Skip to main content

Advertisement

Log in

Molecular mechanisms associated with chemoresistance in esophageal cancer

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Esophageal cancer (EC) is one of the most incident and lethal tumors worldwide. Although surgical resection is an important approach in EC treatment, late diagnosis, metastasis and recurrence after surgery have led to the management of adjuvant and neoadjuvant therapies over the past few decades. In this scenario, 5-fluorouracil (5-FU) and cisplatin (CISP), and more recently paclitaxel (PTX) and carboplatin (CBP), have been traditionally used in EC treatment. However, chemoresistance to these agents along EC therapeutic management represents the main obstacle to successfully treat this malignancy. In this sense, despite the fact that most of chemotherapy drugs were discovered several decades ago, in many cases, including EC, they still represent the most affordable and widely employed treatment approach for these tumors. Therefore, this review summarizes the main mechanisms through which the response to the most widely chemotherapeutic agents used in EC treatment is impaired, such as drug metabolism, apoptosis resistance, cancer stem cells (CSCs), cell cycle, autophagy, energetic metabolism deregulation, tumor microenvironment and epigenetic modifications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and materials

Not applicable.

Code availability

Not applicable.

Abbreviations

3’-UTR:

3’-Untranslated region

5’-UTR:

5’-Untranslated region

5-FU:

5-Fluorouracil

ABCB:

ATP binding cassette subfamily B

ADAM:

Disintegrin and metalloproteinase domain-containing protein

AKT:

Protein kinase B

AMP:

Adenosine monophosphate

AMPK:

AMP-activated protein kinase

APC/C:

Anaphase-promoting complex/cyclosome

ARF:

ADP-ribosylation factor

BMI1:

B lymphoma Mo-MLV insertion region 1 homolog

BubR:

Budding uninhibited by benzimidazole-related

CAFs:

Cancer-associated fibroblasts

CBDCA:

Cyclobutane-1,1-dicarboxylate

CBP:

Carboplatin

CDH:

E-cadherin

CDHP:

5-Chloro-2,4-dihydroxypyridine

CDKN:

Cyclin-dependent kinase inhibitor

CISP:

Cisplatin

COX:

Cyclooxygenase

CROSS:

Chemoradiotherapy for Oesophageal Cancer Followed by Surgery Study

CSC:

Cancer stem cell

CtBP:

C-terminal binding protein

CTR:

Copper uptake protein

CXCR:

C–X–C chemokine receptor

DHFU:

Dihydrofluorouracil

DKK:

Dickkopf-related protein

DNMT:

DNA methyltransferases

DPD:

Dihydropyrimidine dehydrogenase

dUMP:

Deoxyuridine monophosphate

dUTP:

Deoxyuridine triphosphate

dUTPase:

Deoxyuridine triphosphatase

E2F:

E2F transcription factor

EAC:

Esophageal adenocarcinoma

EC:

Esophageal cancer

ECRG:

EC related gene

EGFR:

Epidermal growth factor receptor

eIF:

Eukaryotic translation initiation factor

ERCC:

Excision repair cross-complementing

ERK:

Extracellular signal-regulated kinase

ESCC:

Esophageal squamous cell carcinoma

EZH:

Enhancer of zeste homolog

FBXO:

F-box only protein

FDA:

Food and Drug Administration

FdUDP:

Fluorodeoxyuridine diphosphate

FdUMP:

Fluorodeoxyuridine monophosphate

FdUTP:

Fluorodeoxyuridine triphosphate

FOX:

Forkhead box

FpD:

Fluoropyrimidines

FUDP:

Fluorouridine diphosphate

FUDR:

Fluorodeoxyuridine

FUMP:

Fluorouridine monophosphate

FUR:

Fluorouridine

FUTP:

Fluorouridine triphosphate

GSH:

Glutathione

GST:

Glutathione-S-transferase

HIF:

Hypoxia-inducible factor

HMGN:

High mobility group nucleosome binding domain

IC50 :

The half maximal inhibitory concentration

ID:

Inhibitor of DNA binding

IGF:

Insulin-like growth factor

IL:

Interleukin

LC:

MTb-associated protein light chain

LEF:

Lymphoid enhancer binding factor

linc-ROR:

Long intergenic non-protein coding RNA regulator of reprogramming

lncRNA:

Long non-coding RNA

MAPK:

Mitogen-activated protein kinase

MDR:

Multidrug resistant transporter

Mel:

Melanoma nuclear protein

miR:

MicroRNA

MMR:

Mismatch repair

MT:

Metallothionein

MTb:

Microtubules

N-BFIS:

N-benzoylphenylisoserine

NCCN:

National Comprehensive Cancer Network

NER:

Nucleotide excision repair

NF-κB:

Nuclear factor-κB

OPRT:

Orotate phosphoribosyltransferase

p70S6K:

Ribosomal protein S6 kinase

PAI:

Plasminogen activator inhibitor

PAK:

P21-activated kinase

PCNA:

Proliferating cell nuclear antigen

PD:

Programmed cell death protein

PDCD:

Programmed cell death protein

PD-L:

Programmed death-ligand

PI3K:

Phosphatidylinositol 3-kinase

Pink:

PTEN-induced kinase

PLK:

Polo-like kinase

PPAR:

Peroxisome proliferator-activated receptor

PPi :

Pyrophosphate

PRMT:

Protein arginine N-methyltransferase

PRPP:

Phosphoribosyl pyrophosphate

Pt-Ch:

Platinum-chemotherapeutic drugs

PTX:

Paclitaxel

RAC:

Ras-related C3 botulinum toxin substrate

RACK:

Receptor of activated protein C kinase

RR:

Ribonucleotide reductase

SAC:

Spindle assembly checkpoint

SCNAs:

Somatic copy-number alterations

SNP:

Single nucleotide polymorphism

SOX:

SRY-Box transcription factor

STAT:

Signal transducer and activator of transcription

TCGA:

The Cancer Genome Atlas

TGF:

Transforming growth factor

TIGAR:

TP53-induced glycolysis and apoptosis regulator

TK:

Thymidine kinase

TP:

Thymidine phosphorylase

TR:

Tandem repeat

TS:

Thymidylate synthase

TXN:

Taxanes

UK:

Uridine kinase

UP:

Uridine phosphorylase

VEGFR:

Vascular endothelial growth factor receptor

VRK:

Vaccinia-related kinase

XPF:

Xeroderma pigmentosum group F complementing factor

YAP:

Yes-associated protein

γ-H2AX:

H2AX histone phosphorylated on Ser-139

References

  1. Wild CP, Weiderpass E, Stewart BW (eds) (2020) World Cancer Report: Cancer Research for Cancer Prevention. International Agency for Research on Cancer, Lyon

    Google Scholar 

  2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global Cancer Statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Cancer J Clin 68:394–424. https://doi.org/10.3322/caac.21492

    Article  Google Scholar 

  3. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136:E359–E386. https://doi.org/10.1002/ijc.29210

    Article  CAS  PubMed  Google Scholar 

  4. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A (2015) Global cancer statistics, 2012. Cancer J Clin 65:87–108. https://doi.org/10.3322/caac.21262

    Article  Google Scholar 

  5. Gupta B, Kumar N (2017) Worldwide incidence, mortality and time trends for cancer of the oesophagus. Eur J Cancer Prev 26:107–118. https://doi.org/10.1097/CEJ.0000000000000249

    Article  PubMed  Google Scholar 

  6. Pennathur A, Gibson MK, Jobe BA, Luketich JD (2013) Oesophageal carcinoma. Lancet 381(9864):400–412. https://doi.org/10.1016/S0140-6736(12)60643-6

    Article  PubMed  Google Scholar 

  7. Wang K, Johnson A, Ali SM, Klempner SJ, Bekaii-Saab T, Vacirca JL, Khaira D, Yelensky R, Chmielecki J, Elvin JA, Lipson D, Miller VA, Stephens PJ, Ross JS (2015) Comprehensive genomic profiling of advanced esophageal squamous cell carcinomas and esophageal adenocarcinomas reveals similarities and differences. Oncologist 20(10):1132–1139. https://doi.org/10.1634/theoncologist.2015-0156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Burmeister BH, Smithers BM, Gebski V, Fitzgerald L, Simes RJ, Devitt P, Ackland S, Gotley DC, Joseph D, Millar J, North J, Walpole ET, Denham JW (2005) Surgery alone versus chemoradiotherapy followed by surgery for resectable cancer of the oesophagus: a randomised controlled phase III trial. Lancet Oncol 6:659–668. https://doi.org/10.1016/S1470-2045(05)70288-6

    Article  PubMed  Google Scholar 

  9. Trenerry C, Peters MDJ, Corsini N, Damarell RA, Wilson C, Flight I (2017) Patient-reported outcomes following neoadjuvant chemotherapy or chemoradiotherapy treatment for esophageal cancer. JBI Database System Rev Implement Rep 15(6):1499–1507. https://doi.org/10.11124/jbisrir-2016-003240

    Article  PubMed  Google Scholar 

  10. Gebski V, Burmeister B, Smithers BM, Foo K, Zalcberg J, Simes J (2007) Survival benefits from neoadjuvant chemoradiotherapy or chemotherapy in oesophageal carcinoma: a meta-analysis. Lancet Oncol 8(3):226–234. https://doi.org/10.1016/S1470-2045(07)70039-6

    Article  CAS  PubMed  Google Scholar 

  11. Ku GY (2017) Systemic therapy for esophageal cancer: chemotherapy. Chin Clin Oncol 6(5):49. https://doi.org/10.21037/cco.2017.07.06

    Article  PubMed  Google Scholar 

  12. Enzinger PC, Ilson DH, Kelsen DP (1999) Chemotherapy in esophageal cancer. Semin Oncol 26(5 Suppl 15):12–20

    CAS  PubMed  Google Scholar 

  13. Ezdinli EZ, Gelber R, Desai DV, Falkson G, Moertel CG, Hahn RG (1980) Chemotherapy of advanced esophageal carcinoma: eastern cooperative oncology group experience. Cancer 46(10):2149–2153. https://doi.org/10.1002/1097-0142(19801115)46:10%3c2149::aid-cncr2820461006%3e3.0.co;2-w

    Article  CAS  PubMed  Google Scholar 

  14. Lokich JJ, Shea M, Chaffey J (1987) Sequential infusional 5-fluorouracil followed by concomitant radiation for tumors of the esophagus and gastroesophageal junction. Cancer 60(3):275–279. https://doi.org/10.1002/1097-0142(19870801)60:3%3c275::aid-cncr2820600302%3e3.0.co;2-r

    Article  CAS  PubMed  Google Scholar 

  15. Murthy SK, Prabhakaran PS, Chandrashekar M, Deshpande R, Doval DC, Copinath KS (1990) Neoadjuvant Cis-DDP in esophageal cancers: an experience at a regional cancer centre, India. J Surg Oncol 45(3):173–176. https://doi.org/10.1002/jso.2930450308

    Article  CAS  PubMed  Google Scholar 

  16. Davis S, Shanmugathasa M, Kessler W (1980) Cis-dichlorodiammineplatinum (II) in the treatment of esophageal carcinoma. Cancer Treat Rep 64:709–711

    CAS  PubMed  Google Scholar 

  17. Ajani JA, Ilson DH, Daugherty K, Pazdur R, Lynch PM, Kelsen DP (1994) Activity of taxol in patients with squamous cell carcinoma and adenocarcinoma of the esophagus. J Natl Cancer Inst 86(14):1086–1091. https://doi.org/10.1093/jnci/86.14.1086

    Article  CAS  PubMed  Google Scholar 

  18. Ilson D, Wadleigh R, Leichman L, Kelsen D (2007) Paclitaxel given by a weekly 1-h infusion in advanced esophageal cancer. Ann Oncol 18(5):898–902. https://doi.org/10.1093/annonc/mdm004

    Article  CAS  PubMed  Google Scholar 

  19. Van Hagen P, Hulshof MC, Van Lanschot JJ, Steyerberg EW, Van Berge Henegouwen MI, Wijnhoven BP, Richel DJ, Nieuwenhuijzen GA, Hospers GA, Bonenkamp JJ, Cuesta MA, Blaisse RJ, Busch OR, Ten Kate FJ, Creemers GJ, Punt CJ, Plukker JT, Verheul HM, Spillenaar Bilgen EJ, Van Dekken H, Van Der Sangen MJ, Rozema T, Biermann K, Beukema JC, Piet AH, Van Rij CM, Reinders JG, Tilanus HW, Van Der Gaast A (2012) Preoperative chemoradiotherapy for esophageal or junctional cancer. N Engl J Med 366(22):2074–2084. https://doi.org/10.1056/NEJMoa1112088

    Article  PubMed  Google Scholar 

  20. van Meerten E, Muller K, Tilanus HW, Siersema PD, Eijkenboom WM, van Dekken H, Tran TC, van der Gaast A (2006) Neoadjuvant concurrent chemoradiation with weekly paclitaxel and carboplatin for patients with oesophageal cancer: a phase II study. Br J Cancer 94(10):1389–1394. https://doi.org/10.1038/sj.bjc.6603134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Keresztes RS, Port JL, Pasmantier MW, Korst RJ, Altorki NK (2003) Preoperative chemotherapy for esophageal cancer with paclitaxel and carboplatin: results of a phase II trial. J Thorac Cardiovasc Surg 126(5):1603–1608. https://doi.org/10.1016/s0022-5223(03)00710-4

    Article  CAS  PubMed  Google Scholar 

  22. Philip PA, Zalupski MM, Gadgeel S, Hussain M, Shields A (1997) A phase II study of carboplatin and paclitaxel in the treatment of patients with advanced esophageal and gastric cancer. Semin Oncol 24(6 Suppl 19):S1986–S1988

    Google Scholar 

  23. Honing J, Smit JK, Muijs CT, Burgerhof JG, de Groot JW, Paardekooper G, Muller K, Woutersen D, Legdeur MJ, Fiets WE, Slot A, Beukema JC, Plukker JT, Hospers GA (2014) A Comparison of carboplatin and paclitaxel with cisplatinum and 5-fluorouracil in definitive chemoradiation in esophageal cancer patients. Ann Oncol 25(3):638–643. https://doi.org/10.1093/annonc/mdt589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vodenkova S, Buchler T, Cervena K, Veskrnova V, Vodicka P, Vymetalkova V (2020) 5-fluorouracil and other fluoropyrimidines in colorectal cancer: past present and future. Pharmacol Ther 206:107447. https://doi.org/10.1016/j.pharmthera.2019.107447

    Article  CAS  PubMed  Google Scholar 

  25. Ajani JA, D’amico TA, Bentrem DJ, Chao J, Corvera C, Das P, Denlinger CS, Enzinger PC, Fanta P, Farjah F, Gerdes H, Gibson M, Glasgow RE, Hayman JA, Hochwald S, Hofstetter WL, Ilson DH, Jaroszewski D, Johung KL, Keswani RN, Kleinberg LR, Leong S, Ly QP, Matkowskyj KA, Mcnamara M, Mulcahy MF, Paluri RK, Park H, Perry KA, Pimiento J, Poultsides GA, Roses R, Strong VE, Wiesner G, Willett CG, Wright CD, Mcmillian NR, Pluchino LA (2019) Esophageal and esophagogastric junction cancers, version 2.2019, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw 17(7):855–883. https://doi.org/10.6004/jnccn.2019.0033

    Article  CAS  PubMed  Google Scholar 

  26. Miura K, Kinouchi M, Ishida K, Fujibuchi W, Naitoh T, Ogawa H, Ando T, Yazaki N, Watanabe K, Haneda S, Shibata C, Sasaki I (2010) 5-FU metabolism in cancer and orally-administrable 5-FU drugs. Cancers 2(3):1717–1730. https://doi.org/10.3390/cancers2031717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dilruba S, Kalayda GV (2016) Platinum-based drugs: past, present and future. Cancer Chemother Pharmacol 77(6):1103–1124. https://doi.org/10.1007/s00280-016-2976-z

    Article  CAS  PubMed  Google Scholar 

  28. Liu D, He C, Wang AZ, Lin W (2013) Application of liposomal technologies for delivery of platinum analogs in oncology. Int J Nanomed 8:3309–3319. https://doi.org/10.2147/IJN.S38354

    Article  CAS  Google Scholar 

  29. Maloney SM, Hoover CA, Morejon-Lasso LV, Prosperi JR (2020) Mechanisms of taxane resistance. Cancers 12(11):3323. https://doi.org/10.3390/cancers12113323

    Article  CAS  PubMed Central  Google Scholar 

  30. Choi IK, Seo HY, Sung HJ, Park KH, Kim SJ, Oh SC, Seo JH, Choi CW, Kim BS, Shin SW, Kim YH, Kim JS (2007) Epirubicin, cisplatin, oral UFT, and leucovorin combination chemotherapy in advanced and metastatic esophageal cancer. Med Oncol 24(1):33–37. https://doi.org/10.1007/BF02685900

    Article  CAS  PubMed  Google Scholar 

  31. Ueda H, Kawakami H, Nonagase Y, Takegawa N, Okuno T, Takahama T, Takeda M, Chiba Y, Tamura T, Nakagawa K (2019) Phase II trial of 5-fluorouracil, docetaxel and nedaplatin (UDON) combination therapy for recurrent or metastatic esophageal cancer. Oncologist 24(2):163-e76. https://doi.org/10.1634/theoncologist.2018-0653

    Article  CAS  PubMed  Google Scholar 

  32. Schmalenberg H, Al-Batran SE, Pauligk C, Zander T, Reichart A, Lindig U, Kleiß M, Müller L, Bolling C, Seufferlein T, Reichardt P, Kullmann F, Eschenburg H, Schmittel A, Egger M, Block A, Goetze TO (2018) CabaGast: multicentre, phase II study with cabazitaxel in previously treated patients with advanced or metastatic adenocarcinoma of the esophagogastric junction and stomach. J Cancer Res Clin Oncol 144(3):559–69. https://doi.org/10.1007/s00432-017-2565-5

    Article  CAS  PubMed  Google Scholar 

  33. Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A (2017) Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 168(4):707–723. https://doi.org/10.1016/j.cell.2017.01.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mansoori B, Mohammadi A, Davudian S, Shirjang S, Baradaran B (2017) The different mechanisms of cancer drug resistance: a brief review. Adv Pharm Bull 7(3):339–348. https://doi.org/10.15171/apb.2017.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Seshacharyulu P, Baine MJ, Souchek JJ, Menning M, Kaur S, Yan Y, Ouellette MM, Jain M, Lin C, Batra SK (2017) Biological determinants of radioresistance and their remediation in pancreatic cancer. Biochim Biophys Acta 1868(1):69–92. https://doi.org/10.1016/j.bbcan.2017.02.003

    Article  CAS  PubMed Central  Google Scholar 

  36. D’Angelo D, Mussnich P, Arra C, Battista S, Fusco A (2017) Critical role of HMGA proteins in cancer cell chemoresistance. J Mol Med (Berl) 95(4):353–360. https://doi.org/10.1007/s00109-017-1520-x

    Article  CAS  Google Scholar 

  37. Vasan N, Baselga J, Hyman DM (2019) A view on drug resistance in cancer. Nature 575(7782):299–309. https://doi.org/10.1038/s41586-019-1730-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. LIPPERT, T. H.; RUOFF, H. J.; VOLM, M. (2008). Intrinsic and Acquired Drug Resistance in Malignant Tumors. The Main Reason for Therapeutic Failure. Arzneimittel-Forschung, 58(6): 261–264. doi: https://doi.org/10.1055/s-0031-1296504.

  39. Kelderman S, Schumacher TN, Haanen JB (2014) Acquired and intrinsic resistance in cancer immunotherapy. Mol Oncol 8(6):1132–1139. https://doi.org/10.1016/j.molonc.2014.07.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zou Z, Li X, Sun Y, Li L, Zhang Q, Zhu L, Zhong Z, Wang M, Wang Q, Liu Z, Wang Y, Ping Y, Yao K, Hao B, Liu Q (2020) NOS1 expression promotes proliferation and invasion and enhances chemoresistance in ovarian cancer. Oncol Lett 19(4):2989–2995. https://doi.org/10.3892/ol.2020.11355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Xu P, Jiang L, Yang Y, Wu M, Liu B, Shi Y, Shen Q, Jiang X, He Y, Cheng D, Xiong Q, Yang Z, Duan L, Lin J, Zhao S, Shi P, Yang C, Chen Y (2020) PAQR4 promotes chemoresistance in non-small cell lung cancer through inhibiting Nrf2 protein degradation. Theranostics 10(8):3767–3778. https://doi.org/10.7150/thno.43142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang J, Xie T, Zhong X, Jiang HL, Li R, Wang BY, Huang XT, Cen BH, Yuan YW (2020) Melatonin reverses nasopharyngeal carcinoma cisplatin chemoresistance by inhibiting the Wnt/β-catenin signaling pathway. Aging (Albany NY) 12(6):5423–38. https://doi.org/10.18632/aging.102968

    Article  CAS  Google Scholar 

  43. Wang ZH, Wang JH, Wang KQ, Zhou Y, Wang J (2020) LncRNA FEZF1-AS1 promoted chemoresistance, autophagy and epithelial-mesenchymal transition (EMT) through regulation of miR-25-3p/ITGB8 axis in prostate cancer. Eur Rev Med Pharmacol Sci 24(5):2281–2293. https://doi.org/10.26355/eurrev_202003_20494

    Article  PubMed  Google Scholar 

  44. Cheng M, Jiang Y, Yang H, Zhao D, Li L, Liu X (2020) FLNA promotes chemoresistance of colorectal cancer through inducing epithelial-mesenchymal transition and Smad2 signaling pathway. Am J Cancer Res 10(2):403–423

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Liu H, Liu T, Zhou Y, Song X, Wei R (2020) Overexpression of long non-coding rna cancer susceptibility 11 is involved in the development of chemoresistance to carboplatin in hepatocellular carcinoma. Oncol Lett 19(3):1993–1998. https://doi.org/10.3892/ol.2020.11265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Feng L, Shen F, Zhou J, Li Y, Jiang R, Chen Y (2020) Hypoxia-induced up-regulation of miR-27a promotes paclitaxel resistance in ovarian cancer. Biosci Rep. https://doi.org/10.1042/BSR20192457

    Article  PubMed  PubMed Central  Google Scholar 

  47. Xu X, Wang Y, Deng H, Liu C, Wu J, Lai M (2018) HMGA2 enhances 5-fluorouracil chemoresistance in colorectal cancer via The Dvl2/Wnt pathway. Oncotarget 9(11):9963–9974. https://doi.org/10.18632/oncotarget.24133

    Article  PubMed  PubMed Central  Google Scholar 

  48. Zhang R, Tao F, Ruan S, Hu M, Hu Y, Fang Z, Mei L, Gong C (2019) The TGFβ1-FOXM1-HMGA1-TGFβ1 positive feedback loop increases the cisplatin resistance of non-small cell lung cancer by inducing G6PD expression. Am J Transl Res 11(11):6860–6876

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Qiao Y, Zhang C, Li A, Wang D, Luo Z, Ping Y, Zhou B, Liu S, Li H, Yue D, Zhang Z, Chen X, Shen Z, Lian J, Li Y, Wang S, Li F, Huang L, Wang L, Zhang B, Yu J, Qin Z, Zhang Y (2018) IL6 derived from cancer-associated fibroblasts promotes chemoresistance via CXCR7 in esophageal squamous cell carcinoma. Oncogene 37(7):873–883. https://doi.org/10.1038/onc.2017.387

    Article  CAS  PubMed  Google Scholar 

  50. Li B, Hong P, Zheng CC, Dai W, Chen WY, Yang QS, Han L, Tsao SW, Chan KT, Lee N, Law S, Xu LY, Li EM, Chan KW, Qin YR, Guan XY, Lung ML, He QY, Xu WW, Cheung AL (2019) Identification of miR-29c and Its target FBXO31 as a key regulatory mechanism in esophageal cancer chemoresistance: functional validation and clinical significance. Theranostics 9(6):1599–613. https://doi.org/10.7150/thno.30372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Han L, Cui D, Li B, Xu WW, Lam A, Chan KT, Zhu Y, Lee N, Law S, Guan XY, Qin YR, Chan KW, Ma S, Tsao SW, Cheung A (2019) MicroRNA-338-5p reverses chemoresistance and inhibits invasion of esophageal squamous cell carcinoma cells by targeting Id-1. Cancer Sci 110(12):3677–88. https://doi.org/10.1111/cas.14220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhou T, Fu H, Dong B, Dai L, Yang Y, Yan W, Shen L (2019) HOXB7 mediates cisplatin resistance in esophageal squamous cell carcinoma through involvement of DNA damage repair. Thorac Cancer 11(11):3071–85. https://doi.org/10.1111/1759-7714.13142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hu M, Zhang Q, Tian XH, Wang JL, Niu YX, Li G (2019) lncRNA CCAT1 is a biomarker for the proliferation and drug resistance of esophageal cancer via the miR-143/PLK1/BUBR1 axis. Mol Carcinog 58(12):2207–17. https://doi.org/10.1002/mc.23109

    Article  CAS  PubMed  Google Scholar 

  54. Adams O, Janser FA, Dislich B, Berezowska S, Humbert M, Seiler CA, Kroell D, Slotta-Huspenina J, Feith M, Ott K, Tschan MP, Langer R (2018) A specific expression profile of LC3B and p62 is associated with nonresponse to neoadjuvant chemotherapy in esophageal adenocarcinomas. PLoS ONE 13(6):e0197610. https://doi.org/10.1371/journal.pone.0197610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang Y, Zhao Y, Herbst A, Kalinski T, Qin J, Wang X, Jiang Z, Benedix F, Franke S, Wartman T, Camaj P, Halangk W, Kolligs FT, Jauch KW, Nelson PJ, Bruns CJ (2016) miR-221 mediates chemoresistance of esophageal adenocarcinoma by direct targeting of DKK2 expression. Ann Surg 264(5):804–814. https://doi.org/10.1097/SLA.0000000000001928

    Article  PubMed  Google Scholar 

  56. Lagergren J, Smyth E, Cunningham D, Lagergren P (2017) Oesophageal cancer. Lancet 390(10110):2383–96. https://doi.org/10.1016/S0140-6736(17)31462-9

    Article  PubMed  Google Scholar 

  57. Short MW, Burgers KG, Fry VT (2017) Esophageal cancer. Am Fam Physician 95(1):22–8

    PubMed  Google Scholar 

  58. Palumbo Júnior A, Da Costa NM, Esposito F, Fusco A, Pinto LF (2016) High mobility group a proteins in esophageal carcinomas. Cell Cycle 15(18):2410–3. https://doi.org/10.1080/15384101.2016.1215388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. ILSON, D. H. (2008) Esophageal Cancer Chemotherapy: Recent Advances. Gastrointest Can Res 2(2):85–92

    Google Scholar 

  60. Borggreve AS, Kingma BF, Domrachev SA, Koshkin MA, Ruurda JP, van Hillegersberg R, Takeda FR, Goense L (2018) Surgical treatment of esophageal cancer in the era of multimodality management. Ann N Y Acad Sci 1434(1):192–209. https://doi.org/10.1111/nyas.13677

    Article  PubMed  Google Scholar 

  61. Enzinger PC, Mayer RJ (2003) Esophageal Cancer. N Engl J Med 349(23):2241–52. https://doi.org/10.1056/NEJMra035010

    Article  CAS  PubMed  Google Scholar 

  62. Smyth EC, Lagergren J, Fitzgerald RC, Lordick F, Shah MA, Lagergren P, Cunningham D (2017) Oesophageal cancer. Nat Rev Dis Primers 3:17048. https://doi.org/10.1038/nrdp.2017.48

    Article  PubMed  PubMed Central  Google Scholar 

  63. Cooper JS, Guo MD, Herskovic A, Macdonald JS, Martenson JA, Al-Sarraf M, Byhardt R, Russell AH, Beitler JJ, Spencer S, Asbell SO, Graham MV, Leichman LL (1999) Chemoradiotherapy of locally advanced esophageal cancer: long-term follow-up of a prospective randomized trial (RTOG 85–01). Radiation therapy oncology group. JAMA 281(17):1623–7. https://doi.org/10.1001/jama.281.17.1623

    Article  CAS  PubMed  Google Scholar 

  64. Morita S, Balch C, Klimberg VS, Pawlik TM, Posner MC, Tanabe KK (2018) Textbook of complex general surgical oncology. McGraw-Hill Education, London

    Google Scholar 

  65. Tepper J, Krasna MJ, Niedzwiecki D, Hollis D, Reed CE, Goldberg R, Kiel K, Willett C, Sugarbaker D, Mayer R (2008) Phase III trial of trimodality therapy with cisplatin, fluorouracil, radiotherapy, and surgery compared with surgery alone for esophageal cancer: CALGB 9781. J Clin Oncol 26(7):1086–92. https://doi.org/10.1200/JCO.2007.12.9593

    Article  CAS  PubMed  Google Scholar 

  66. Arnott SJ, Duncan W, Gignoux M, Girling D, Hansen H, Launois B, Nygaard K, Parmar MKB, Rousell A, Spiliopoulos G, Stewart L, Tierney J, Wang M, Rhugang Z (2005) Preoperative radiotherapy for esophageal carcinoma. Cochrane Database Syst Rev 4:CD001799. https://doi.org/10.1002/14651858.CD001799

    Article  Google Scholar 

  67. Stahl M, Budach W, Meyer HJ, Cervantes A (2010) Esophageal cancer: clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 21(Supplement 5):v46–v49. https://doi.org/10.1093/annonc/mdq163

    Article  PubMed  Google Scholar 

  68. Ancona E, Ruol A, Santi S, Merigliano S, Sileni VC, Koussis H, Zaninotto G, Bonavina L, Peracchia A (2001) Only pathologic complete response to neoadjuvant chemotherapy improves significantly the long term survival of patients with resectable esophageal squamous cell carcinoma: final report of a randomized, controlled trial of preoperative chemotherapy versus surgery alone. Cancer 91(11):2165–74

    Article  CAS  PubMed  Google Scholar 

  69. Kelsen DP, Winter KA, Gunderson LL, Mortimer J, Estes NC, Haller DG, Ajani JA, Kocha W, Minsky BD, Roth JA, Willett CG (2007) Long-term results of RTOG trial 8911 (USA Intergroup 113): a random assignment trial comparison of chemotherapy followed by surgery compared with surgery alone for esophageal cancer. J Clin Oncol 25(24):3719–25. https://doi.org/10.1200/JCO.2006.10.4760

    Article  PubMed  Google Scholar 

  70. Kelsen DP, Ginsberg R, Pajak TF, Sheahan DG, Gunderson L, Mortimer J, Estes N, Haller DG, Ajani J, Kocha W, Minsky BD, Roth JA (1998) Chemotherapy followed by surgery compared with surgery alone for localized esophageal cancer. N Engl J Med 339(27):1979–84. https://doi.org/10.1056/NEJM199812313392704

    Article  CAS  PubMed  Google Scholar 

  71. Cancer Genome Atlas Research Network, Analysis Working Group: Asan University, BC Cancer Agency, Brigham and Women’s Hospital, Broad Institute, Brown University, Case Western Reserve University, Dana-Farber Cancer Institute, Duke University, Greater Poland Cancer Centre, Harvard Medical School, Institute for Systems Biology, KU Leuven, Mayo Clinic, Memorial Sloan Kettering Cancer Center, National Cancer Institute, Nationwide Children’s Hospital, Stanford University, University of Alabama, University of Michigan, … Project Team: National Institutes of Health (2017) Integrated genomic characterization of oesophageal carcinoma. Nature 541(7636):169–75. https://doi.org/10.1038/nature20805

    Article  CAS  Google Scholar 

  72. Das S, Gibson MK (2018) Evolving management strategies for metastatic esophageal and gastroesophageal junction adenocarcinoma. Oncol Hematol Rev 14(2):82–8. https://doi.org/10.17925/OHR.2018.14.2.82

    Article  PubMed  PubMed Central  Google Scholar 

  73. Yang YM, Hong P, Xu WW, He QY, Li B (2020) Advances in targeted therapy for esophageal cancer. Signal Transduct Target Ther 5(1):229. https://doi.org/10.1038/s41392-020-00323-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Fatehi Hassanabad A, Chehade R, Breadner D, Raphael J (2020) Esophageal carcinoma: towards targeted therapies. Cell Oncol (Dordr) 43(2):195–209. https://doi.org/10.1007/s13402-019-00488-2

    Article  Google Scholar 

  75. Liu Y, Xiong Z, Beasley A, D’Amico T, Chen XL (2016) Personalized and targeted therapy of esophageal squamous cell carcinoma: an update. Ann N Y Acad Sci 1381(1):66–73. https://doi.org/10.1111/nyas.13144

    Article  PubMed  PubMed Central  Google Scholar 

  76. Longley DB, Harkin DP, Johnston PG (2003) 5-Fluorouracil: Mechanisms of action and clinical strategies. Nat Rev Cancer 3(5):330–8. https://doi.org/10.1038/nrc1074

    Article  CAS  PubMed  Google Scholar 

  77. Grem JL (2000) 5-fluorouracil: forty-plus and still ticking. A review of its preclinical and clinical development. Invest New Drugs 18(4):299–313. https://doi.org/10.1023/a:1006416410198

    Article  CAS  PubMed  Google Scholar 

  78. Zhang N, Yin Y, Xu SJ, Chen WS (2008) 5-fluorouracil: mechanisms of resistance and reversal strategies. Molecules 13(8):1551–69. https://doi.org/10.3390/molecules13081551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Dasari S, Tchounwou PB (2014) Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol 740:364–78. https://doi.org/10.1016/j.ejphar.2014.07.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Rancoule C, Guy JB, Vallard A, Mrad MB, Rehailia A, Magné N (2017) Les 50 Ans du cisplatine. Bull Cancer 104(2):167–176. https://doi.org/10.1016/j.bulcan.2016.11.011

    Article  PubMed  Google Scholar 

  81. Browning RJ, Reardon PJT, Parhizkar M, Pedley RB, Edirisinghe M, Knowles JC, Stride E (2017) Drug delivery strategies for platinum-based chemotherapy. ACS Nano 11(9):8560–78. https://doi.org/10.1021/acsnano.7b04092

    Article  CAS  PubMed  Google Scholar 

  82. Hennequin C, Favaudon V (2002) Biological basis for chemo-radiotherapy interactions. Eur J Cancer 38(2):223–30. https://doi.org/10.1016/s0959-8049(01)00360-4

    Article  CAS  PubMed  Google Scholar 

  83. Siddik ZH (2003) Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene 22(47):7265–79. https://doi.org/10.1038/sj.onc.1206933

    Article  CAS  PubMed  Google Scholar 

  84. Yu W, Chen Y, Dubrulle J, Stossi F, Putluri V, Sreekumar A, Putluri N, Baluya D, Lai SY, Sandulache VC (2018) Cisplatin generates oxidative stress which is accompanied by rapid shifts in central carbon metabolism. Sci Rep 8(1):4306. https://doi.org/10.1038/s41598-018-22640-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Achkar IW, Abdulrahman N, Al-Sulaiti H, Joseph JM, Uddin S, Mraiche F (2018) Cisplatin based therapy: the role of the mitogen activated protein kinase signaling pathway. J Transl Med 16(1):96. https://doi.org/10.1186/s12967-018-1471-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Oliveira L, Caquito Junior JM, Rocha MS (2018) Carboplatin as an alternative to cisplatin in chemotherapies: new insights at single molecule level. Biophys Chem 241:8–14. https://doi.org/10.1016/j.bpc.2018.07.004

    Article  CAS  PubMed  Google Scholar 

  87. Rocha CRR, Silva MM, Quinet A, Cabral-Neto JB, Menck CFM (2018) DNA repair pathways and cisplatin resistance: an intimate relationship. Clinics (Sao Paulo) 73(Suppl 1):e478s. https://doi.org/10.6061/clinics/2018/e478s

    Article  Google Scholar 

  88. Galluzzi L, Senovilla L, Vitale I, Michels J, Martins I, Kepp O, Castedo M, Kroemer G (2012) Molecular mechanisms of cisplatin resistance. Oncogene 31(15):1869–83. https://doi.org/10.1038/onc.2011.384

    Article  CAS  PubMed  Google Scholar 

  89. Köberle B, Tomicic MT, Usanova S, Kaina B (2010) Cisplatin resistance: preclinical findings and clinical implications. Biochim Biophys Acta 1806(2):172–82. https://doi.org/10.1016/j.bbcan.2010.07.004

    Article  CAS  PubMed  Google Scholar 

  90. Wagstaff AJ, Ward A, Benfield P, Heel RC (1989) Carboplatin. A preliminary review of its pharmacodynamic and pharmacokinetic properties and therapeutic efficacy in the treatment of cancer. Drugs 37(2):162–90. https://doi.org/10.2165/00003495-198937020-00005

    Article  CAS  PubMed  Google Scholar 

  91. Sousa GF, Wlodarczyk SR, Monteiro G (2014) Carboplatin: molecular mechanisms of action associated with chemoresistance. Braz J Pharm Sci 50(4):693–701. https://doi.org/10.1590/S1984-82502014000400004

    Article  CAS  Google Scholar 

  92. Alves RC, Fernandes RP, Eloy JO, Salgado H, Chorilli M (2018) Characteristics, properties and analytical methods of paclitaxel: a review. Crit Rev Anal Chem 48(2):110–8. https://doi.org/10.1080/10408347.2017.1416283

    Article  CAS  PubMed  Google Scholar 

  93. Marupudi NI, Han JE, Li KW, Renard VM, Tyler BM, Brem H (2007) Paclitaxel: a review of adverse toxicities and novel delivery strategies. Expert Opin Drug Saf 6(5):609–21. https://doi.org/10.1517/14740338.6.5.609

    Article  CAS  PubMed  Google Scholar 

  94. Rowinsky EK, Cazenave LA, Donehower RC (1990) Taxol: a novel investigational antimicrotubule agent. J Natl Cancer Inst 82(15):1247–59. https://doi.org/10.1093/jnci/82.15.1247

    Article  CAS  PubMed  Google Scholar 

  95. Rowinsky EK, Donehower RC (1995) Paclitaxel (Taxol). N Engl J Med 332(15):1004–14. https://doi.org/10.1056/NEJM199504133321507

    Article  CAS  PubMed  Google Scholar 

  96. Spencer CM, Faulds D (1994) Paclitaxel. A review of its pharmacodynamic and pharmacokinetic properties and therapeutic potential in the treatment of cancer. Drugs 48(5):794–847. https://doi.org/10.2165/00003495-199448050-00009

    Article  CAS  PubMed  Google Scholar 

  97. Weaver BA (2014) How taxol/paclitaxel kills cancer cells. Mol Biol Cell 25(18):2677–81. https://doi.org/10.1091/mbc.E14-04-0916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Spratlin J, Sawyer MB (2007) Pharmacogenetics of paclitaxel metabolism. Crit Rev Oncol Hematol 61(3):222–9. https://doi.org/10.1016/j.critrevonc.2006.09.006

    Article  PubMed  Google Scholar 

  99. Jiang S, Pan AW, Lin TY, Zhang H, Malfatti M, Turteltaub K, Henderson PT, Pan CX (2015) Paclitaxel enhances carboplatin-DNA adduct formation and cytotoxicity. Chem Res Toxicol 28(12):2250–2. https://doi.org/10.1021/acs.chemrestox.5b00422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Yang CH, Horwitz SB (2017) Taxol®: the first microtubule stabilizing agent. Int J Mol Sci 18(8):1733. https://doi.org/10.3390/ijms18081733

    Article  CAS  PubMed Central  Google Scholar 

  101. Zhu L, Chen L (2019) Progress in research on paclitaxel and tumor immunotherapy. Cell Mol Biol Lett 24:40. https://doi.org/10.1186/s11658-019-0164-y

    Article  PubMed  PubMed Central  Google Scholar 

  102. Barbosa J, Nascimento AV, Faria J, Silva P, Bousbaa H (2011) The spindle assembly checkpoint: perspectives in tumorigenesis and cancer therapy. Front Biol 6:147–55. https://doi.org/10.1007/s11515-011-1122-x

    Article  CAS  Google Scholar 

  103. Verma H, Singh Bahia M, Choudhary S, Kumar Singh P, Silakari O (2019) Drug metabolizing enzymes-associated chemo resistance and strategies to overcome it. Drug Metab Rev 51(2):196–223. https://doi.org/10.1080/03602532.2019.1632886

    Article  CAS  PubMed  Google Scholar 

  104. Kinoshita M, Kodera Y, Hibi K, Nakayama G, Inoue T, Ohashi N, Ito Y, Koike M, Fujiwara M, Nakao A (2007) Gene expression profile of 5-fluorouracil metabolic enzymes in primary colorectal cancer: potential as predictive parameters for response to fluorouracil-based chemotherapy. Anticancer Res 27(2):851–6

    CAS  PubMed  Google Scholar 

  105. Adlard JW, Richman SD, Seymour MT, Quirke P (2002) Prediction of the response of colorectal cancer to systemic therapy. Lancet Oncol 3(2):75–82. https://doi.org/10.1016/s1470-2045(02)00648-4

    Article  CAS  PubMed  Google Scholar 

  106. Ichikawa W, Uetake H, Shirota Y, Yamada H, Nishi N, Nihei Z, Sugihara K, Hirayama R (2003) Combination of dihydropyrimidine dehydrogenase and thymidylate synthase gene expressions in primary tumors as predictive parameters for the efficacy of fluoropyrimidine-based chemotherapy for metastatic colorectal cancer. Clin Cancer Res 9(2):786–91

    CAS  PubMed  Google Scholar 

  107. Byun SS, Kim SW, Choi H, Lee C, Lee E (2005) Augmentation of cisplatin sensitivity in cisplatin-resistant human bladder cancer cells by modulating glutathione concentrations and glutathione-related enzyme activities. BJU Int 95(7):1086–90. https://doi.org/10.1111/j.1464-410X.2005.05472.x

    Article  CAS  PubMed  Google Scholar 

  108. Zhou J, Kang Y, Chen L, Wang H, Liu J, Zeng S, Yu L (2020) The drug-resistance mechanisms of five platinum-based antitumor agents. Front Pharmacol 11:343. https://doi.org/10.3389/fphar.2020.00343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–74. https://doi.org/10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  110. Kikuchi O, Ohashi S, Nakai Y, Nakagawa S, Matsuoka K, Kobunai T, Takechi T, Amanuma Y, Yoshioka M, Ida T, Yamamoto Y, Okuno Y, Miyamoto S, Nakagawa H, Matsubara K, Chiba T, Muto M (2015) Novel 5-fluorouracil-resistant human esophageal squamous cell carcinoma cells with dihydropyrimidine dehydrogenase overexpression. Am J Cancer Res 5(8):2431–40

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Lin K, Jiang H, Zhuang SS, Qin YS, Qiu GD, She YQ, Zheng JT, Chen C, Fang L, Zhang SY (2019) Long noncoding RNA LINC00261 induces chemosensitization to 5-fluorouracil by mediating methylation-dependent repression of DPYD in human esophageal cancer. FASEB J 33(2):1972–88. https://doi.org/10.1096/fj.201800759R

    Article  CAS  PubMed  Google Scholar 

  112. Ando T, Ishiguro H, Kuwabara Y, Kimura M, Mitsui A, Sugito N, Mori R, Ogawa R, Katada T, Fujii Y (2008) Relationship between expression of 5-fluorouracil metabolic enzymes and 5-fluorouracil sensitivity in esophageal carcinoma cell lines. Dis Esophagus 21(1):15–20. https://doi.org/10.1111/j.1442-2050.2007.00700.x

    Article  CAS  PubMed  Google Scholar 

  113. Mori K, Hasegawa M, Nishida M, Toma H, Fukuda M, Kubota T, Nagasue N, Yamana H, Hirakawa-Ys KC, Ikeda T, Takasaki K, Oka M, Kameyama M, Toi M, Fujii H, Kitamura M, Murai M, Sasaki H, Ozono S, Makuuchi H, Shimada Y, Onishi Y, Aoyagi S, Mizutani K, Ogawa M, Nakao A, Kinoshita H, Tono T, Imamoto H, Nakashima Y, Manabe T (2000) Expression levels of thymidine phosphorylase and dihydropyrimidine dehydrogenase in various human tumor tissues. Int J Oncol 17(1):33–8. https://doi.org/10.3892/ijo.17.1.33

    Article  CAS  PubMed  Google Scholar 

  114. Grimminger PP, Maus MK, Bergenthal J, Wandhöfer C, Fetzner UK, Herbold T, Bollschweiler E, Hölscher AH, Brabender J (2015) Prognostic impact of blood biomarkers TS and DPD in neoadjuvant-treated esophageal cancer patients. Anticancer Res 35(3):1297–302

    CAS  PubMed  Google Scholar 

  115. Langer R, Specht K, Becker K, Ewald P, Ott K, Lordick F, Siewert JR, Höfler H (2007) Comparison of pretherapeutic and posttherapeutic expression levels of chemotherapy-associated genes in adenocarcinomas of the esophagus treated by 5-fluorouracil- and cisplatin-based neoadjuvant chemotherapy. Am J Clin Pathol 128(2):191–7. https://doi.org/10.1309/1U6X4L9XFJLJV940

    Article  CAS  PubMed  Google Scholar 

  116. Kimura M, Kuwabara Y, Mitsui A, Ishiguro H, Sugito N, Tanaka T, Shiozaki M, Naganawa Y, Takeyama H (2011) Thymidylate synthetase and dihydropyrimidine dehydrogenase mRNA levels in esophageal cancer. Oncol Lett 2(2):297–301. https://doi.org/10.3892/ol.2010.227

    Article  CAS  PubMed  Google Scholar 

  117. Tsutani Y, Yoshida K, Sanada Y, Oeda M, Suzuki T, Hihara J, Okada M (2008) Dihydropyrimidine dehydrogenase and orotate phosphoribosyltransferase in esophageal cancer patients: correlation with clinicopathological factors and prognosis. Mol Med Rep 1(5):713–9. https://doi.org/10.3892/mmr_00000018

    Article  CAS  PubMed  Google Scholar 

  118. Tanaka K, Otake K, Mohri Y, Ohi M, Yokoe T, Toiyama Y, Miki C, Tonouchi H, Kusunoki M (2009) Clinical significance of the gene expression profile in residual tumor cells after neoadjuvant chemo-radiotherapy for esophageal cancer. Oncol Rep 21(6):1489–94. https://doi.org/10.3892/or_00000379

    Article  CAS  PubMed  Google Scholar 

  119. Liersch T, Langer C, Ghadimi BM, Kulle B, Aust DE, Baretton GB, Schwabe W, Häusler P, Becker H, Jakob C (2006) Lymph node status and ts gene expression are prognostic markers in stage II/III rectal cancer after neoadjuvant fluorouracil-based chemoradiotherapy. J Clin Oncol 24(25):4062–8. https://doi.org/10.1200/JCO.2005.04.2739

    Article  CAS  PubMed  Google Scholar 

  120. Huang JX, Li FY, Xiao W, Song ZX, Qian RY, Chen P, Salminen E (2009) Expression of thymidylate synthase and glutathione-S-transferase pi in patients with esophageal squamous cell carcinoma. World J Gastroenterol 15(34):4316–21. https://doi.org/10.3748/wjg.15.4316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Theisen J, Danenberg K, Ott K, Becker K, Danenberg P, Stein HJ, Siewert JR (2008) Predictors of response and survival for neoadjuvant treated patients with esophageal adenocarcinoma. Dis Esophagus 21(7):601–6. https://doi.org/10.1111/j.1442-2050.2008.00820.x

    Article  CAS  PubMed  Google Scholar 

  122. Langer R, Ott K, Feith M, Lordick F, Specht K, Becker K, Hofler H (2010) High pretherapeutic thymidylate synthetase and mrp-1 protein levels are associated with nonresponse to neoadjuvant chemotherapy in oesophageal adenocarcinoma patients. J Surg Oncol 102(5):503–8. https://doi.org/10.1002/jso.21641

    Article  PubMed  Google Scholar 

  123. Kuramochi H, Tanaka K, Oh D, Lehman BJ, Dunst CM, Yang DY, de Meester SR, Hagen JA, Danenberg KD, de Meester TR, Danenberg PV (2008) Thymidylate synthase polymorphisms and mRNA expression are independent chemotherapy predictive markers in esophageal adenocarcinoma patients. Int J Oncol 32(1):201–8

    CAS  PubMed  Google Scholar 

  124. Kaneko K, Nagai M, Murakami Y, Kogo M, Oyama T, Kojima T, Ohtsu A, Imawari M (2011) TS gene tandem repeats in esophageal cancer patients receiving chemoradiotherapy. Front Biosci (Landmark Ed) 16:1036–43. https://doi.org/10.2741/3733

    Article  CAS  Google Scholar 

  125. Kawakami K, Watanabe G (2003) Identification and functional analysis of single nucleotide polymorphism in the tandem repeat sequence of thymidylate synthase gene. Cancer Res 63(18):6004–7

    CAS  PubMed  Google Scholar 

  126. Kumagai Y, Tachikawa T, Higashi M, Sobajima J, Takahashi A, Amano K, Fukuchi M, Ishibashi KI, Mochiki E, Yakabi K, Tamaru JI, Ishida H (2018) Thymidine phosphorylase and angiogenesis in early stage esophageal squamous cell carcinoma. Esophagus 15(1):19–26. https://doi.org/10.1007/s10388-017-0588-2

    Article  PubMed  Google Scholar 

  127. Shimada H, Takeda A, Shiratori T, Nabeya Y, Okazumi S, Matsubara H, Funami Y, Hayashi H, Gunji Y, Kobayashi S, Suzuki T, Ochiai T (2002) Prognostic significance of serum thymidine phosphorylase concentration in esophageal squamous cell carcinoma. Cancer 94(7):1947–54. https://doi.org/10.1002/cncr.10418

    Article  PubMed  Google Scholar 

  128. Shimada H, Hoshino T, Okazumi S, Matsubara H, Funami Y, Nabeya Y, Hayashi H, Takeda A, Shiratori T, Uno T, Ito H, Ochiai T (2002) Expression of angiogenic factors predicts response to chemoradiotherapy and prognosis of oesophageal squamous cell carcinoma. Br J Cancer 86(4):552–7. https://doi.org/10.1038/sj.bjc.6600129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Ikeguchi M, Oka S, Saito H, Kondo A, Tsujitani S, Maeta M, Kaibara N (1999) Clinical significance of the detection of thymidine phosphorylase activity in esophageal squamous cell carcinomas. Eur Surg Res 31(4):357–63. https://doi.org/10.1159/000008713

    Article  CAS  PubMed  Google Scholar 

  130. Takebayashi Y, Natsugoe S, Baba M, Akiba S, Fukumoto T, Miyadera K, Yamada Y, Takao S, Akiyama S, Aikou T (1999) Thymidine phosphorylase in human esophageal squamous cell carcinoma. Cancer 85(2):282–9. https://doi.org/10.1002/(sici)1097-0142(19990115)85:2%3c282::aid-cncr3%3e3.0.co;2-t

    Article  CAS  PubMed  Google Scholar 

  131. Haraguchi M, Miyadera K, Uemura K, Sumizawa T, Furukawa T, Yamada K, Akiyama S, Yamada Y (1994) Angiogenic activity of enzymes. Nature 368(6468):198. https://doi.org/10.1038/368198a0

    Article  CAS  PubMed  Google Scholar 

  132. Aoki Y, Sakogawa K, Hihara J, Emi M, Hamai Y, Kono K, Shi L, Sun J, Kitao H, Ikura T, Niida H, Nakanishi M, Okada M, Tashiro S (2013) Involvement of ribonucleotide reductase-M1 in 5-fluorouracil-induced DNA damage in esophageal cancer cell lines. Int J Oncol 42(6):1951–60. https://doi.org/10.3892/ijo.2013.1899

    Article  CAS  PubMed  Google Scholar 

  133. Kolesar J, Huang W, Eickhoff J, Hahn K, Alberti D, Attia S, Schelman W, Holen K, Traynor A, Ivy P, Wilding G (2009) Evaluation of mRNA by q-RTPCR and protein expression by AQUA of the M2 subunit of ribonucleotide reductase (RRM2) in human tumors. Cancer Chemother Pharmacol 64(1):79–86. https://doi.org/10.1007/s00280-008-0845-0

    Article  CAS  PubMed  Google Scholar 

  134. Li Z, Wang Y, He J, Ma J, Zhao L, Chen H, Li N, Zhou J, He E, Skog S (2010) Serological thymidine kinase 1 is a prognostic factor in oesophageal, cardial and lung carcinomas. Eur J Cancer Prev 19(4):313–8. https://doi.org/10.1097/CEJ.0b013e32833ad320

    Article  CAS  PubMed  Google Scholar 

  135. Ji Y, Wu XB, Chen JY, Hu B, Zhu QK, Zhu XF, Zheng MF (2015) Serum thymidine kinase 1 levels correlate with clinical characteristics of esophageal squamous cell carcinoma. Int J Clin Exp Med 8(8):12850–57

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Kajiwara T, Nishina T, Hyodo I, Moriwaki T, Endo S, Nasu J, Hori S, Matsuura B, Hiasa Y, Onji M (2009) High orotate phosphoribosyltransferase gene expression predicts complete response to chemoradiotherapy in patients with squamous cell carcinoma of the esophagus. Oncology 76(5):342–9. https://doi.org/10.1159/000209964

    Article  CAS  PubMed  Google Scholar 

  137. Kawahara A, Akagi Y, Hattori S, Mizobe T, Shirouzu K, Ono M, Yanagawa T, Kuwano M, Kage M (2009) Higher expression of deoxyuridine triphosphatase (dUTPase) may predict the metastasis potential of colorectal cancer. J Clin Pathol 62(4):364–9. https://doi.org/10.1136/jcp.2008.060004

    Article  CAS  PubMed  Google Scholar 

  138. Takatori H, Yamashita T, Honda M, Nishino R, Arai K, Yamashita T, Takamura H, Ohta T, Zen Y, Kaneko S (2010) dUTP pyrophosphatase expression correlates with a poor prognosis in hepatocellular carcinoma. Liver Int 30(3):438–46. https://doi.org/10.1111/j.1478-3231.2009.02177.x

    Article  CAS  PubMed  Google Scholar 

  139. Feng C, Ma F, Hu C, Ma JA, Wang J, Zhang Y, Wu F, Hou T, Jiang S, Wang Y, Feng Y (2018) SOX9/miR-130a/CTR1 axis modulates DDP-resistance of cervical cancer cell. Cell Cycle 17(4):448–58. https://doi.org/10.1080/15384101.2017.1395533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Lee YY, Choi CH, Do IG, Song SY, Lee W, Park HS, Song TJ, Kim MK, Kim TJ, Lee JW, Bae DS, Kim BG (2011) Prognostic value of the copper transporters, CTR1 and CTR2, in patients with ovarian carcinoma receiving platinum-based chemotherapy. Gynecol Oncol 122(2):361–365. https://doi.org/10.1016/j.ygyno.2011.04.025

    Article  CAS  PubMed  Google Scholar 

  141. Kilari D, Iczkowski KA, Pandya C, Robin AJ, Messing EM, Guancial E, Kim ES (2016) Copper transporter-CTR1 expression and pathological outcomes in platinum-treated muscle-invasive bladder cancer patients. Anticancer Res 36(2):495–501

    CAS  PubMed  Google Scholar 

  142. Huang SD, Yuan Y, Liu XH, Gong DJ, Bai CG, Wang F, Luo JH, Xu ZY (2009) Self-renewal and chemotherapy resistance of p75NTR positive cells in esophageal squamous cell carcinomas. BMC Cancer 9:9. https://doi.org/10.1186/1471-2407-9-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Hong Y, Chen W, Du X, Ning H, Chen H, Shi R, Lin S, Xu R, Zhu J, Wu S, Zhou H (2015) Upregulation of Sex-Determining Region Y-Box 9 (SOX9) promotes cell proliferation and tumorigenicity in esophageal squamous cell carcinoma. Oncotarget 6(31):31241–54. https://doi.org/10.18632/oncotarget.5160

    Article  PubMed  PubMed Central  Google Scholar 

  144. Liu SG, Qin XG, Zhao BS, Qi B, Yao WJ, Wang TY, Li HC, Wu XN (2013) Differential expression of miRNAs in esophageal cancer tissue. Oncol Lett 5(5):1639–42. https://doi.org/10.3892/ol.2013.1251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Lindner K, Eichelmann AK, Matuszcak C, Hussey DJ, Haier J, Hummel R (2018) Complex epigenetic regulation of chemotherapy resistance and biohlogy in esophageal squamous cell carcinoma via MicroRNAs. Int J Mol Sci 19(2):499. https://doi.org/10.3390/ijms19020499

    Article  CAS  PubMed Central  Google Scholar 

  146. Hummel R, Sie C, Watson DI, Wang T, Ansar A, Michael MZ, van der Hoek M, Haier J, Hussey DJ (2014) MicroRNA signatures in chemotherapy resistant esophageal cancer cell lines. World J Gastroenterol 20(40):14904–12. https://doi.org/10.3748/wjg.v20.i40.14904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Brabender J, Lord RV, Wickramasinghe K, Metzger R, Schneider PM, Park JM, Hölscher AH, Demeester TR, Danenberg KD, Danenberg PV (2002) Glutathione S-transferase-pi expression is downregulated in patients with barrett’s esophagus and esophageal adenocarcinoma. J Gastrointest Surg 6(3):359–67. https://doi.org/10.1016/s1091-255x(02)00003-3

    Article  PubMed  Google Scholar 

  148. Levy RD, Oosthuizen MM, Degiannis E, Greyling D, Hatzitheofilou C (1999) Glutathione-linked enzymes in benign and malignant oesophageal tissue. Br J Cancer 80(1–2):32–7. https://doi.org/10.1038/sj.bjc.6690317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Chen JL, Lin ZX, Qin YS, She YQ, Chen Y, Chen C, Qiu GD, Zheng JT, Chen ZL, Zhang SY (2019) Overexpression of long noncoding RNA LINC01419 in esophageal squamous cell carcinoma and its relation to the sensitivity to 5-fluorouracil by mediating GSTP1 methylation. Ther Adv Med Oncol 11:1758835919838958. https://doi.org/10.1177/1758835919838958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Yamamoto Y, Konishi H, Ichikawa D, Arita T, Shoda K, Komatsu S, Shiozaki A, Ikoma H, Fujiwara H, Okamoto K, Ochiai T, Inoue J, Inazawa J, Otsuji E (2013) Significance of GSTP1 for predicting the prognosis and chemotherapeutic efficacy in esophageal squamous cell carcinoma. Oncol Rep 30(4):1687–94. https://doi.org/10.3892/or.2013.2606

    Article  CAS  PubMed  Google Scholar 

  151. Joshi MB, Shirota Y, Danenberg KD, Conlon DH, Salonga DS, Herndon JE, Danenberg PV, Harpole JR (2005) High gene expression of TS1, GSTP1, and ERCC1 are risk factors for survival in patients treated with trimodality therapy for esophageal cancer. Clin Cancer Res 11(6):2215–21. https://doi.org/10.1158/1078-0432.CCR-04-1387

    Article  PubMed  Google Scholar 

  152. Tang Y, Xuan XY, Li M, Dong ZM (2013) Roles of GST-π and polβ genes in chemoresistance of esophageal carcinoma cells. Asian Pac J Cancer Prev 14(12):7375–79. https://doi.org/10.7314/apjcp.2013.14.12.7375

    Article  PubMed  Google Scholar 

  153. Ogino S, Konishi H, Ichikawa D, Matsubara D, Shoda K, Arita T, Kosuga T, Komatsu S, Shiozaki A, Okamoto K, Kishimoto M, Otsuji E (2019) Glutathione S-transferase Pi 1 is a valuable predictor for cancer drug resistance in esophageal squamous cell carcinoma. Cancer Sci 110(2):795–804. https://doi.org/10.1111/cas.13896

    Article  CAS  PubMed  Google Scholar 

  154. Yamamoto M, Tsujinaka T, Shiozaki H, Doki Y, Tamura S, Inoue M, Hirao M, Monden M (1999) Metallothionein expression correlates with the pathological response of patients with esophageal cancer undergoing preoperative chemoradiation therapy. Oncology 56(4):332–7. https://doi.org/10.1159/000011988

    Article  CAS  PubMed  Google Scholar 

  155. Kishi K, Doki Y, Miyata H, Yano M, Yasuda T, Monden M (2002) Prediction of the response to chemoradiation and prognosis in oesophageal squamous cancer. Br J Surg 89(5):597–603. https://doi.org/10.1046/j.1365-2168.2002.02057.x

    Article  CAS  PubMed  Google Scholar 

  156. Hishikawa Y, Abe S, Kinugasa S, Yoshimura H, Monden N, Igarashi M, Tachibana M, Nagasue N (1997) Overexpression of metallothionein correlates with chemoresistance to cisplatin and prognosis in esophageal cancer. Oncology 54(4):342–7. https://doi.org/10.1159/000227714

    Article  CAS  PubMed  Google Scholar 

  157. Tanaka K, Mohri Y, Ohi M, Yokoe T, Koike Y, Morimoto Y, Miki C, Tonouchi H, Kusunoki M (2009) Excision-repair cross-complementing 1 predicts response to cisplatin-based neoadjuvant chemoradiotherapy in patients with esophageal squamous cell carcinoma. Mol Med Rep 2(6):903–9. https://doi.org/10.3892/mmr_00000190

    Article  CAS  PubMed  Google Scholar 

  158. Fareed KR, Al-Attar A, Soomro IN, Kaye PV, Patel J, Lobo DN, Parsons SL, Madhusudan S (2010) Tumour regression and ERCC1 nuclear protein expression predict clinical outcome in patients with gastro-oesophageal cancer treated with neoadjuvant chemotherapy. Br J Cancer 102(11):1600–7. https://doi.org/10.1038/sj.bjc.6605686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Macgregor TP, Carter R, Gillies RS, Findlay JM, Kartsonaki C, Castro-Giner F, Sahgal N, Wang LM, Chetty R, Maynard ND, Cazier JB, Buffa F, McHugh PJ, Tomlinson I, Middleton MR, Sharma RA (2018) Translational study identifies XPF and MUS81 as predictive biomarkers for oxaliplatin-based peri-operative chemotherapy in patients with esophageal adenocarcinoma. Sci Rep 8(1):7265. https://doi.org/10.1038/s41598-018-24232-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Peng H, Yao S, Dong Q, Zhang Y, Gong W, Jia Z, Yan L (2018) Excision repair cross-complementing group 1 (ERCC1) overexpression inhibits cell apoptosis and is associated with unfavorable prognosis of esophageal squamous cell carcinoma. Medicine (Baltimore) 97(31):e11697. https://doi.org/10.1097/MD.0000000000011697

    Article  CAS  Google Scholar 

  161. Schneider S, Uchida K, Brabender J, Baldus SE, Yochim J, Danenberg KD, Salonga D, Chen P, Tsao-Wei D, Groshen S, Hoelscher AH, Schneider PM, Danenberg PV (2005) Downregulation of TS, DPD, ERCC1, GST-Pi, EGFR, and HER2 gene expression after neoadjuvant three-modality treatment in patients with esophageal cancer. J Am Coll Surg 200(3):336–44. https://doi.org/10.1016/j.jamcollsurg.2004.10.035

    Article  PubMed  Google Scholar 

  162. Li B, Li J, Xu WW, Guan XY, Qin YR, Zhang LY, Law S, Tsao SW, Cheung AL (2014) Suppression of esophageal tumor growth and chemoresistance by directly targeting the PI3K/AKT pathway. Oncotarget 5(22):11576–87. https://doi.org/10.18632/oncotarget.2596

    Article  PubMed  PubMed Central  Google Scholar 

  163. Liu B, Wang C, Chen P, Cheng B, Cheng Y (2018) RACKI induces chemotherapy resistance in esophageal carcinoma by upregulating the PI3K/AKT pathway and Bcl-2 expression. Onco Targets Ther 11:211–20. https://doi.org/10.2147/OTT.S152818

    Article  PubMed  PubMed Central  Google Scholar 

  164. Wang Z, Lin L, Thomas DG, Nadal E, Chang AC, Beer DG, Lin J (2015) The role of dickkopf-3 overexpression in esophageal adenocarcinoma. J Thorac Cardiovasc Surg 150(2):377–85.e2. https://doi.org/10.1016/j.jtcvs.2015.05.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Song S, Honjo S, Jin J, Chang SS, Scott AW, Chen Q, Kalhor N, Correa AM, Hofstetter WL, Albarracin CT, Wu TT, Johnson RL, Hung MC, Ajani JA (2015) The hippo coactivator YAP1 mediates EGFR overexpression and confers chemoresistance in esophageal cancer. Clin Cancer Res 21(11):2580–90. https://doi.org/10.1158/1078-0432.CCR-14-2191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Chu J, Niu X, Chang J, Shao M, Peng L, Xi Y, Lin A, Wang C, Cui Q, Luo Y, Fan W, Chen Y, Sun Y, Guo W, Tan W, Lin D, Wu C (2020) Metabolic remodeling by TIGAR overexpression is a therapeutic target in esophageal squamous-cell carcinoma. Theranostics 10(8):3488–502. https://doi.org/10.7150/thno.41427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Liu DS, Read M, Cullinane C, Azar WJ, Fennell CM, Montgomery KG, Haupt S, Haupt Y, Wiman KG, Duong CP, Clemons NJ, Phillips WA (2015) APR-246 potently inhibits tumour growth and overcomes chemoresistance in preclinical models of oesophageal adenocarcinoma. Gut 64(10):1506–16. https://doi.org/10.1136/gutjnl-2015-309770

    Article  CAS  PubMed  Google Scholar 

  168. Komatsu S, Ichikawa D, Kawaguchi T, Miyamae M, Okajima W, Ohashi T, Imamura T, Kiuchi J, Konishi H, Shiozaki A, Fujiwara H, Okamoto K, Otsuji E (2016) Circulating miR-21 as an independent predictive biomarker for chemoresistance in esophageal squamous cell carcinoma. Am J Cancer Res 6(7):1511–23

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Komatsu S, Ichikawa D, Kawaguchi T, Takeshita H, Miyamae M, Ohashi T, Okajima W, Imamura T, Kiuchi J, Arita T, Konishi H, Shiozaki A, Fujiwara H, Okamoto K, Otsuji E (2016) Plasma MicroRNA profiles: identification of miR-23a as a novel biomarker for chemoresistance in esophageal squamous cell carcinoma. Oncotarget 7(38):62034–48. https://doi.org/10.18632/oncotarget.11500

    Article  PubMed  PubMed Central  Google Scholar 

  170. Li B, Xu WW, Guan XY, Qin YR, Law S, Lee NP, Chan KT, Tam PY, Li YY, Chan KW, Yuen HF, Tsao SW, He QY, Cheung AL (2016) Competitive binding between Id1 and E2F1 to Cdc20 regulates e2f1 degradation and thymidylate synthase expression to promote esophageal cancer chemoresistance. Clin Cancer Res 22(5):1243–55. https://doi.org/10.1158/1078-0432.CCR-15-1196

    Article  CAS  PubMed  Google Scholar 

  171. Shi H, Mao Y, Ju Q, Wu Y, Bai W, Wang P, Zhang Y, Jiang M (2018) C-terminal binding protein-2 mediates cisplatin chemoresistance in esophageal cancer cells via the inhibition of apoptosis. Int J Oncol 53(1):167–76. https://doi.org/10.3892/ijo.2018.4367

    Article  CAS  PubMed  Google Scholar 

  172. Hou XF, Xu LP, Song HY, Li S, Wu C, Wang JF (2017) ECRG2 enhances the anti-cancer effects of cisplatin in cisplatin-resistant esophageal cancer cells via upregulation of p53 and downregulation of PCNA. World J Gastroenterol 23(10):1796–803. https://doi.org/10.3748/wjg.v23.i10.1796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Liu T, Li R, Zhao H, Deng J, Long Y, Shuai MT, Li Q, Gu H, Chen YQ, Leng AM (2016) eIF4E promotes tumorigenesis and modulates chemosensitivity to cisplatin in esophageal squamous cell carcinoma. Oncotarget 7(41):66851–64. https://doi.org/10.18632/oncotarget.11694

    Article  PubMed  PubMed Central  Google Scholar 

  174. He S, Feng M, Liu M, Yang S, Yan S, Zhang W, Wang Z, Hu C, Xu Q, Chen L, Zhu H, Xu N (2014) P21-activated kinase 7 mediates cisplatin-resistance of esophageal squamous carcinoma cells with aurora-a overexpression. PLoS ONE 9(12):e113989. https://doi.org/10.1371/journal.pone.0113989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Liu X, Ma W, Yan Y, Wu S (2017) Silencing HMGN5 suppresses cell growth and promotes chemosensitivity in esophageal squamous cell carcinoma. J Biochem Mol Toxicol 31(12):e21996. https://doi.org/10.1002/jbt.21996

    Article  CAS  Google Scholar 

  176. Yamashita K, Miyata H, Makino T, Masuike Y, Furukawa H, Tanaka K, Miyazaki Y, Takahashi T, Kurokawa Y, Yamasaki M, Nakajima K, Takiguchi S, Morii E, Mori M, Doki Y (2017) High expression of the mitophagy-related protein pink1 is associated with a poor response to chemotherapy and a poor prognosis for patients treated with neoadjuvant chemotherapy for esophageal squamous cell carcinoma. Ann Surg Oncol 24(13):4025–32. https://doi.org/10.1245/s10434-017-6096-8

    Article  PubMed  Google Scholar 

  177. Zeng RJ, Zheng CW, Gu JE, Zhang HX, Xie L, Xu LY, Li EM (2019) RAC1 inhibition reverses cisplatin resistance in esophageal squamous cell carcinoma and induces downregulation of glycolytic enzymes. Mol Oncol 13(9):2010–30. https://doi.org/10.1002/1878-0261.12548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Fukuda S, Miyata H, Miyazaki Y, Makino T, Takahashi T, Kurokawa Y, Yamasaki M, Nakajima K, Takiguchi S, Mori M, Doki Y (2015) Pyruvate kinase M2 modulates esophageal squamous cell carcinoma chemotherapy response by regulating the pentose phosphate pathway. Ann Surg Oncol 22(Suppl 3):S1461-8. https://doi.org/10.1245/s10434-015-4522-3

    Article  PubMed  Google Scholar 

  179. Long X, Xiong W, Zeng X, Qi L, Cai Y, Mo M, Jiang H, Zhu B, Chen Z, Li Y (2019) Cancer-associated fibroblasts promote cisplatin resistance in bladder cancer cells by increasing IGF-1/ERβ/Bcl-2 signalling. Cell Death Dis 10(5):375. https://doi.org/10.1038/s41419-019-1581-6

    Article  PubMed  PubMed Central  Google Scholar 

  180. Steins A, Ebbing EA, Creemers A, van der Zalm AP, Jibodh RA, Waasdorp C, Meijer SL, van Delden OM, Krishnadath KK, Hulshof M, Bennink RJ, Punt C, Medema JP, Bijlsma MF, van Laarhoven H (2019) Chemoradiation induces epithelial-to-mesenchymal transition in esophageal adenocarcinoma. Int J Cancer 145(10):2792–803. https://doi.org/10.1002/ijc.32364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Zhang H, Xie C, Yue J, Jiang Z, Zhou R, Xie R, Wang Y, Wu S (2017) Cancer-associated fibroblasts mediated chemoresistance by a FOXO1/TGFβ1 signaling loop in esophageal squamous cell carcinoma. Mol Carcinog 56(3):1150–63. https://doi.org/10.1002/mc.22581

    Article  CAS  PubMed  Google Scholar 

  182. Yue D, Zhang Z, Li J, Chen X, Ping Y, Liu S, Shi X, Li L, Wang L, Huang L, Zhang B, Sun Y, Zhang Y (2015) Transforming growth factor-beta1 promotes the migration and invasion of sphere-forming stem-like cell subpopulations in esophageal cancer. Exper Cell Res 336(1):141–9. https://doi.org/10.1016/j.yexcr.2015.06.007

    Article  CAS  Google Scholar 

  183. Zhao Y, Zhu J, Shi B, Wang X, Lu Q, Li C, Chen H (2019) The transcription factor LEF1 promotes tumorigenicity and activates the TGF-β signaling pathway in esophageal squamous cell carcinoma. J Exp Clin Cancer Res 38(1):304. https://doi.org/10.1186/s13046-019-1296-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Ebbing EA, Van Der Zalm AP, Steins A, Creemers A, Hermsen S, Rentenaar R, Klein M, Waasdorp C, Hooijer G, Meijer SL, Krishnadath KK, Punt C, Van Berge Henegouwen MI, Gisbertz SS, Van Delden OM, Hulshof M, Medema JP, Van Laarhoven H, Bijlsma MF (2019) Stromal-derived interleukin 6 drives epithelial-to-mesenchymal transition and therapy resistance in esophageal adenocarcinoma. Proc Natl Acad Sci USA 116(6):2237–42. https://doi.org/10.1073/pnas.1820459116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Che Y, Wang J, Li Y, Lu Z, Huang J, Sun S, Mao S, Lei Y, Zang R, Sun N, He J (2018) Cisplatin-activated PAI-1 secretion in the cancer-associated fibroblasts with paracrine effects promoting esophageal squamous cell carcinoma progression and causing chemoresistance. Cell Death Dis 9(7):759. https://doi.org/10.1038/s41419-018-0808-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Bain GH, Collie-Duguid E, Murray GI, Gilbert FJ, Denison A, McKiddie F, Ahearn T, Fleming I, Leeds J, Phull P, Park K, Nanthakumaran S, Matula KM, Grabsch HI, Tan P, Welch A, Schweiger L, Dahle-Smith A, Urquhart G, Finegan M, Petty RD (2016) Tumour expression of leptin is associated with chemotherapy resistance and therapy-independent prognosis in gastro-oesophageal adenocarcinomas. Br J Cancer 114(12):e18. https://doi.org/10.1038/bjc.2016.139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Leicht DT, Kausar T, Wang Z, Ferrer-Torres D, Wang TD, Thomas DG, Lin J, Chang AC, Lin L, Beer DG (2014) TGM2: a cell surface marker in esophageal adenocarcinomas. J Thorac Oncol 9(6):872–81. https://doi.org/10.1097/JTO.0000000000000229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Wang J, Che W, Wang W, Su G, Zhen T, Jiang Z (2019) CDKN3 promotes tumor progression and confers cisplatin resistance via RAD51 in esophageal cancer. Cancer Manag Res 11:3253–64. https://doi.org/10.2147/CMAR.S193793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Wang J, Ji H, Zhu Q, Yu X, Du J, Jiang Z (2019) Co-Inhibition of BMI1 and Mel18 enhances chemosensitivity of esophageal squamous cell carcinoma in vitro and in vivo. Oncol Lett 17(6):5012–22. https://doi.org/10.3892/ol.2019.10160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. He F, Wang H, Li Y, Liu W, Gao X, Chen D, Wang Q, Shi G (2019) SRPX2 knockdown inhibits cell proliferation and metastasis and promotes chemosensitivity in esophageal squamous cell carcinoma. Biomed Pharmacother 109:671–8. https://doi.org/10.1016/j.biopha.2018.10.042

    Article  CAS  PubMed  Google Scholar 

  191. Liu ZC, Cao K, Xiao ZH, Qiao L, Wang XQ, Shang B, Jia Y, Wang Z (2017) VRK1 promotes cisplatin resistance by up-regulating c-MYC via c-jun activation and serves as a therapeutic target in esophageal squamous cell carcinoma. Oncotarget 8(39):65642–58. https://doi.org/10.18632/oncotarget.20020

    Article  PubMed  PubMed Central  Google Scholar 

  192. Zhao Y, Lu Q, Li C, Wang X, Jiang L, Huang L, Wang C, Chen H (2019) PRMT1 regulates the tumour-initiating properties of esophageal squamous cell carcinoma through histone H4 arginine methylation coupled with transcriptional activation. Cell Death Dis 10(5):359. https://doi.org/10.1038/s41419-019-1595-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Tanaka K, Miyata H, Sugimura K, Fukuda S, Kanemura T, Yamashita K, Miyazaki Y, Takahashi T, Kurokawa Y, Yamasaki M, Wada H, Nakajima K, Takiguchi S, Mori M, Doki Y (2015) miR-27 is associated with chemoresistance in esophageal cancer through transformation of normal fibroblasts to cancer-associated fibroblasts. Carcinogenesis 36(8):894–903. https://doi.org/10.1093/carcin/bgv067

    Article  CAS  PubMed  Google Scholar 

  194. Liu A, Zhu J, Wu G, Cao L, Tan Z, Zhang S, Jiang L, Wu J, Li M, Song L, Li J (2017) Antagonizing miR-455-3p Inhibits chemoresistance and aggressiveness in esophageal squamous cell carcinoma. Mol Cancer 16(1):106. https://doi.org/10.1186/s12943-017-0669-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Wu K, Hu Y, Yan K, Qi Y, Zhang C, Zhu D, Liu D, Zhao S (2020) MicroRNA-10b confers cisplatin resistance by activating AKT/mTOR/P70S6K signaling via targeting PPARγ in esophageal cancer. J Cell Physiol 235(2):1247–58. https://doi.org/10.1002/jcp.29040

    Article  CAS  PubMed  Google Scholar 

  196. Wang L, Zhang Z, Yu X, Li Q, Wang Q, Chang A, Huang X, Han X, Song Y, Hu J, Pang L, Hou J, Li F (2020) SOX9/miR-203a axis drives PI3K/AKT signaling to promote esophageal cancer progression. Cancer Lett 468:14–26. https://doi.org/10.1016/j.canlet.2019.10.004

    Article  CAS  PubMed  Google Scholar 

  197. Jingjing L, Wangyue W, Qiaoqiao X, Jietong Y (2016) MiR-218 increases sensitivity to cisplatin in esophageal cancer cells via targeting survivin expression. Open Med (Wars) 11(1):31–5. https://doi.org/10.1515/med-2016-0007

    Article  CAS  Google Scholar 

  198. Phatak P, Byrnes KA, Mansour D, Liu L, Cao S, Li R, Rao JN, Turner DJ, Wang JY, Donahue JM (2016) Overexpression of miR-214-3p in esophageal squamous cancer cells enhances sensitivity to cisplatin by targeting survivin directly and indirectly through CUG-BP1. Oncogene 35(16):2087–97. https://doi.org/10.1038/onc.2015.271

    Article  CAS  PubMed  Google Scholar 

  199. Zhen Q, Gao LN, Wang RF, Chu WW, Zhang YX, Zhao XJ, Lv BL, Liu JB (2018) LncRNA PCAT-1 promotes tumour growth and chemoresistance of oesophageal cancer to cisplatin. Cell Biochem Funct 36(1):27–33. https://doi.org/10.1002/cbf.3314

    Article  CAS  PubMed  Google Scholar 

  200. Xu C, Guo Y, Liu H, Chen G, Yan Y, Liu T (2018) TUG1 confers cisplatin resistance in esophageal squamous cell carcinoma by epigenetically suppressing PDCD4 expression via EZH2. Cell Biosci 8:61. https://doi.org/10.1186/s13578-018-0260-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Wang L, Yu X, Zhang Z, Pang L, Xu J, Jiang J, Liang W, Chai Y, Hou J, Li F (2017) Linc-ROR promotes esophageal squamous cell carcinoma progression through the derepression of SOX9. J Exp Clin Cancer Res 36(1):182. https://doi.org/10.1186/s13046-017-0658-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Giannakakou P, Sackett DL, Kang YK, Zhan Z, Buters JT, Fojo T, Poruchynsky MS (1997) Paclitaxel-resistant human ovarian cancer cells have mutant beta-tubulins that exhibit impaired paclitaxel-driven polymerization. J Biol Chem 272(27):17118–25. https://doi.org/10.1074/jbc.272.27.17118

    Article  CAS  PubMed  Google Scholar 

  203. Hari M, Loganzo F, Annable T, Tan X, Musto S, Morilla DB, Nettles JH, Snyder JP, Greenberger LM (2006) Paclitaxel-resistant cells have a mutation in the paclitaxel-binding region of beta-tubulin (Asp26Glu) and less stable microtubules. Mol Cancer Ther 5(2):270–8. https://doi.org/10.1158/1535-7163.MCT-05-0190

    Article  CAS  PubMed  Google Scholar 

  204. Öztop S, Işik A, Güner G, Gürdal H, Karabulut E, Yilmaz E, Akyol A (2019) Class III β-tubulin expression in colorectal neoplasms is a potential predictive biomarker for paclitaxel response. Anticancer Res 39(2):655–62. https://doi.org/10.21873/anticanres.13160

    Article  CAS  PubMed  Google Scholar 

  205. Murray S, Briasoulis E, Linardou H, Bafaloukos D, Papadimitriou C (2012) Taxane resistance in breast cancer: mechanisms, predictive biomarkers and circumvention strategies. Cancer Treat Rev 38(7):890–903. https://doi.org/10.1016/j.ctrv.2012.02.011

    Article  CAS  PubMed  Google Scholar 

  206. Wu H, Chen S, Yu J, Li Y, Zhang XY, Yang L, Zhang H, Hou Q, Jiang M, Brunicardi FC, Wang C, Wu S (2018) Single-cell transcriptome analyses reveal molecular signals to intrinsic and acquired paclitaxel resistance in esophageal squamous cancer cells. Cancer Lett 420:156–67. https://doi.org/10.1016/j.canlet.2018.01.059

    Article  CAS  PubMed  Google Scholar 

  207. He W, Zhang D, Jiang J, Liu P, Wu C (2014) The relationships between the chemosensitivity of human gastric cancer to paclitaxel and the expressions of class III β-tubulin, MAPT, and survivin. Med Oncol 31(5):950. https://doi.org/10.1007/s12032-014-0950-3

    Article  CAS  PubMed  Google Scholar 

  208. Höflmayer D, Öztürk E, Schroeder C, Hube-Magg C, Blessin NC, Simon R, Lang DS, Neubauer E, Göbel C, Heinrich MC, Fraune C, Möller K, Armbrust M, Freytag M, Hinsch A, Lühr C, Noack M, Reiswich V, Weidemann S, Bockhorn M, Perez D, Izbicki JR, Sauter G, Jacobsen F (2018) High expression of class III β-tubulin in upper gastrointestinal cancer types. Oncol Lett 16(6):7139–45. https://doi.org/10.3892/ol.2018.9502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Gong L, Mao W, Chen Q, Jiang Y, Fan Y (2019) Analysis of SPARC and TUBB3 as predictors for prognosis in esophageal squamous cell carcinoma receiving nab-paclitaxel plus cisplatin neoadjuvant chemotherapy: a prospective study. Cancer Chemother Pharmacol 83(4):639–47. https://doi.org/10.1007/s00280-019-03769-7

    Article  CAS  PubMed  Google Scholar 

  210. Tanaka K, Mohri Y, Ohi M, Yokoe T, Koike Y, Morimoto Y, Miki C, Tonouchi H, Kusunoki M (2008) Mitotic checkpoint genes, hsMAD2 and BubR1, in oesophageal squamous cancer cells and their association with 5-fluorouracil and cisplatin-based radiochemotherapy. Clin Oncol (R Coll Radiol) 20(8):639–46. https://doi.org/10.1016/j.clon.2008.06.010

    Article  CAS  Google Scholar 

  211. Hu M, Liu Q, Song P, Zhan X, Luo M, Liu C, Yang D, Cai Y, Zhang F, Jiang F, Zhang Y, Tang M, Zuo G, Zhou L, Luo J, Shi Q, Weng Y (2013) Abnormal expression of the mitotic checkpoint protein bubr1 contributes to the anti-microtubule drug resistance of esophageal squamous cell carcinoma cells. Oncol Rep 29(1):185–92. https://doi.org/10.3892/or.2012.2117

    Article  CAS  PubMed  Google Scholar 

  212. Lee EA, Keutmann MK, Dowling ML, Harris E, Chan G, Kao GD (2004) Inactivation of the mitotic checkpoint as a determinant of the efficacy of microtubule-targeted drugs in killing human cancer cells. Mol Cancer Ther 3(6):661–9

    CAS  PubMed  Google Scholar 

  213. Chong T, Sarac A, Yao CQ, Liao L, Lyttle N, Boutros PC, Bartlett J, Spears M (2018) Deregulation of the spindle assembly checkpoint is associated with paclitaxel resistance in ovarian cancer. J Ovarian Res 11(1):27. https://doi.org/10.1186/s13048-018-0399-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Fu Y, Ye D, Chen H, Lu W, Ye F, Xie X (2007) Weakened spindle checkpoint with reduced BubR1 expression in paclitaxel-resistant ovarian carcinoma cell line SKOV3-TR30. Gynecol Oncol 105(1):66–73. https://doi.org/10.1016/j.ygyno.2006.10.061

    Article  CAS  PubMed  Google Scholar 

  215. Ferlini C, Cicchillitti L, Raspaglio G, Bartollino S, Cimitan S, Bertucci C, Mozzetti S, Gallo D, Persico M, Fattorusso C, Campiani G, Scambia G (2009) Paclitaxel directly binds to Bcl-2 and functionally mimics activity of Nur77. Cancer Res 69(17):6906–14. https://doi.org/10.1158/0008-5472.CAN-09-0540

    Article  CAS  PubMed  Google Scholar 

  216. Li H, Kolluri SK, Gu J, Dawson MI, Cao X, Hobbs PD, Lin B, Chen G, Lu J, Lin F, Xie Z, Fontana JA, Reed JC, Zhang X (2000) Cytochrome C release and apoptosis induced by mitochondrial targeting of nuclear orphan receptor TR3. Science 289(5482):1159–64. https://doi.org/10.1126/science.289.5482.1159

    Article  CAS  PubMed  Google Scholar 

  217. Lin B, Kolluri SK, Lin F, Liu W, Han YH, Cao X, Dawson MI, Reed JC, Zhang XK (2004) Conversion of Bcl-2 from protector to killer by interaction with nuclear orphan receptor Nur77/TR3. Cell 116(4):527–40. https://doi.org/10.1016/s0092-8674(04)00162-x

    Article  CAS  PubMed  Google Scholar 

  218. Ferlini C, Raspaglio G, Mozzetti S, Distefano M, Filippetti F, Martinelli E, Ferrandina G, Gallo D, Ranelletti FO, Scambia G (2003) Bcl-2 down-regulation is a novel mechanism of paclitaxel resistance. Mol Pharmacol 64(1):51–8. https://doi.org/10.1124/mol.64.1.51

    Article  CAS  PubMed  Google Scholar 

  219. Wang R, Sumarpo A, Saiki Y, Chen N, Sunamura M, Horii A (2016) ABCB1 Is upregulated in acquisition of taxane resistance: lessons from esophageal squamous cell carcinoma cell lines. Tohoku J Exp Med 240(4):295–301. https://doi.org/10.1620/tjem.240.295

    Article  CAS  PubMed  Google Scholar 

  220. Wang S, Akhtar J, Wang Z (2015) Anti-STMN1 therapy improves sensitivity to antimicrotubule drugs in esophageal squamous cell carcinoma. Tumour Biol 36(10):7797–806. https://doi.org/10.1007/s13277-015-3520-1

    Article  CAS  PubMed  Google Scholar 

  221. Yang H, Li XD, Zhou Y, Ban X, Zeng TT, Li L, Zhang BZ, Yun J, Xie D, Guan XY, Li Y (2015) Stemness and chemotherapeutic drug resistance induced by EIF5A2 overexpression in esophageal squamous cell carcinoma. Oncotarget 6(28):26079–89. https://doi.org/10.18632/oncotarget.4581

    Article  PubMed  PubMed Central  Google Scholar 

  222. Meng F, Qian L, Lv L, Ding B, Zhou G, Cheng X, Niu S, Liang Y (2016) miR-193a-3p regulation of chemoradiation resistance in oesophageal cancer cells via the PSEN1 gene. Gene 579(2):139–45. https://doi.org/10.1016/j.gene.2015.12.060

    Article  CAS  PubMed  Google Scholar 

  223. Xie P, Mo JL, Liu JH, Li X, Tan LM, Zhang W, Zhou HH, Liu ZQ (2020) Pharmacogenomics of 5-fluorouracil in colorectal cancer: review and update. Cell Oncol (Dordr) 43(6):989–1001. https://doi.org/10.1007/s13402-020-00529-1

    Article  CAS  Google Scholar 

  224. Shirasaka T (2009) Development history and concept of an oral anticancer agent S-1 (TS-1): its clinical usefulness and future vistas. Jpn J Clin Oncol 39(1):2–15. https://doi.org/10.1093/jjco/hyn127

    Article  PubMed  Google Scholar 

  225. Touroutoglou N, Pazdur R (1996) Thymidylate synthase inhibitors. Clin Cancer Res 2(2):227–43

    CAS  PubMed  Google Scholar 

  226. Jarmuła A (2010) Antifolate inhibitors of thymidylate synthase as anticancer drugs. Mini Rev Med Chem 10(13):1211–22. https://doi.org/10.2174/13895575110091211

    Article  PubMed  Google Scholar 

  227. Chu E, Callender MA, Farrell MP, Schmitz JC (2003) Thymidylate Synthase inhibitors as anticancer agents: from bench to bedside. Cancer Chemother Pharmacol 52(Suppl 1):S80-9. https://doi.org/10.1007/s00280-003-0625-9

    Article  CAS  PubMed  Google Scholar 

  228. Rustum YM, Harstrick A, Cao S, Vanhoefer U, Yin MB, Wilke H, Seeber S (1997) Thymidylate synthase inhibitors in cancer therapy: direct and indirect inhibitors. J Clin Oncol 15(1):389–400. https://doi.org/10.1200/JCO.1997.15.1.389

    Article  CAS  PubMed  Google Scholar 

  229. Yi J, Chen S, Yi P, Luo J, Fang M, Du Y, Zou L, Fan P (2020) Pyrotinib sensitizes 5-fluorouracil-resistant HER2+ breast cancer cells to 5-fluorouracil. Oncol Res 28(5):519–31. https://doi.org/10.3727/096504020X15960154585410

    Article  PubMed  PubMed Central  Google Scholar 

  230. Murata S, Adachi M, Kioi M, Torigoe S, Ijichi K, Hasegawa Y, Ogawa T, Bhayani MK, Lai SY, Mitsudo K, Tohnai I (2011) Etodolac improves 5-FU sensitivity of head and neck cancer cells through inhibition of thymidylate synthase. Anticancer Res 31(9):2893–8

    CAS  PubMed  Google Scholar 

  231. Entezar-Almahdi E, Mohammadi-Samani S, Tayebi L, Farjadian F (2020) Recent advances in designing 5-fluorouracil delivery systems: a stepping stone in the safe treatment of colorectal cancer. Int J Nanomed 15:5445–58. https://doi.org/10.2147/IJN.S257700

    Article  CAS  Google Scholar 

  232. Lam SW, Guchelaar HJ, Boven E (2016) The role of pharmacogenetics in capecitabine efficacy and toxicity. Cancer Treat Rev 50:9–22. https://doi.org/10.1016/j.ctrv.2016.08.001

    Article  CAS  PubMed  Google Scholar 

  233. Okines A, Norman AR, McCloud P, Kang YK, Cunningham D (2009) Meta-analysis of the REAL-2 and ML17032 trials: evaluating capecitabine-based combination chemotherapy and infused 5-fluorouracil-based combination chemotherapy for the treatment of advanced oesophago-gastric cancer. Ann Oncol 20(9):1529–34. https://doi.org/10.1093/annonc/mdp047

    Article  CAS  PubMed  Google Scholar 

  234. Li T, Si W, Zhu J, Yin L, Zhong C (2020) Emodin reverses 5-FU resistance in human colorectal cancer via downregulation of PI3K/Akt signaling pathway. Am J Transl Res 12(5):1851–61

    CAS  PubMed  PubMed Central  Google Scholar 

  235. Dai Q, Zhang T, Pan J, Li C (2020) LncRNA UCA1 promotes cisplatin resistance in gastric cancer via recruiting EZH2 and Activating PI3K/AKT pathway. J Cancer 11(13):3882–92. https://doi.org/10.7150/jca.43446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Romano G, Santi L, Bianco MR, Giuffrè MR, Pettinato M, Bugarin C, Garanzini C, Savarese L, Leoni S, Cerrito MG, Leone BE, Gaipa G, Grassilli E, Papa M, Lavitrano M, Giovannoni R (2016) The TGF-β pathway is activated by 5-fluorouracil treatment in drug resistant colorectal carcinoma cells. Oncotarget 7(16):22077–91. https://doi.org/10.18632/oncotarget.7895

    Article  PubMed  PubMed Central  Google Scholar 

  237. Zhu QL, Li Z, Lv CM, Wang W (2019) MiR-187 influences cisplatin-resistance of gastric cancer cells through regulating the tgf-β/smad signaling pathway. Eur Rev Med Pharmacol Sci 23(22):9907–14. https://doi.org/10.26355/eurrev_201911_19556

    Article  PubMed  Google Scholar 

  238. Huang C, Chen Z, Yang C, Chen L, Lai C, Zhang Y, Yuan W, Jeong JH (2020) Combinational inhibition of EGFR and YAP reverses 5-fu resistance in colorectal cancer. J Cancer 11(18):5432–9. https://doi.org/10.7150/jca.44775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Bi L, Ma F, Tian R, Zhou Y, Lan W, Song Q, Cheng X (2018) AJUBA increases the cisplatin resistance through hippo pathway in cervical cancer. Gene 644:148–54. https://doi.org/10.1016/j.gene.2017.11.017

    Article  CAS  PubMed  Google Scholar 

  240. He L, Zhu H, Zhou S, Wu T, Wu H, Yang H, Mao H, Sekharkathera C, Janardhan A, Edick AM, Zhang A, Hu Z, Pan F, Guo Z (2018) Wnt pathway is involved in 5-FU Drug Resistance Of Colorectal Cancer Cells. Exp Mol Med 50(8):1–12. https://doi.org/10.1038/s12276-018-0128-8

    Article  CAS  PubMed  Google Scholar 

  241. Zhang Z, Zhang Y, Qin X, Wang Y, Fu J (2020) FGF9 Promotes Cisplatin Resistance In Colorectal Cancer Via Regulation of Wnt/β-catenin signaling pathway. Exp Ther Med 19(3):1711–8. https://doi.org/10.3892/etm.2019.8399

    Article  CAS  PubMed  Google Scholar 

  242. Shi N, Yu H, Chen T (2019) Inhibition of esophageal cancer growth through the suppression of PI3K/AKT/mTOR signaling pathway. Onco Targets Ther 12:7637–47. https://doi.org/10.2147/OTT.S205457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Bu F, Liu X, Li J, Chen S, Tong X, Ma C, Mao H, Pan F, Li X, Chen B, Xu L, Li E, Kou G, Han J, Guo S, Zhao J, Guo Y (2015) TGF-β1 induces epigenetic silence of TIP30 to promote tumor metastasis in esophageal carcinoma. Oncotarget 6(4):2120–33. https://doi.org/10.18632/oncotarget.2940

    Article  PubMed  Google Scholar 

  244. Zhang R, Liu J, Zhang W, Hua L, Qian LT, Zhou SB (2020) EphA5 knockdown enhances the invasion and migration ability of esophageal squamous cell carcinoma via epithelial-mesenchymal transition through activating Wnt/β-catenin pathway. Cancer Cell Int 20:20. https://doi.org/10.1186/s12935-020-1101-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Binarová P, Tuszynski J (2019) Tubulin: structure functions and roles in disease. Cells 8(10):1294. https://doi.org/10.3390/cells8101294

    Article  CAS  PubMed Central  Google Scholar 

  246. Kavallaris M (2010) Microtubules and resistance to tubulin-binding agents. Nat Rev Cancer 10(3):194–204. https://doi.org/10.1038/nrc2803

    Article  CAS  PubMed  Google Scholar 

  247. Raspaglio G, Filippetti F, Prislei S, Penci R, de Maria I, Cicchillitti L, Mozzetti S, Scambia G, Ferlini C (2008) Hypoxia Induces Class III beta-tubulin gene expression by HIF-1alpha binding to its 3’ flanking region. Gene 409(1–2):100–8. https://doi.org/10.1016/j.gene.2007.11.015

    Article  CAS  PubMed  Google Scholar 

  248. Senthebane DA, Rowe A, Thomford NE, Shipanga H, Munro D, Mazeedi M, Almazyadi H, Kallmeyer K, Dandara C, Pepper MS, Parker MI, Dzobo K (2017) The Role Of Tumor Microenvironment In Chemoresistance: To Survive, Keep Your Enemies Closer. Int J Mol Sci 18(7):1586. https://doi.org/10.3390/ijms18071586

    Article  CAS  PubMed Central  Google Scholar 

  249. Kashyap VK, Wang Q, Setua S, Nagesh P, Chauhan N, Kumari S, Chowdhury P, Miller DD, Yallapu MM, Li W, Jaggi M, Hafeez BB, Chauhan SC (2019) Therapeutic efficacy of a novel βIII/βIV-tubulin inhibitor (VERU-111) in pancreatic cancer. J Exp Clin Cancer Res 38(1):29. https://doi.org/10.1186/s13046-018-1009-7

    Article  PubMed  PubMed Central  Google Scholar 

  250. Mahmud F, Deng S, Chen H, Miller DD, Li W (2020) Orally available tubulin inhibitor VERU-111 enhances antitumor efficacy in paclitaxel-resistant lung cancer. Cancer Lett 495:76–88. https://doi.org/10.1016/j.canlet.2020.09.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Deng S, Krutilina RI, Wang Q, Lin Z, Parke DN, Playa HC, Chen H, Miller DD, Seagroves TN, Li W (2020) An orally available tubulin inhibitor, VERU-111, suppresses triple-negative breast cancer tumor growth and metastasis and bypasses taxane resistance. Mol Cancer Ther 19(2):348–63. https://doi.org/10.1158/1535-7163.MCT-19-0536

    Article  CAS  PubMed  Google Scholar 

  252. Wang X, Wu E, Wu J, Wang TL, Hsieh HP, Liu X (2013) An antimitotic and antivascular agent BPR0L075 overcomes multidrug resistance and induces mitotic catastrophe in paclitaxel-resistant ovarian cancer cells. PLoS ONE 8(6):e65686. https://doi.org/10.1371/journal.pone.0065686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. García-Aranda M, Pérez-Ruiz E, Redondo M (2018) Bcl-2 Inhibition to overcome resistance to chemo- and immunotherapy. Int J Mol Sci 19(12):3950. https://doi.org/10.3390/ijms19123950

    Article  PubMed Central  Google Scholar 

  254. Estève MA, Carré M, Bourgarel-Rey V, Kruczynski A, Raspaglio G, Ferlini C, Braguer D (2006) Bcl-2 down-regulation and tubulin subtype composition are involved in resistance of ovarian cancer cells to vinflunine. Mol Cancer Ther 5(11):2824–33. https://doi.org/10.1158/1535-7163.MCT-06-0277

    Article  CAS  PubMed  Google Scholar 

  255. Kumar Biswas S, Huang J, Persaud S, Basu A (2004) Down-regulation of Bcl-2 is associated with cisplatin resistance in human small cell lung cancer H69 cells. Mol Cancer Ther 3(3):327–34

    CAS  PubMed  Google Scholar 

  256. Savry A, Carre M, Berges R, Rovini A, Pobel I, Chacon C, Braguer D, Bourgarel-Rey V (2013) Bcl-2-enhanced efficacy of microtubule-targeting chemotherapy through bim overexpression: implications for cancer treatment. Neoplasia 15(1):49–60. https://doi.org/10.1593/neo.121074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Haldar S, Chintapalli J, Croce CM (1996) Taxol induces Bcl-2 phosphorylation and death of prostate cancer cells. Cancer Res 56(6):1253–5

    CAS  PubMed  Google Scholar 

  258. Whitaker RH, Placzek WJ (2019) Regulating the BCL2 family to improve sensitivity to microtubule targeting agents. Cells 8(4):346. https://doi.org/10.3390/cells8040346

    Article  CAS  PubMed Central  Google Scholar 

Download references

Funding

We would like to thank Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq–Brazil), Fundação de Amparo à Pesquisa Carlos Chagas Filho (FAPERJ-Brazil), Swiss Bridge Foundation and Programa de Oncobiologia/Fundação André Frauzino de Pesquisas para o Câncer.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nathalia Meireles Da Costa or Antonio Palumbo Jr.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lohan-Codeço, M., Barambo-Wagner, M.L., Nasciutti, L.E. et al. Molecular mechanisms associated with chemoresistance in esophageal cancer. Cell. Mol. Life Sci. 79, 116 (2022). https://doi.org/10.1007/s00018-022-04131-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04131-6

Keywords

Navigation