Skip to main content

Advertisement

Log in

Disruption of ZNF334 promotes triple-negative breast carcinoma malignancy through the SFRP1/ Wnt/β-catenin signaling axis

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Zinc-finger proteins (ZNFs) constitute the largest transcription factor family in the human genome. The family functions in many important biological processes involved in tumorigenesis. In our research, we identified ZNF334 as a novel tumor suppressor of triple-negative breast cancer (TNBC). ZNF334 expression was usually reduced in breast cancerv (BrCa) tissues and TNBC cell lines MDA-MB-231 (MB231) and YCCB1. We observed that promoter hypermethylation of ZNF334 was common in BrCa cell lines and tissues, which was likely responsible for its reduced expression. Ectopic expression of ZNF334 in TNBC cell lines MB231 and YCCB1 could suppress their growth and metastatic capacity both in vitro and in vivo, and as well induce cell cycle arrest at S phase and cell apoptosis. Moreover, re-expression of ZNF334 in TNBC cell lines could rescue Epithelial-Mesenchymal Transition (EMT) process and restrain stemness, due to up-regulation of SFRP1, which is an antagonist of Wnt/β-catenin signaling. In conclusion, we verified that ZNF334 had a suppressive function of TNBC cell lines by targeting the SFRP1/Wnt/β-catenin signaling axis, which might have the potentials to become a new biomarker for diagnosis and treatment of TNBC patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and material

Online analysis was performed using UALCAN (http://ualcan.path.uab.edu/ analysis.html) and Gepia2 (http://gepia2.cancer-pku.cn/#correlation) with the Cancer Genome Atlas (TCGA) database. Other data used in this study are available on reasonable request.

Abbreviations

ZNFs:

Zinc-finger proteins

TNBC:

Triple-negative breast cancer

BrCa:

Breast cancer

MB231:

MDA-MB-231

EMT:

Epithelial-Mesenchymal Transition (EMT)

PR:

Progesterone receptor

ER:

Estrogen receptor

HER2:

Human epidermal growth factor receptor 2

KRAB-ZFPs:

Zinc-finger proteins containing a Kruppel associated box

FZD:

Frizzled

Aza:

5-Aza-2’-deoxycytidine

TSA:

Trichostatin A

MethylTarget:

Multiple targeted bisulfite enrichment sequencing

MSP:

Methylation-specific PCR

IHC:

Immunohistochemistry

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global cancer statistics 2020: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71(3):209–249. https://doi.org/10.3322/caac.21660

    Article  PubMed  Google Scholar 

  2. Malhotra GK, Zhao X, Band H, Band V (2010) Histological, molecular and functional subtypes of breast cancers. Cancer Biol Ther. 10(10):955–60. https://doi.org/10.4161/cbt.10.10.13879

    Article  PubMed  PubMed Central  Google Scholar 

  3. Gluz O, Liedtke C, Gottschalk N, Pusztai L, Nitz U, Harbeck N (2009) Triple-negative breast cancer–current status and future directions. Ann Oncol. 20(12):1913–27. https://doi.org/10.1093/annonc/mdp492

    Article  CAS  PubMed  Google Scholar 

  4. Jamdade VS, Sethi N, Mundhe NA, Kumar P, Lahkar M, Sinha N (2015) Therapeutic targets of triple-negative breast cancer: a review. Br J Pharmacol 172(17):4228–4237. https://doi.org/10.1111/bph.13211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jen J, Wang YC (2016) Zinc finger proteins in cancer progression. J Biomed Sci. 23(1):53. https://doi.org/10.1186/s12929-016-0269-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lupo A, Cesaro E, Montano G, Zurlo D, Izzo P, Costanzo P (2013) KRAB-zinc finger proteins: a repressor family displaying multiple biological functions. Curr Genomics 14(4):268–278. https://doi.org/10.2174/13892029113149990002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Xiang S, Xiang T, Xiao Q, Li Y, Shao B, Luo T (2017) Zinc-finger protein 545 is inactivated due to promoter methylation and functions as a tumor suppressor through the Wnt/beta-catenin, PI3K/AKT and MAPK/ERK signaling pathways in colorectal cancer. Int J Oncol. 51(3):801–811. https://doi.org/10.3892/ijo.2017.4064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. He L, Fan X, Li Y, Chen M, Cui B, Chen G, Dai Y, Zhou D, Hu X, Lin H (2019) Overexpression of zinc finger protein 384 (ZNF 384), a poor prognostic predictor, promotes cell growth by upregulating the expression of cyclin D1 in hepatocellular carcinoma. Cell Death Dis 10(6):444. https://doi.org/10.1038/s41419-019-1681-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang J, Huang HH, Liu FB (2016) ZNF185 inhibits growth and invasion of lung adenocarcinoma cells through inhibition of the akt/gsk3beta pathway. J Biol Regul Homeost Agents. 30(3):683–691

    CAS  PubMed  Google Scholar 

  10. Chen L, Wu X, Xie H, Yao N, Xia Y, Ma G, Qian M, Ge H, Cui Y, Huang Y, Wang S, Zheng M (2019) ZFP57 suppress proliferation of breast cancer cells through down-regulation of MEST-mediated Wnt/beta-catenin signalling pathway. Cell Death Dis 10(3):169. https://doi.org/10.1038/s41419-019-1335-5

    Article  PubMed  PubMed Central  Google Scholar 

  11. Henc I, Soroczynska-Cybula M, Bryl E, Witkowski JM (2015) The in vitro modulatory effect of TNFalpha on the mRNA expression and protein levels of zinc finger protein ZNF334 in CD4(+) lymphocytes of healthy people. Acta Biochim Pol 62(1):113–7. https://doi.org/10.18388/abp.2014_857

    Article  CAS  PubMed  Google Scholar 

  12. Soroczynska-Cybula M, Bryl E, Smolenska Z, Witkowski JM (2011) Varying expression of four genes sharing a common regulatory sequence may differentiate rheumatoid arthritis from ageing effects on the CD4(+) lymphocytes. Immunology 132(1):78–86. https://doi.org/10.1111/j.1365-2567.2010.03341.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Moore LD, Le T, Fan G (2013) DNA methylation and its basic function. Neuropsychopharmacol 38(1):23–38. https://doi.org/10.1038/npp.2012.112

    Article  CAS  Google Scholar 

  14. Reis AH, Vargas FR, Lemos B (2016) Biomarkers of genome instability and cancer epigenetics. Tumour Biol. 37(10):13029–13038. https://doi.org/10.1007/s13277-016-5278-5

    Article  CAS  PubMed  Google Scholar 

  15. Severson PL, Tokar EJ, Vrba L, Waalkes MP, Futscher BW (2013) Coordinate H3K9 and DNA methylation silencing of ZNFs in toxicant-induced malignant transformation. Epigenetics 8(10):1080–1088. https://doi.org/10.4161/epi.25926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Huang RL, Chang CC, Su PH, Chen YC, Liao YP, Wang HC, Yo YT, Chao TK, Huang HC, Lin CY, Chu TY, Lai HC (2012) Methylomic analysis identifies frequent DNA methylation of zinc finger protein 582 (ZNF582) in cervical neoplasms. PLoS One. 7(7):e41060. https://doi.org/10.1371/journal.pone.0041060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang C, Xiang T, Li S, Ye L, Feng Y, Pei L, Li L, Wang X, Sun R, Ren G, Tao Q (2018) The novel 19q13 KRAB zinc-finger tumour suppressor ZNF382 is frequently methylated in oesophageal squamous cell carcinoma and antagonises Wnt/beta-catenin signalling. Cell Death Dis 9(5):573. https://doi.org/10.1038/s41419-018-0604-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen S, Xiao Z, Zhou J, Yang M, Feng S, Huang Q, Zou J, Zeng T, Li Y, Peng L, Zeng Y, Zeng X (2020) ZNF382: a transcription inhibitor down-regulated in multiple tumors due to promoter methylation. Clin Chim Acta. 500:220–225. https://doi.org/10.1016/j.cca.2019.10.021

    Article  CAS  PubMed  Google Scholar 

  19. Sun R, Xiang T, Tang J, Peng W, Luo J, Li L, Qiu Z, Tan Y, Ye L, Zhang M, Ren G, Tao Q (2020) 19q13 KRAB zinc-finger protein ZNF471 activates MAPK10/JNK3 signaling but is frequently silenced by promoter CpG methylation in esophageal cancer. Theranostics 10(5):2243–2259. https://doi.org/10.7150/thno.35861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tao C, Luo J, Tang J, Zhou D, Feng S, Qiu Z, Putti TC, Xiang T, Tao Q, Li L, Ren G (2020) The tumor suppressor zinc finger protein 471 suppresses breast cancer growth and metastasis through inhibiting AKT and Wnt/beta-catenin signaling. Clin Epigenetics. 12(1):173. https://doi.org/10.1186/s13148-020-00959-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Steinhart Z, Angers S (2018) Wnt signaling in development and tissue homeostasis. Development. https://doi.org/10.1242/dev.146589

    Article  PubMed  Google Scholar 

  22. Sma AN (2020) The canonical wnt signaling wnt/beta-catenin pathway a potential target for cancer prevention and therapy. Iran Biomed J. 24(5):269–80. https://doi.org/10.29252/ibj.24.5.264

    Article  Google Scholar 

  23. Chestnut C, Subramaniam D, Dandawate P, Padhye S, Taylor J 3rd, Weir S, Anant S (2021) Targeting major signaling pathways of bladder cancer with phytochemicals: a review. Nutr Cancer 73(11–12):2249–2271. https://doi.org/10.1080/01635581.2020.1856895

    Article  CAS  PubMed  Google Scholar 

  24. Frenquelli M, Tonon G (2020) WNT Signaling in Hematological Malignancies. Front Oncol 10:615190. https://doi.org/10.3389/fonc.2020.615190

    Article  PubMed  PubMed Central  Google Scholar 

  25. Gajos-Michniewicz A, Czyz M (2020) WNT signaling in melanoma. Int J Mol Sci. https://doi.org/10.3390/ijms21144852

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kar S, Jasuja H, Katti DR, Katti KS (2020) Wnt/beta-catenin signaling pathway regulates osteogenesis for breast cancer bone metastasis: experiments in an in vitro nanoclay scaffold cancer testbed. ACS Biomater Sci Eng. 6(5):2600–2611. https://doi.org/10.1021/acsbiomaterials.9b00923

    Article  CAS  PubMed  Google Scholar 

  27. Garcia-Lezana T, Lopez-Canovas JL, Villanueva A (2021) Signaling pathways in hepatocellular carcinoma. Adv Cancer Res. 149:63–101. https://doi.org/10.1016/bs.acr.2020.10.002

    Article  PubMed  Google Scholar 

  28. Wend P, Runke S, Wend K, Anchondo B, Yesayan M, Jardon M, Hardie N, Loddenkemper C, Ulasov I, Lesniak MS, Wolsky R, Bentolila LA, Grant SG, Elashoff D, Lehr S, Latimer JJ, Bose S, Sattar H, Krum SA, Miranda-Carboni GA (2013) WNT10B/beta-catenin signalling induces HMGA2 and proliferation in metastatic triple-negative breast cancer. EMBO Mol Med. 5(2):264–79. https://doi.org/10.1002/emmm.201201320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dittmer J (2018) Breast cancer stem cells: Features, key drivers and treatment options. Semin Cancer Biol. 53:59–74. https://doi.org/10.1016/j.semcancer.2018.07.007

    Article  PubMed  Google Scholar 

  30. Eyre R, Alferez DG, Santiago-Gomez A, Spence K, McConnell JC, Hart C, Simoes BM, Lefley D, Tulotta C, Storer J, Gurney A, Clarke N, Brown M, Howell SJ, Sims AH, Farnie G, Ottewell PD, Clarke RB (2019) Microenvironmental IL1beta promotes breast cancer metastatic colonisation in the bone via activation of Wnt signalling. Nat Commun. 10(1):5016. https://doi.org/10.1038/s41467-019-12807-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Merikhian P, Eisavand MR, Farahmand L (2021) Triple-negative breast cancer: understanding Wnt signaling in drug resistance. Cancer Cell Int. 21(1):419. https://doi.org/10.1186/s12935-021-02107-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ochoa-Hernandez AB, Juarez-Vazquez CI, Rosales-Reynoso MA, Barros-Nunez P (2012) WNT-beta-catenin signaling pathway and its relationship with cancer. Cir Cir. 80(4):389–98

    PubMed  Google Scholar 

  33. Krishnamurthy N, Kurzrock R (2018) Targeting the Wnt/beta-catenin pathway in cancer: update on effectors and inhibitors. Cancer Treat Rev. 62:50–60. https://doi.org/10.1016/j.ctrv.2017.11.002

    Article  CAS  PubMed  Google Scholar 

  34. Lo PK, Mehrotra J, D’Costa A, Fackler MJ, Garrett-Mayer E, Argani P, Sukumar S (2006) Epigenetic suppression of secreted frizzled related protein 1 (SFRP1) expression in human breast cancer. Cancer Biol Ther. 5(3):281–6. https://doi.org/10.4161/cbt.5.3.2384

    Article  CAS  PubMed  Google Scholar 

  35. Melkonyan HS, Chang WC, Shapiro JP, Mahadevappa M, Fitzpatrick PA, Kiefer MC, Tomei LD, Umansky SR (1997) SARPs: a family of secreted apoptosis-related proteins. Proc Natl Acad Sci U S A. 94(25):13636–41. https://doi.org/10.1073/pnas.94.25.13636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bafico A, Gazit A, Pramila T, Finch PW, Yaniv A, Aaronson SA (1999) Interaction of frizzled related protein (FRP) with Wnt ligands and the frizzled receptor suggests alternative mechanisms for FRP inhibition of wnt signaling. J Biol Chem. 274(23):16180–7. https://doi.org/10.1074/jbc.274.23.16180

    Article  CAS  PubMed  Google Scholar 

  37. Dahl E, Wiesmann F, Woenckhaus M, Stoehr R, Wild PJ, Veeck J, Knuchel R, Klopocki E, Sauter G, Simon R, Wieland WF, Walter B, Denzinger S, Hartmann A, Hammerschmied CG (2007) Frequent loss of SFRP1 expression in multiple human solid tumours: association with aberrant promoter methylation in renal cell carcinoma. Oncogene 26(38):5680–5691. https://doi.org/10.1038/sj.onc.1210345

    Article  CAS  PubMed  Google Scholar 

  38. Shih YL, Hsieh CB, Lai HC, Yan MD, Hsieh TY, Chao YC, Lin YW (2007) SFRP1 suppressed hepatoma cells growth through Wnt canonical signaling pathway. Int J Cancer. 121(5):1028–35. https://doi.org/10.1002/ijc.22750

    Article  CAS  PubMed  Google Scholar 

  39. Ren XY, Zhou GQ, Jiang W, Sun Y, Xu YF, Li YQ, Tang XR, Wen X, He QM, Yang XJ, Liu N, Ma J (2015) Low SFRP1 expression correlates with poor prognosis and promotes cell invasion by activating the wnt/beta-catenin signaling pathway in NPC. Cancer Prev Res (Phila). 8(10):968–77. https://doi.org/10.1158/1940-6207.CAPR-14-0369

    Article  CAS  PubMed  Google Scholar 

  40. Rogler A, Kendziorra E, Giedl J, Stoehr C, Taubert H, Goebell PJ, Wullich B, Stockle M, Lehmann J, Petsch S, Hartmann A, Stoehr R (2015) Functional analyses and prognostic significance of SFRP1 expression in bladder cancer. J Cancer Res Clin Oncol. 141(10):1779–90. https://doi.org/10.1007/s00432-015-1942-1

    Article  CAS  PubMed  Google Scholar 

  41. Kardum V, Karin V, Glibo M, Skrtic A, Martic TN, Ibisevic N, Skenderi F, Vranic S, Serman L (2017) Methylation-associated silencing of SFRP1 gene in high-grade serous ovarian carcinomas. Ann Diagn Pathol. 31:45–49. https://doi.org/10.1016/j.anndiagpath.2017.07.002

    Article  PubMed  Google Scholar 

  42. Mo S, Su Z, Heng B, Chen W, Shi L, Du X, Lai C (2018) SFRP1 promoter methylation and renal carcinoma risk: a systematic review and meta-analysis. J Nippon Med Sch. 85(2):78–86. https://doi.org/10.1272/jnms.2018_85-13

    Article  PubMed  Google Scholar 

  43. Klopocki E, Kristiansen G, Wild PJ, Klaman I, Castanos-Velez E, Singer G, Stohr R, Simon R, Sauter G, Leibiger H, Essers L, Weber B, Hermann K, Rosenthal A, Hartmann A, Dahl E (2004) Loss of SFRP1 is associated with breast cancer progression and poor prognosis in early stage tumors. Int J Oncol. 25(3):641–9

    CAS  PubMed  Google Scholar 

  44. Yang ZQ, Liu G, Bollig-Fischer A, Haddad R, Tarca AL, Ethier SP (2009) Methylation-associated silencing of SFRP1 with an 8p11–12 amplification inhibits canonical and non-canonical WNT pathways in breast cancers. Int J Cancer. 125(7):1613–21. https://doi.org/10.1002/ijc.24518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shulewitz M, Soloviev I, Wu T, Koeppen H, Polakis P, Sakanaka C (2006) Repressor roles for TCF-4 and Sfrp1 in Wnt signaling in breast cancer. Oncogene 25(31):4361–4369. https://doi.org/10.1038/sj.onc.1209470

    Article  CAS  PubMed  Google Scholar 

  46. Xiang T, Li L, Yin X, Yuan C, Tan C, Su X, Xiong L, Putti TC, Oberst M, Kelly K, Ren G, Tao Q (2012) The ubiquitin peptidase UCHL1 induces G0/G1 cell cycle arrest and apoptosis through stabilizing p53 and is frequently silenced in breast cancer. PLoS One. 7(1):e29783. https://doi.org/10.1371/journal.pone.0029783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Luo X, Xiong X, Shao Q, Xiang T, Li L, Yin X, Li X, Tao Q, Ren G (2017) The tumor suppressor interferon regulatory factor 8 inhibits beta-catenin signaling in breast cancers but is frequently silenced by promoter methylation. Oncotarget 8(30):48875–48888. https://doi.org/10.18632/oncotarget.16511

    Article  PubMed  PubMed Central  Google Scholar 

  48. Hu XT, Zhang FB, Fan YC, Shu XS, Wong AH, Zhou W, Shi QL, Tang HM, Fu L, Guan XY, Rha SY, Tao Q, He C (2009) Phospholipase C delta 1 is a novel 3p22.3 tumor suppressor involved in cytoskeleton organization with its epigenetic silencing correlated with high-stage gastric cancer. Oncogene. 28(26):2466–75. https://doi.org/10.1038/onc.2009.92

    Article  CAS  PubMed  Google Scholar 

  49. Li L, Gong Y, Xu K, Chen W, Xia J, Cheng Z, Li L, Yu R, Mu J, Le X, Xiang Q, Peng W, Tang J, Xiang T (2021) ZBTB28 induces autophagy by regulation of FIP200 and Bcl-XL facilitating cervical cancer cell apoptosis. J Exp Clin Cancer Res. 40(1):150. https://doi.org/10.1186/s13046-021-01948-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Iijima J, Zhao Y, Isaji T, Kameyama A, Nakaya S, Wang X, Ihara H, Cheng X, Nakagawa T, Miyoshi E, Kondo A, Narimatsu H, Taniguchi N, Gu J (2006) Cell-cell interaction-dependent regulation of N-acetylglucosaminyltransferase III and the bisected N-glycans in GE11 epithelial cells Involvement of E-cadherin-mediated cell adhesion. J Biol Chem. 281(19):13038–13046. https://doi.org/10.1074/jbc.M601961200

    Article  CAS  PubMed  Google Scholar 

  51. Eun SY, Ko YS, Park SW, Chang KC, Kim HJ (2015) P2Y2 nucleotide receptor-mediated extracellular signal-regulated kinases and protein kinase C activation induces the invasion of highly metastatic breast cancer cells. Oncol Rep. 34(1):195–202. https://doi.org/10.3892/or.2015.3972

    Article  CAS  PubMed  Google Scholar 

  52. Matteucci E, Maroni P, Luzzati A, Perrucchini G, Bendinelli P, Desiderio MA (2013) Bone metastatic process of breast cancer involves methylation state affecting E-cadherin expression through TAZ and WWOX nuclear effectors. Eur J Cancer. 49(1):231–44. https://doi.org/10.1016/j.ejca.2012.05.006

    Article  CAS  PubMed  Google Scholar 

  53. Prasad CP, Chaurasiya SK, Guilmain W, Andersson T (2016) WNT5A signaling impairs breast cancer cell migration and invasion via mechanisms independent of the epithelial-mesenchymal transition. J Exp Clin Cancer Res. 35(1):144. https://doi.org/10.1186/s13046-016-0421-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Pastushenko I, Blanpain C (2019) EMT transition states during tumor progression and metastasis. Trends Cell Biol 29(3):212–226. https://doi.org/10.1016/j.tcb.2018.12.001

    Article  CAS  PubMed  Google Scholar 

  55. Castagnoli L, Tagliabue E, Pupa SM (2020) Inhibition of the wnt signalling pathway: an avenue to control breast cancer aggressiveness. Int J Mol Sci. https://doi.org/10.3390/ijms21239069

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. Qian Tao (the Chinese University of Hong Kong, Hong Kong, China) for generously providing YCCB1 cell lines and TOP/FOP flash plasmids.

Funding

This study was supported by the National Natural Science Foundation of China (#81872380, #82172619), Natural Science Foundation of Chongqing (cstc2019jcjy-msxmX0861, cstc2020jcyj-bshX0025), Postdoctoral Science Foundation of China (2020M683262).

Author information

Authors and Affiliations

Authors

Contributions

TX: conception and design. ZC, RY: performed majority of experiments. TX, LL, FW, JM: performed experiments and analyzed data. YL, XZ: collected samples. TX, ZC, RS: drafted the manuscript. TX, RS, XZ, YW: reviewed data and manuscript. TX, RS: reviewed data and finalized the manuscript. All authors reviewed and approved the final version.

Corresponding authors

Correspondence to Ran Sun or Tingxiu Xiang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This research was authorized by the Institutional Ethics Committees of the First Affiliated Hospital of Chongqing Medical University (Approval notice: #2016–75) abode by the Declaration of Helsinki.

Consent to participate

All patients have received informed consent.

Consent for publication

Consents had been received from patients for reporting individual data.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1261 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Z., Yu, R., Li, L. et al. Disruption of ZNF334 promotes triple-negative breast carcinoma malignancy through the SFRP1/ Wnt/β-catenin signaling axis. Cell. Mol. Life Sci. 79, 280 (2022). https://doi.org/10.1007/s00018-022-04295-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04295-1

Keywords

Navigation