncRNA) across pan-sarcoma types and developed an EILncRNA signature-based weighted scoring model (EILncSig). The EILncSig exhibited favourable performance in predicting the prognosis of sarcoma, and a high-EILncSig was associated with exclusive tumour microenvironment (TME) characteristics with desert-like infiltration of immune cells. Multiple altered pathways, somatically-mutated genes and recurrent CNV regions associated with EILncSig were identified. Notably, the EILncSig was associated with the efficacy of immune checkpoint inhibition (ICI) therapy. Using a computational drug-genomic approach, we identified compounds, such as Irinotecan that may have the potential to convert the EILncSig phenotype. By integrative analysis on multi-omics profiling, our findings provide a comprehensive resource for understanding the functional role of lncRNA-mediated immune regulation in sarcomas, which may advance the understanding of tumour immune response and the development of lncRNA-based immunotherapeutic strategies for sarcoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

The accession IDs, web links for publicly available datasets analysed in this study are described in method section. All software and R packages used in our study are publicly available and denoted in the method section. Processed results of the present study are available in Supplementary files. R scripts and processed datasets for data analysis and visualisation are available on the GitHub (https://github.com/dyshi9/CMLS-D-22-00823).

Abbreviations

EMT:

Epithelial-to-mesenchymal transition

TME:

Tumour microenvironment

LncRNA:

Long non-coding RNAs

EILncRNA:

EMT and tumour Immune-related lncRNAs

EILncSig:

EILncRNA signature-based scoring model

CNV:

Copy number variation

ceRNA:

Competitive endogenous RNA

STS:

Soft tissue sarcomas

ICI:

Immune checkpoint inhibitor

UCA1:

Urothelial carcinoma-associated 1

PD1:

Programmed cell death 1

LIMIT:

LncRNA Inducing IFN-γ, MHC-I and Immunogenicity of tumour

MFS:

Metastasis-free survival

RFS:

Relapse-free survival

OS:

Overall survival

GSVA:

Gene set variation analysis

IL-10:

Interleukin-10

IFNG:

Interferon

TIME:

Tumour immune microenvironment

ROC:

Receiver operating characteristic

AUC:

Areas under the curve

TME subtypes-IE/F:

Immune-enriched, fibrotic form

TME subtypes-IE:

Immune-enriched, non-fibrotic form

TME subtypes-F:

Fibrotic form

TME subtypes-D:

Depleted form

FGES :

Functional gene expression signatures

sCNA:

Somatic copy number alteration

TNB:

Tumour neoantigen burden

MSI:

Microsatellite instability

CR/PR:

Complete/partial response

SD/PD:

Stable/progressed disease

P-Lipo:

PD-L1-targeting immune liposome

ICD:

Immunogenic cell death

PDL-1:

PD-ligand-1

GSEA:

Gene set enrichment analysis

NES:

Normalized enrichment score

GO:

Gene Ontology

KEGG:

Kyoto Encyclopaedia of Genes and Genomes

MSigDB:

Molecular Signatures Database

WGCNA:

Weighted gene co-expression network analysis

PCC:

Pearson's correlation coefficients

DEG:

Differentially-expressed genes

Sarcoma DDLPS:

Dedifferentiated liposarcoma

Sarcoma LMS:

Leiomyosarcoma

Sarcoma MFS:

Myxofibrosarcoma

Sarcoma SS:

Synovial sarcoma

Sarcoma UPS:

Undifferentiated pleomorphic sarcoma

References

  1. Ferrari A, Dirksen U, Bielack S (2016) Sarcomas of Soft Tissue and Bone. Prog Tumor Res 43:128–141

    Article  PubMed  Google Scholar 

  2. Damerell V, Pepper MS, Prince S (2021) Molecular mechanisms underpinning sarcomas and implications for current and future therapy. Signal Transduct Target Ther 6:246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kasper B (2019) The challenge of finding new therapeutic avenues in soft tissue sarcomas. Clin Sarcoma Res 9:5

    Article  PubMed  PubMed Central  Google Scholar 

  4. Waldman AD, Fritz JM, Lenardo MJ (2020) A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat Rev Immunol 20:651–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Grünewald TG, Alonso M, Avnet S, Banito A, Burdach S, Cidre-Aranaz F, Di Pompo G, Distel M, Dorado-Garcia H, Garcia-Castro J et al (2020) Sarcoma treatment in the era of molecular medicine. EMBO Mol Med 12:e11131

    Article  PubMed  PubMed Central  Google Scholar 

  6. Groisberg R, Hong DS, Behrang A, Hess K, Janku F, Piha-Paul S, Naing A, Fu S, Benjamin R, Patel S et al (2017) Characteristics and outcomes of patients with advanced sarcoma enrolled in early phase immunotherapy trials. J Immunother Cancer 5:100

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hegde PS, Chen DS (2020) Top 10 Challenges in Cancer Immunotherapy. Immunity 52:17–35

    Article  CAS  PubMed  Google Scholar 

  8. Thiery JP, Sleeman JP (2006) Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol 7:131–142

    Article  CAS  PubMed  Google Scholar 

  9. Migault M, Sapkota S, Bracken CP (2022) Transcriptional and post-transcriptional control of epithelial-mesenchymal plasticity: why so many regulators? Cell Mol Life Sci 79:182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Terry S, Savagner P, Ortiz-Cuaran S, Mahjoubi L, Saintigny P, Thiery JP, Chouaib S (2017) New insights into the role of EMT in tumor immune escape. Mol Oncol 11:824–846

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sannino G, Marchetto A, Kirchner T, Grünewald TGP (2017) Epithelial-to-mesenchymal and mesenchymal-to-epithelial transition in mesenchymal tumors: a paradox in sarcomas? Cancer Res 77:4556–4561

    Article  CAS  PubMed  Google Scholar 

  12. Kahlert UD, Joseph JV, Kruyt FAE (2017) EMT- and MET-related processes in nonepithelial tumors: importance for disease progression, prognosis, and therapeutic opportunities. Mol Oncol 11:860–877

    Article  PubMed  PubMed Central  Google Scholar 

  13. Mishra S, Verma SS, Rai V, Awasthee N, Chava S, Hui KM, Kumar AP, Challagundla KB, Sethi G, Gupta SC (2019) Long non-coding RNAs are emerging targets of phytochemicals for cancer and other chronic diseases. Cell Mol Life Sci 76:1947–1966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mohammadinejad R, Biagioni A, Arunkumar G, Shapiro R, Chang KC, Sedeeq M, Taiyab A, Hashemabadi M, Pardakhty A, Mandegary A et al (2020) EMT signaling: potential contribution of CRISPR/Cas gene editing. Cell Mol Life Sci 77:2701–2722

    Article  CAS  PubMed  Google Scholar 

  15. Min L, Garbutt C, Tu C, Hornicek F, Duan Z (2017) Potentials of long noncoding RNAs (LncRNAs) in sarcoma: from biomarkers to therapeutic targets. Int J Mol Sci 18(4):731

    Article  PubMed Central  Google Scholar 

  16. Liu QL, Zhang Z, Wei X, Zhou ZG (2021) Noncoding RNAs in tumor metastasis: molecular and clinical perspectives. Cell Mol Life Sci 78:6823–6850

    Article  CAS  PubMed  Google Scholar 

  17. Wang M, Zhou L, Yu F, Zhang Y, Li P, Wang K (2019) The functional roles of exosomal long non-coding RNAs in cancer. Cell Mol Life Sci 76:2059–2076

    Article  CAS  PubMed  Google Scholar 

  18. Huang D, Chen J, Yang L, Ouyang Q, Li J, Lao L, Zhao J, Liu J, Lu Y, Xing Y et al (2018) NKILA lncRNA promotes tumor immune evasion by sensitizing T cells to activation-induced cell death. Nat Immunol 19:1112–1125

    Article  CAS  PubMed  Google Scholar 

  19. Hu Q, Ye Y, Chan LC, Li Y, Liang K, Lin A, Egranov SD, Zhang Y, Xia W, Gong J et al (2019) Oncogenic lncRNA downregulates cancer cell antigen presentation and intrinsic tumor suppression. Nat Immunol 20:835–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Colaprico A, Silva TC, Olsen C, Garofano L, Cava C, Garolini D, Sabedot TS, Malta TM, Pagnotta SM, Castiglioni I et al (2016) TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA data. Nucleic Acids Res 44:e71

    Article  PubMed  Google Scholar 

  21. Network CGAR (2017) Comprehensive and integrated genomic characterization of adult soft tissue sarcomas. Cell 171:950-965.e928

    Article  Google Scholar 

  22. Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, Ou Yang TH, Porta-Pardo E, Gao GF, Plaisier CL, Eddy JA et al (2018) The immune landscape of cancer. Immunity 48:812-830.e814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Howe KL, Achuthan P, Allen J, Allen J, Alvarez-Jarreta J, Amode MR, Armean IM, Azov AG, Bennett R, Bhai J et al (2021) Ensembl 2021. Nucleic Acids Res 49:D884-d891

    Article  CAS  PubMed  Google Scholar 

  24. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550

    Article  PubMed  PubMed Central  Google Scholar 

  25. Pachter L (2011) Models for transcript quantification from RNA-Seq. arXiv preprint, arXiv:1104.3889

  26. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Holko M et al (2013) NCBI GEO: archive for functional genomics data sets–update. Nucleic Acids Res 41:D991-995

    Article  CAS  PubMed  Google Scholar 

  27. Madeira F, Park YM, Lee J, Buso N, Gur T, Madhusoodanan N, Basutkar P, Tivey ARN, Potter SC, Finn RD, Lopez R (2019) The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res 47:W636-w641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Heber S, Sick B (2006) Quality assessment of Affymetrix GeneChip data. OMICS 10:358–368

    Article  CAS  PubMed  Google Scholar 

  29. Kauffmann A, Gentleman R, Huber W (2009) arrayQualityMetrics—a bioconductor package for quality assessment of microarray data. Bioinformatics 25:415–416

    Article  CAS  PubMed  Google Scholar 

  30. Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD (2012) The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics 28:882–883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Carlson M (2021) hgu133plus2.db: Affymetrix Human Genome U133 Plus 2.0 Array annotation data. (R package version 3.2.3)

  32. Rose TL, Weir WH, Mayhew GM, Shibata Y, Eulitt P, Uronis JM, Zhou M, Nielsen M, Smith AB, Woods M et al (2021) Fibroblast growth factor receptor 3 alterations and response to immune checkpoint inhibition in metastatic urothelial cancer: a real world experience. Br J Cancer 125:1251–1260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Busuioc C, Ciocan-Cartita CA, Braicu C, Zanoaga O, Raduly L, Trif M, Muresan MS, Ionescu C, Stefan C, Crivii C, Al Hajjar N, Mǎrgǎrit S, Berindan-Neagoe I (2021) Epithelial-mesenchymal transition gene signature related to prognostic in colon adenocarcinoma. J Pers Med 11(6):476

    Article  PubMed  PubMed Central  Google Scholar 

  34. Tan TZ, Miow QH, Miki Y, Noda T, Mori S, Huang RY, Thiery JP (2014) Epithelial-mesenchymal transition spectrum quantification and its efficacy in deciphering survival and drug responses of cancer patients. EMBO Mol Med 6:1279–1293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rokavec M, Kaller M, Horst D, Hermeking H (2017) Pan-cancer EMT-signature identifies RBM47 down-regulation during colorectal cancer progression. Sci Rep 7:4687

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kandimalla R, Gao F, Li Y, Huang H, Ke J, Deng X, Zhao L, Zhou S, Goel A, Wang X (2019) RNAMethyPro: a biologically conserved signature of N6-methyladenosine regulators for predicting survival at pan-cancer level. NPJ Precis Oncol 3:13

    Article  PubMed  PubMed Central  Google Scholar 

  37. Koplev S, Lin K, Dohlman AB, Ma’ayan A (2018) Integration of pan-cancer transcriptomics with RPPA proteomics reveals mechanisms of epithelial-mesenchymal transition. PLoS Comput Biol 14:e1005911

    Article  PubMed  PubMed Central  Google Scholar 

  38. Hollern DP, Swiatnicki MR, Andrechek ER (2018) Histological subtypes of mouse mammary tumors reveal conserved relationships to human cancers. PLoS Genet 14:e1007135

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wilkerson MD, Hayes DN (2010) ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking. Bioinformatics 26:1572–1573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Xu T, Le TD, Liu L, Su N, Wang R, Sun B, Colaprico A, Bontempi G, Li J (2017) CancerSubtypes: an R/Bioconductor package for molecular cancer subtype identification, validation and visualization. Bioinformatics 33:3131–3133

    Article  CAS  PubMed  Google Scholar 

  41. Mak MP, Tong P, Diao L, Cardnell RJ, Gibbons DL, William WN, Skoulidis F, Parra ER, Rodriguez-Canales J, Wistuba II et al (2016) A patient-derived, pan-cancer EMT signature identifies global molecular alterations and immune target enrichment following epithelial-to-mesenchymal transition. Clin Cancer Res 22:609–620

    Article  CAS  PubMed  Google Scholar 

  42. Yu G, Wang LG, Han Y, He QY (2012) clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16:284–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hänzelmann S, Castelo R, Guinney J (2013) GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics 14:7

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43:e47

    Article  PubMed  PubMed Central  Google Scholar 

  45. Consortium GO (2019) The Gene Ontology Resource: 20 years and still GOing strong. Nucleic Acids Res 47:D330-d338

    Article  Google Scholar 

  46. Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kutmon M, Riutta A, Nunes N, Hanspers K, Willighagen EL, Bohler A, Mélius J, Waagmeester A, Sinha SR, Miller R et al (2016) WikiPathways: capturing the full diversity of pathway knowledge. Nucleic Acids Res 44:D488-494

    Article  CAS  PubMed  Google Scholar 

  48. Jassal B, Matthews L, Viteri G, Gong C, Lorente P, Fabregat A, Sidiropoulos K, Cook J, Gillespie M, Haw R et al (2020) The reactome pathway knowledgebase. Nucleic Acids Res 48:D498-d503

    CAS  PubMed  Google Scholar 

  49. Liberzon A, Birger C, Thorvaldsdóttir H, Ghandi M, Mesirov JP, Tamayo P (2015) The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst 1:417–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Newman AM, Steen CB, Liu CL, Gentles AJ, Chaudhuri AA, Scherer F, Khodadoust MS, Esfahani MS, Luca BA, Steiner D et al (2019) Determining cell type abundance and expression from bulk tissues with digital cytometry. Nat Biotechnol 37:773–782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Aran D, Hu Z, Butte AJ (2017) xCell: digitally portraying the tissue cellular heterogeneity landscape. Genome Biol 18:220

    Article  PubMed  PubMed Central  Google Scholar 

  52. Sturm G, Finotello F, Petitprez F, Zhang JD, Baumbach J, Fridman WH, List M, Aneichyk T (2019) Comprehensive evaluation of transcriptome-based cell-type quantification methods for immuno-oncology. Bioinformatics 35:i436–i445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang B, Horvath S (2005) A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol 4:17

    Article  Google Scholar 

  54. Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinform 9:559

    Article  Google Scholar 

  55. Bhattacharya S, Dunn P, Thomas CG, Smith B, Schaefer H, Chen J, Hu Z, Zalocusky KA, Shankar RD, Shen-Orr SS et al (2018) ImmPort, toward repurposing of open access immunological assay data for translational and clinical research. Sci Data 5:180015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sun J, Zhang Z, Bao S, Yan C, Hou P, Wu N, Su J, Xu L, Zhou M (2020) Identification of tumor immune infiltration-associated lncRNAs for improving prognosis and immunotherapy response of patients with non-small cell lung cancer. J Immunother Cancer 8(1):e000110.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Heagerty PJ, Saha-Chaudhuri. P, Saha-Chaudhuri MP (2013) survivalROC: time-dependent ROC curve estimation from censored survival data. (R package version 1.0.3)

  58. Kassambara A, Kosinski M, Biecek P, Fabian S (2021) survminer: Drawing Survival Curves using ‘ggplot2’ (R package version 0.4.9)

  59. Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, Müller M (2011) pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinform 12:77

    Article  Google Scholar 

  60. Bagaev A, Kotlov N, Nomie K, Svekolkin V, Gafurov A, Isaeva O, Osokin N, Kozlov I, Frenkel F, Gancharova O et al (2021) Conserved pan-cancer microenvironment subtypes predict response to immunotherapy. Cancer Cell 39(6):845–865.e7

    Article  CAS  PubMed  Google Scholar 

  61. Van Der Maaten L (2014) Accelerating t-SNE using tree-based algorithms. J Mach Learn Res 15:3221–3245

    Google Scholar 

  62. Ligges U, Maechler M (2003) scatterplot3d—an R package for visualizing multivariate data. J Stat Softw 8:1–20

    Article  Google Scholar 

  63. Mayakonda A, Lin DC, Assenov Y, Plass C, Koeffler HP (2018) Maftools: efficient and comprehensive analysis of somatic variants in cancer. Genome Res 28:1747–1756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mermel CH, Schumacher SE, Hill B, Meyerson ML, Beroukhim R, Getz G (2011) GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers. Genome Biol 12:R41

    Article  PubMed  PubMed Central  Google Scholar 

  65. Reich M, Liefeld T, Gould J, Lerner J, Tamayo P, Mesirov JP (2006) GenePattern 2.0. Nat Genet 38:500–501

    Article  CAS  PubMed  Google Scholar 

  66. Lawrence M, Huber W, Pagès H, Aboyoun P, Carlson M, Gentleman R, Morgan MT, Carey VJ (2013) Software for computing and annotating genomic ranges. PLoS Comput Biol 9:e1003118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Blighe K, Rana S, Lewis M (2022) EnhancedVolcano: publication-ready volcano plots with enhanced colouring and labeling. (R package version 1.14.0)

  68. Kolde R (2019) Pheatmap: pretty heatmaps. . (R package version 1.0.12)

  69. Subramanian A, Narayan R, Corsello SM, Peck DD, Natoli TE, Lu X, Gould J, Davis JF, Tubelli AA, Asiedu JK et al (2017) A Next Generation Connectivity Map: L1000 Platform and the First 1,000,000 Profiles. Cell 171:1437-1452.e1417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Smirnov P, Safikhani Z, El-Hachem N, Wang D, She A, Olsen C, Freeman M, Selby H, Gendoo DM, Grossmann P et al (2016) PharmacoGx: an R package for analysis of large pharmacogenomic datasets. Bioinformatics 32:1244–1246

    Article  CAS  PubMed  Google Scholar 

  71. Wickham H (2016) GGPLOT2: elegant graphics for data analysis 2016. Springer-Verlag, New York

    Book  Google Scholar 

  72. Robert C (2020) A decade of immune-checkpoint inhibitors in cancer therapy. Nat Commun 11:3801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kim K, Kim HS, Kim JY, Jung H, Sun JM, Ahn JS, Ahn MJ, Park K, Lee SH, Choi JK (2020) Predicting clinical benefit of immunotherapy by antigenic or functional mutations affecting tumour immunogenicity. Nat Commun 11:951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zhao P, Li L, Jiang X, Li Q (2019) Mismatch repair deficiency/microsatellite instability-high as a predictor for anti-PD-1/PD-L1 immunotherapy efficacy. J Hematol Oncol 12:54

    Article  PubMed  PubMed Central  Google Scholar 

  75. Galon J, Bruni D (2019) Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat Rev Drug Discov 18:197–218

    Article  CAS  PubMed  Google Scholar 

  76. Zheng H, Zhao W, Yan C, Watson CC, Massengill M, Xie M, Massengill C, Noyes DR, Martinez GV, Afzal R et al (2016) HDAC inhibitors enhance T-Cell chemokine expression and augment response to PD-1 immunotherapy in lung adenocarcinoma. Clin Cancer Res 22:4119–4132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. He ZD, Zhang M, Wang YH, He Y, Wang HR, Chen BF, Tu B, Zhu SQ, Huang YZ (2021) Anti-PD-L1 mediating tumor-targeted codelivery of liposomal irinotecan/JQ1 for chemo-immunotherapy. Acta Pharmacol Sin 42:1516–1523

    Article  CAS  PubMed  Google Scholar 

  78. Pingping B, Yuhong Z, Weiqi L, Chunxiao W, Chunfang W, Yuanjue S, Chenping Z, Jianru X, Jiade L, Lin K et al (2019) Incidence and mortality of sarcomas in Shanghai, cHina, during 2002–2014. Front Oncol 9:662

    Article  PubMed  PubMed Central  Google Scholar 

  79. Li G, Kryczek I, Nam J, Li X, Li S, Li J, Wei S, Grove S, Vatan L, Zhou J et al (2021) LIMIT is an immunogenic lncRNA in cancer immunity and immunotherapy. Nat Cell Biol 23:526–537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ehnman M, Chaabane W, Haglund F, Tsagkozis P (2019) The tumor microenvironment of pediatric sarcoma: mesenchymal mechanisms regulating cell migration and metastasis. Curr Oncol Rep 21:90

    Article  PubMed  PubMed Central  Google Scholar 

  81. Zhu N, Hou J (2020) Assessing immune infiltration and the tumor microenvironment for the diagnosis and prognosis of sarcoma. Cancer Cell Int 20:577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Gravina GL, Festuccia C, Popov VM, Di Rocco A, Colapietro A, Sanità P, Monache SD, Musio D, De Felice F, Di Cesare E et al (2016) c-Myc sustains transformed phenotype and promotes radioresistance of embryonal rhabdomyosarcoma cell lines. Radiat Res 185:411–422

    Article  CAS  PubMed  Google Scholar 

  83. Xu BS, Chen HY, Que Y, Xiao W, Zeng MS, Zhang X (2020) ALK(ATI) interacts with c-Myc and promotes cancer stem cell-like properties in sarcoma. Oncogene 39:151–163

    Article  CAS  PubMed  Google Scholar 

  84. Logotheti S, Richter C, Murr N, Spitschak A, Marquardt S, Pützer BM (2021) Mechanisms of functional pleiotropy of p73 in cancer and beyond. Front Cell Dev Biol 9:737735

    Article  PubMed  PubMed Central  Google Scholar 

  85. Galtsidis S, Logotheti S, Pavlopoulou A, Zampetidis CP, Papachristopoulou G, Scorilas A, Vojtesek B, Gorgoulis V, Zoumpourlis V (2017) Unravelling a p73-regulated network: the role of a novel p73-dependent target, MIR3158, in cancer cell migration and invasiveness. Cancer Lett 388:96–106

    Article  CAS  PubMed  Google Scholar 

  86. Del Rio M, Mollevi C, Bibeau F, Vie N, Selves J, Emile JF, Roger P, Gongora C, Robert J, Tubiana-Mathieu N et al (2017) Molecular subtypes of metastatic colorectal cancer are associated with patient response to irinotecan-based therapies. Eur J Cancer 76:68–75

    Article  PubMed  Google Scholar 

  87. McKenzie JA, Mbofung RM, Malu S, Zhang M, Ashkin E, Devi S, Williams L, Tieu T, Peng W, Pradeep S et al (2018) The effect of topoisomerase i inhibitors on the efficacy of T-cell-based cancer immunotherapy. J Natl Cancer Inst 110:777–786

    Article  PubMed  Google Scholar 

  88. Liu X, Jiang J, Liao YP, Tang I, Zheng E, Qiu W, Lin M, Wang X, Ji Y, Mei KC et al (2021) Combination chemo-immunotherapy for pancreatic cancer using the immunogenic effects of an irinotecan silicasome nanocarrier plus anti-PD-1. Adv Sci (Weinh) 8:2002147

    Article  CAS  Google Scholar 

  89. Cui W, Meng W, Zhao L, Cao H, Chi W, Wang B (2019) TGF-β-induced long non-coding RNA MIR155HG promotes the progression and EMT of laryngeal squamous cell carcinoma by regulating the miR-155-5p/SOX10 axis. Int J Oncol 54:2005–2018

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Niu L, Lou F, Sun Y, Sun L, Cai X, Liu Z, Zhou H, Wang H, Wang Z, Bai J et al (2020) A micropeptide encoded by lncRNA MIR155HG suppresses autoimmune inflammation via modulating antigen presentation. Sci Adv 6:eaaz2059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Chen Y, Chen Z, Mo J, Pang M, Chen Z, Feng F, Xie P, Yang B (2021) Identification of HCG18 and MCM3AP-AS1 that associate with bone metastasis, poor prognosis and increased abundance of M2 macrophage infiltration in prostate cancer. Technol Cancer Res Treat 20:1533033821990064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Xia R, Geng G, Yu X, Xu Z, Guo J, Liu H, Li N, Li Z, Li Y, Dai X et al (2021) LINC01140 promotes the progression and tumor immune escape in lung cancer by sponging multiple microRNAs. J Immunother Cancer 9(8):e002746

    Article  PubMed  PubMed Central  Google Scholar 

  93. Hu X, Han W, Lou N (2021) High levels of LINC01140 expression predict a good prognosis and improve radiotherapy in sarcoma patients. Crit Rev Eukaryot Gene Expr 31:9–20

    Article  PubMed  Google Scholar 

  94. Zhang L, Li C, Su X (2020) Emerging impact of the long noncoding RNA MIR22HG on proliferation and apoptosis in multiple human cancers. J Exp Clin Cancer Res 39:271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Xu J, Shao T, Song M, Xie Y, Zhou J, Yin J, Ding N, Zou H, Li Y, Zhang J (2020) MIR22HG acts as a tumor suppressor via TGFβ/SMAD signaling and facilitates immunotherapy in colorectal cancer. Mol Cancer 19:51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zhao H, Zhang M, Yang X, Song D (2021) Overexpression of long non-coding RNA MIR22HG represses proliferation and enhances apoptosis via miR-629-5p/TET3 axis in osteosarcoma cells. J Microbiol Biotechnol 31:1331–1342

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The results here are based on the data generated by the TCGA Research Network and the Therapeutically Applicable Research to Generate Effective Treatments. The study reported herein fully satisfies the TCGA and TARGET publication requirements (https://www.cancer.gov/tcga; https://ocg.cancer.gov/programs/target). The authors would like to thank the TCGA, TARGET and GEO developed by National Institutes of Health and the ArrayExpress developed by the European Bioinformatics Institute.

Funding

This work was supported by grants from the National Natural Science Foundation of China (grant No. 82072978 to JL, No. 82072979 to ZZ) and the Natural Science Foundation of Hubei Province (Grant No. 2020CFB861 to JL).

Author information

Authors and Affiliations

Authors

Contributions

DS and SM contributed equally to this work. DS, SM, FP, BZ and BH collected data. DS, SM, FP, MM and WT analysed data and conducted statistical analysis. All authors contributed to data interpretation. DS, SM, FP, MM, WT, ZZ, ZS and JL drafted and revised the manuscript. DS, MS, MM and WT organized the R scripts and processed data. DS, ZZ and JL jointly conceived and supervised the study.

Corresponding authors

Correspondence to Deyao Shi, Zhicai Zhang or Jianxiang Liu.

Ethics declarations

Competing interests

The authors declare that they do not have any competing conflicts of interest.

Consent for publication

All authors reviewed and approved the final manuscript for publication.

Ethics approval and consent to participate

The patient cohorts we used were publicly available datasets that were collected with patients’ informed consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

18_2022_4462_MOESM1_ESM.tif

Supplementary figure 1 Clustering analysis of pan-sarcoma EMT molecular subtypes. (a). Principle component analysis and datasets combination (before batch correction: left, after batch correction: right) via Combat function of the sva R package. (b). A stack plot showing overall TME-infiltering cells estimated by CIBERSORTx between EMT molecular subtypes. (c). Comparison of absolute scores of each TME-infiltering cell type estimated by CIBERSORTx. (d). Comparison of EMT scores between EMT molecular subtypes.(e). A stack plot showing the composition of sarcoma types between EMT molecular subtypes. (f). For each sarcoma type, proportions of patients with and without specific sarcoma between EMT molecular subtypes

18_2022_4462_MOESM2_ESM.tif

Supplementary figure 2 WGCNA for the identification of EMT molecular subtype related gene modules.(a). Preliminary sample clustering for the detection of outliers. (b). Sample dendrogram and trait heatmap of enrolled sample (not available information in grey). (c). Analysis of network topology for various soft-thresholding powers. Left: the scale-free fit index. Right: the mean connectivity. (d). A histogram and visual assessment of scale-free network topology. (e). Clustering of module eigengenes to quantify co-expression similarity of entire modules for modules merging. (f). Intramodular analysis on the correlation of module membership and gene significance for EMT molecular subtype (showing the five modules with relatively low correlation)

18_2022_4462_MOESM3_ESM.tif

Supplementary figure 3. Evaluation of EILncSig in aspects of EMT, immune subtypes and TME characteristics. (a). In the GSE71118 dataset, a stack plot showing the composition of sarcoma types and the proportions of patients with/without specific sarcoma types between EILncSig groups. (b). In the TCGA-SARC dataset, a stack plot showing the composition of sarcoma types and the proportions of patients with/without specific sarcoma types between EILncSig groups. (c). Comparison of EILncSig scores among various sarcoma types in the combined pan-sarcoma expression dataset. (d). ROC analysis and corresponding AUC for evaluating whether EILncSig score could predict certain sarcoma types. (e). Correlation of EILncSig scores and EMT scores. (f). Comparison of EILncSig scores between EMT molecular subtypes identified by consensus clustering. (g). Consensus matrix of the unsupervised consensus clustering on TME pattern in the combined sarcoma dataset. (h). Expression pattern of lncRNAs of the EILncSig among TCGA-SARC immune subtypes. (i). A stack plot showing overall TME-infiltering cells estimated by CIBERSORTx between EILncSig groups of TCGA-SARC

18_2022_4462_MOESM4_ESM.tif

Supplementary figure 4. Supplementary results of analysis of transcriptomic and genomic characteristics of sarcoma. (a). A heatmap showing DEGs expression of sarcoma patients between EILncSig groups of TCGA-SARC. (b). Somatic mutation landscape of TCGA-SARC patients. (c). Waterfall plot showing top mutated genes of TCGA-SARC patients (n=237). (d). Lollipop Plot showing mutation sites of TTN genes corresponding to high- and low-EILncSig groups. (e). Total CNV events (amplification and deletion) of TCGA-SARC patients. (f). No correlation between EILncSig scores and CNV amplification event

18_2022_4462_MOESM5_ESM.tif

Supplementary figure 5. Supplementary results of analysis of transcriptomic and genomic characteristics of sarcoma. Comparison of normalized expression of ICI genes between sarcoma patients of EILncSig groups (TIM-3, SIGLEC6, IDO1 and IDO2)

18_2022_4462_MOESM6_ESM.xlsx

Supplementary file 1. Sheet 1-3. Clinical information of patients included in the present study from 17 microarray datasets, TCGA-SARC and TARGET-OS RNA-Seq dataset. Sheet 4. Sample size for each dataset and overview of sarcoma histology subtypes. Sheet 5. The combined EMT signature.

18_2022_4462_MOESM7_ESM.xlsx

Supplementary file 2. Sheet 1. Result of consensus clustering for pan-sarcoma EMT molecular subtypes based on EMT signature expression pattern. Sheet 2-5. Comparisons of GSVA enrichment scores of patients in different EMT molecular subtypes. Sheet 6. Immune Score, Stromal Score and Microenvironment Score estimated by xCell.Sheet 7. Absolute score of each TME-infiltrating cell type estimated by CIBERSORTx. Sheet 8. EMT scores of patients of EMT molecular subtypes.

18_2022_4462_MOESM8_ESM.xlsx

Supplementary file 3. Sheet 1. Detailed WGCNA results. Sheet 2. The 72 lncRNAs identified to be associated to the EMT molecular subtypes. Sheet 3. Immune genes of Immport database with annotation. Sheet 4. GSVA scores of immune pathways. Sheet 5. Correlation test of lncRNA–immune pathway pairs. Sheet 6. Correlation test of lncRNA–immune genes pairs. Sheet 7. Correlation test of lncRNA–TME-infiltrating cell pairs. Sheet 8. The 37 robust lncRNA candidates involved in tumour immunity across pan-sarcoma type

18_2022_4462_MOESM9_ESM.xlsx

Supplementary file 4. Sheet 1. Gene list of EILncRNA. Sheet 2. Univariate and multivariate Cox regression analysis of EILncRNA on training cohort GSE71118. Sheet 3. EILncSig scores and stratification of EILncSig groups of training and validation cohorts. Sheet 4-5. Detailed clinical information use in the Cox regression analysis of EILncSig and clinical characteristics (TARGET-OS and TCGA-SARC). Sheet 6. Supporting clinical information and molecular subtype of TCGA-SARC obtained from Alexander et al.'s study (https://doi.org/10.1016/j.cell.2017.10.014). Sheet 7. Cox regression analysis results of EILncSig with clinicopathological characteristics in TARGET-OS and TCGA-SARC

18_2022_4462_MOESM10_ESM.xlsx

Supplementary file 5. Sheet 1. TME Signatures of Bagaev et al.’s study (https://doi.org/10.1016/j.ccell.2021.04.014). Sheet 2. Standardized GSVA enrichment scores of the 29 functional TME gene expression signatures. Sheet 3. Consensus clustering of TME pattern. Sheet 4. Supporting immune subtype of TCGA-SARC obtained from Thorsson et al.'s study (https://doi.org/10.1016/j.immuni.2018.03.023). Sheet 5. Absolute scores of TME-infiltrating cells estimated by CIBERSORTx (TCGA-SARC)

18_2022_4462_MOESM11_ESM.xlsx

Supplementary file 6. Sheet 1. DEG analysis result of patients in high- and low-EILncSig groups. Sheet 2-3. GESA result based on the gene sets of GOBP and REACTOME pathways. Sheet 4. Putative copy-number variation events from GISTIC 2.0 (TCGA-SARC). Sheet 5-6. Identification of genes within recurrent CNV regions

18_2022_4462_MOESM12_ESM.xlsx

Supplementary file 7. Sheet 1. EILncSig and clinical information of an ICI therapy cohort GSE176307. Sheet 2. Connectivity scores and significance test for drug prediction based on CMAP database

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, D., Mu, S., Pu, F. et al. Pan-sarcoma characterization of lncRNAs in the crosstalk of EMT and tumour immunity identifies distinct clinical outcomes and potential implications for immunotherapy. Cell. Mol. Life Sci. 79, 427 (2022). https://doi.org/10.1007/s00018-022-04462-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04462-4

Keywords

Navigation