Skip to main content

Advertisement

Log in

DNA damage responses that enhance resilience to replication stress

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

During duplication of the genome, eukaryotic cells may experience various exogenous and endogenous replication stresses that impede progression of DNA replication along chromosomes. Chemical alterations in template DNA, imbalances of deoxynucleotide pools, repetitive sequences, tight DNA–protein complexes, and conflict with transcription can negatively affect the replication machineries. If not properly resolved, stalled replication forks can cause chromosome breaks leading to genomic instability and tumor development. Replication stress is enhanced in cancer cells due, for example, to the loss of DNA repair genes or replication–transcription conflict caused by activation of oncogenic pathways. To prevent these serious consequences, cells are equipped with diverse mechanisms that enhance the resilience of replication machineries to replication stresses. This review describes DNA damage responses activated at stressed replication forks and summarizes current knowledge on the pathways that promote faithful chromosome replication and protect chromosome integrity, including ATR-dependent replication checkpoint signaling, DNA cross-link repair, and SLX4-mediated responses to tight DNA–protein complexes that act as barriers. This review also focuses on the relevance of replication stress responses to selective cancer chemotherapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

Not applicable.

References

  1. Hills SA, Diffley JFX (2014) DNA replication and oncogene-induced replicative stress. Curr Biol 24:R435-444. https://doi.org/10.1016/j.cub.2014.04.012

    Article  CAS  PubMed  Google Scholar 

  2. Prioleau M, MacAlpine DM (2016) DNA replication origins—where do we begin? Genes Dev 30:1683–1697. https://doi.org/10.1101/gad.285114.116.ical

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ganier O, Prorok P, Akerman I, Méchali M (2019) Metazoan DNA replication origins. Curr Opin Cell Biol 58:134–141. https://doi.org/10.1016/j.ceb.2019.03.003

    Article  CAS  PubMed  Google Scholar 

  4. Masai H, Matsumoto S, You Z et al (2010) Eukaryotic chromosome DNA replication: where, when, and how? Annu Rev Biochem 79:89–130. https://doi.org/10.1146/annurev.biochem.052308.103205

    Article  CAS  PubMed  Google Scholar 

  5. Fragkos M, Ganier O, Coulombe P, Méchali M (2015) DNA replication origin activation in space and time. Nat Rev Mol Cell Biol 16:360–374. https://doi.org/10.1038/nrm4002

    Article  CAS  PubMed  Google Scholar 

  6. Fujita M (2006) Cdt1 revisited: complex and tight regulation during the cell cycle and consequences of deregulation in mammalian cells. Cell Div 1:22. https://doi.org/10.1186/1747-1028-1-22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bleichert F, Botchan MR, Berger JM (2017) Mechanisms for initiating cellular DNA replication. Science 355:eaah6317. https://doi.org/10.1126/science.aah6317

    Article  CAS  PubMed  Google Scholar 

  8. Lewis JS, Costa A (2020) Caught in the act: structural dynamics of replication origin activation and fork progression. Biochem Soc Trans 48:1057–1066. https://doi.org/10.1042/BST20190998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Muñoz S, Méndez J (2017) DNA replication stress: from molecular mechanisms to human disease. Chromosoma 126:1–15. https://doi.org/10.1007/s00412-016-0573-x

    Article  CAS  PubMed  Google Scholar 

  10. García-Muse T, Aguilera A (2016) Transcription-replication conflicts: how they occur and how they are resolved. Nat Rev Mol Cell Biol 17:553–563. https://doi.org/10.1038/nrm.2016.88

    Article  CAS  PubMed  Google Scholar 

  11. Bertolin AP, Hoffmann JS, Gottifredi V (2020) Under-replicated DNA: the byproduct of large genomes? Cancers (Basel) 12:2764. https://doi.org/10.3390/cancers12102764

    Article  CAS  Google Scholar 

  12. Tubbs A, Nussenzweig A (2017) Endogenous DNA damage as a source of genomic instability in cancer. Cell 168:644–656. https://doi.org/10.1016/j.cell.2017.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Macheret M, Bhowmick R, Sobkowiak K et al (2020) High-resolution mapping of mitotic DNA synthesis regions and common fragile sites in the human genome through direct sequencing. Cell Res 30:997–1008. https://doi.org/10.1038/s41422-020-0358-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Özer Ö, Hickson ID (2018) Pathways for maintenance of telomeres and common fragile sites during DNA replication stress. Open Biol 8:180018. https://doi.org/10.1098/rsob.180018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Debatisse M, Rosselli F (2019) A journey with common fragile sites: from S phase to telophase. Genes Chromosom Cancer 58:305–316. https://doi.org/10.1002/gcc.22704

    Article  CAS  PubMed  Google Scholar 

  16. Wu S, Turner KM, Nguyen N et al (2019) Circular ecDNA promotes accessible chromatin and high oncogene expression. Nature 575:699–703. https://doi.org/10.1038/s41586-019-1763-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Morton AR, Dogan-Artun N, Faber ZJ et al (2019) Functional enhancers shape extrachromosomal oncogene amplifications. Cell 179:1330–1341. https://doi.org/10.1016/j.cell.2019.10.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gu X, Yu J, Chai P et al (2020) Novel insights into extrachromosomal DNA: redefining the onco-drivers of tumor progression. J Exp Clin Cancer Res 39:215. https://doi.org/10.1186/s13046-020-01726-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kotsantis P, Petermann E, Boulton SJ (2018) Mechanisms of oncogene-induced replication stress: Jigsaw falling into place. Cancer Discov 8:537–555. https://doi.org/10.1158/2159-8290.CD-17-1461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Primo LMF, Teixeira LK (2020) DNA replication stress: oncogenes in the spotlight. Genet Mol Biol 43:e20190138. https://doi.org/10.1590/1678-4685gmb-2019-0138

    Article  CAS  Google Scholar 

  21. Giannattasio M, Branzei D (2017) S-phase checkpoint regulations that preserve replication and chromosome integrity upon dNTP depletion. Cell Mol Life Sci 74:2361–2380. https://doi.org/10.1007/s00018-017-2474-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ercilla A, Benada J, Amitash S et al (2020) Physiological tolerance to ssDNA enables strand uncoupling during DNA replication. Cell Rep 30:2416–2429. https://doi.org/10.1016/j.celrep.2020.01.067

    Article  CAS  PubMed  Google Scholar 

  23. Cimprich KA, Cortez D (2008) ATR: an essential regulator of genome integrity. Nat Rev Mol Cell Biol 9:616–627. https://doi.org/10.1038/nrm2450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Saldivar JC, Cortez D, Cimprich KA (2017) The essential kinase ATR: ensuring faithful duplication of a challenging genome. Nat Rev Mol Cell Biol 18:622–636. https://doi.org/10.1038/nrm.2017.67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Blackford AN, Jackson SP (2017) ATM, ATR, and DNA-PK: the trinity at the heart of the DNA damage response. Mol Cell 66:801–817. https://doi.org/10.1016/j.molcel.2017.05.015

    Article  CAS  PubMed  Google Scholar 

  26. Lemmens B, Lindqvist A (2019) DNA replication and mitotic entry: A brake model for cell cycle progression. J Cell Biol 218:3892–3902. https://doi.org/10.1083/JCB.201909032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Saldivar JC, Hamperl S, Bocek MJ et al (2018) An intrinsic S/G2 checkpoint enforced by ATR. Science 361:806–810. https://doi.org/10.1126/science.aap9346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Toledo L, Neelsen KJ, Lukas J (2017) Replication catastrophe: when a checkpoint fails because of exhaustion. Mol Cell 66:735–749. https://doi.org/10.1016/j.molcel.2017.05.001

    Article  CAS  PubMed  Google Scholar 

  29. Zou L, Elledge SJ (2003) Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 300:1542–1548. https://doi.org/10.1126/science.1083430

    Article  CAS  PubMed  Google Scholar 

  30. Cortez D, Guntuku S, Qin J, Elledge SJ (2001) ATR and ATRIP: partners in checkpoint signaling. Science 294:1713–1716. https://doi.org/10.1126/science.1065521

    Article  CAS  PubMed  Google Scholar 

  31. Mordes DA, Glick GG, Zhao R, Cortez D (2008) TopBP1 activates ATR through ATRIP and a PIKK regulatory domain. Genes Dev 22:1478–1489. https://doi.org/10.1101/gad.1666208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kumagai A, Lee J, Yoo HY, Dunphy WG (2006) TopBP1 activates the ATR-ATRIP complex. Cell 124:943–955. https://doi.org/10.1016/j.cell.2005.12.041

    Article  CAS  PubMed  Google Scholar 

  33. Haahr P, Hoffmann S, Tollenaere MAX et al (2016) Activation of the ATR kinase by the RPA-binding protein ETAA1. Nat Cell Biol 18:1196–1207. https://doi.org/10.1038/ncb3422

    Article  CAS  PubMed  Google Scholar 

  34. Thada V, Cortez D (2021) ATR activation is regulated by dimerization of ATR activating proteins. J Biol Chem 296:100455. https://doi.org/10.1016/j.jbc.2021.100455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bass TE, Luzwick JW, Kavanaugh G et al (2016) ETAA1 acts at stalled replication forks to maintain genome integrity. Nat Cell Biol 18:1185–1195. https://doi.org/10.1038/ncb3415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lee YC, Zhou Q, Chen J, Yuan J (2016) RPA-binding protein ETAA1 is an ATR activator involved in DNA replication stress response. Curr Biol 26:3257–3268. https://doi.org/10.1016/j.cub.2016.10.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Delacroix S, Wagner JM, Kobayashi M et al (2007) The Rad9-Hus1-Rad1 (9–1-1) clamp activates checkpoint signaling via TopBP1. Genes Dev 21:1472–1477. https://doi.org/10.1101/gad.1547007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lee J, Kumagai A, Dunphy WG (2007) The Rad9-Hus1-Rad1 checkpoint clamp regulates interaction of TopBP1 with ATR. J Biol Chem 282:28036–28044. https://doi.org/10.1074/jbc.M704635200

    Article  CAS  PubMed  Google Scholar 

  39. Ellison V, Stillman B (2003) Biochemical characterization of DNA damage checkpoint complexes: clamp loader and clamp complexes with specificity for 5′ recessed DNA. PLoS Biol 1:e33. https://doi.org/10.1371/journal.pbio.0000033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bermudez VP, Lindsey-Boltz LA, Cesare AJ et al (2003) Loading of the human 9–1-1 checkpoint complex onto DNA by the checkpoint clamp loader hRad17-replication factor C complex in vitro. Proc Natl Acad Sci USA 100:1633–1638. https://doi.org/10.1073/pnas.0437927100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zou L, Liu D, Elledge SJ (2003) Replication protein A-mediated recruitment and activation of Rad17 complexes. Proc Natl Acad Sci USA 100:13827–13832. https://doi.org/10.1073/pnas.2336100100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Frattini C, Promonet A, Alghoul E et al (2021) TopBP1 assembles nuclear condensates to switch on ATR signaling. Mol Cell 81:1231–1245. https://doi.org/10.1016/j.molcel.2020.12.049

    Article  CAS  PubMed  Google Scholar 

  43. Wardlaw CP, Carr AM, Oliver AW (2014) TopBP1: a BRCT-scaffold protein functioning in multiple cellular pathways. DNA Repair (Amst) 22:165–174. https://doi.org/10.1016/j.dnarep.2014.06.004

    Article  CAS  Google Scholar 

  44. Lyu K, Kumagai A, Dunphy WG (2019) RPA-coated single-stranded DNA promotes the ETAA1-dependent activation of ATR. Cell Cycle 18:898–913. https://doi.org/10.1080/15384101.2019.1598728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Feng S, Zhao Y, Xu Y et al (2016) Ewing tumor-associated antigen 1 interacts with replication protein A to promote restart of stalled replication forks. J Biol Chem 291:21956–21962. https://doi.org/10.1074/jbc.C116.747758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Achuthankutty D, Thakur RS, Haahr P et al (2019) Regulation of ETAA1-mediated ATR activation couples DNA replication fidelity and genome stability. J Cell Biol 218:3943–3953. https://doi.org/10.1083/JCB.201905064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bass TE, Cortez D (2019) Quantitative phosphoproteomics reveals mitotic function of the ATR activator ETAA1. J Cell Biol 218:1235–1249. https://doi.org/10.1083/jcb.201810058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kabeche L, Nguyen HD, Buisson R, Zou L (2018) A mitosis-specific and R loop–driven ATR pathway promotes faithful chromosome segregation. Science 359:108–114. https://doi.org/10.1016/S1369-5274(01)00265-X

    Article  CAS  PubMed  Google Scholar 

  49. Miosge LA, Sontani Y, Chuah A et al (2017) Systems-guided forward genetic screen reveals a critical role of the replication stress response protein ETAA1 in T cell clonal expansion. Proc Natl Acad Sci USA 114:E5216–E5225. https://doi.org/10.1073/pnas.1705795114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jeon Y, Ko E, Lee KY et al (2011) TopBP1 deficiency causes an early embryonic lethality and induces cellular senescence in primary cells. J Biol Chem 286:5414–5422. https://doi.org/10.1074/jbc.M110.189704

    Article  CAS  PubMed  Google Scholar 

  51. Zhou ZW, Liu C, Li TL et al (2013) An essential function for the ATR-Activation-Domain (AAD) of TopBP1 in mouse development and cellular senescence. PLoS Genet 9:e1003702. https://doi.org/10.1371/journal.pgen.1003702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Jones MJK, Gelot C, Munk S et al (2021) Human DDK rescues stalled forks and counteracts checkpoint inhibition at unfired origins to complete DNA replication. Mol Cell 81:426–441. https://doi.org/10.1016/j.molcel.2021.01.004

    Article  CAS  PubMed  Google Scholar 

  53. Dwivedi VK, Pardo-Pastor C, Droste R et al (2021) Replication stress promotes cell elimination by extrusion. Nature 593:591–596. https://doi.org/10.1038/s41586-021-03526-y

    Article  CAS  PubMed  Google Scholar 

  54. Xie M, Yen Y, Owonikoko TK et al (2014) Bcl2 induces DNA replication stress by inhibiting ribonucleotide reductase. Cancer Res 74:212–223. https://doi.org/10.1158/0008-5472.CAN-13-1536-T

    Article  CAS  PubMed  Google Scholar 

  55. Aird KM, Zhang G, Li H et al (2013) Suppression of nucleotide metabolism underlies the establishment and maintenance of oncogene-induced senescence. Cell Rep 3:1252–1265. https://doi.org/10.1016/j.celrep.2013.03.004

    Article  CAS  PubMed  Google Scholar 

  56. Bester AC, Roniger M, Oren YS et al (2011) Nucleotide deficiency promotes genomic instability in early stages of cancer development. Cell 145:435–446. https://doi.org/10.1016/j.cell.2011.03.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Poli J, Tsaponina O, Crabbé L et al (2012) dNTP pools determine fork progression and origin usage under replication stress. EMBO J 31:883–894. https://doi.org/10.1038/emboj.2011.470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lopez-Contreras AJ, Specks J, Barlow JH et al (2015) Increased Rrm2 gene dosage reduces fragile site breakage and prolongs survival of ATR mutant mice. Genes Dev 29:690–695. https://doi.org/10.1101/gad.256958.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Shu Z, Li Z, Huang H et al (2020) Cell-cycle-dependent phosphorylation of RRM1 ensures efficient DNA replication and regulates cancer vulnerability to ATR inhibition. Oncogene 39:5721–5733. https://doi.org/10.1038/s41388-020-01403-y

    Article  CAS  PubMed  Google Scholar 

  60. Neelsen KJ, Lopes M (2015) Replication fork reversal in eukaryotes: from dead end to dynamic response. Nat Rev Mol Cell Biol 16:207–220. https://doi.org/10.1038/nrm3935

    Article  CAS  PubMed  Google Scholar 

  61. Cortez D (2019) Replication-coupled DNA repair. Mol Cell 74:866–876. https://doi.org/10.1016/j.molcel.2019.04.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Berti M, Cortez D, Lopes M (2020) The plasticity of DNA replication forks in response to clinically relevant genotoxic stress. Nat Rev Mol Cell Biol 21:633–651. https://doi.org/10.1038/s41580-020-0257-5

    Article  CAS  PubMed  Google Scholar 

  63. Rickman K, Smogorzewska A (2019) Advances in understanding DNA processing and protection at stalled replication forks. J Cell Biol 218:1096–1107. https://doi.org/10.1083/jcb.201809012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Coquel F, Silva MJ, Técher H et al (2018) SAMHD1 acts at stalled replication forks to prevent interferon induction. Nature 557:57–61. https://doi.org/10.1038/s41586-018-0050-1

    Article  CAS  PubMed  Google Scholar 

  65. Taylor MRG, Yeeles JTP (2018) The initial response of a eukaryotic replisome to DNA damage. Mol Cell 70:1067–1080. https://doi.org/10.1016/j.molcel.2018.04.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Taylor MRG, Yeeles JTP (2019) Dynamics of replication fork progression following helicase-polymerase uncoupling in eukaryotes. J Mol Biol 431:2040–2049. https://doi.org/10.1016/j.jmb.2019.03.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Berti M, Vindigni A (2016) Replication stress: getting back on track. Nat Struct Mol Biol 23:103–109. https://doi.org/10.1038/nsmb.3163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sale JE (2013) Translesion DNA synthesis and mutagenesis in prokaryotes. Cold Spring Harb Perspect Biol 5:a012708. https://doi.org/10.1101/cshperspect.a012682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Quinet A, Tirman S, Cybulla E et al (2021) Review to skip or not to skip: choosing repriming to tolerate DNA damage. Mol Cell 81:649–658. https://doi.org/10.1016/j.molcel.2021.01.012

    Article  CAS  PubMed  Google Scholar 

  70. Guilliam TA, Yeeles JTP (2020) Reconstitution of translesion synthesis reveals a mechanism of eukaryotic DNA replication restart. Nat Struct Mol Biol 27:450–460. https://doi.org/10.1038/s41594-020-0418-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Liao H, Ji F, Helleday T, Ying S (2018) Mechanisms for stalled replication fork stabilization: new targets for synthetic lethality strategies in cancer treatments. EMBO Rep 19:e46263. https://doi.org/10.15252/embr.201846263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wong RP, García-Rodríguez N, Zilio N et al (2020) Processing of DNA polymerase-blocking lesions during genome replication is spatially and temporally segregated from replication forks. Mol Cell 77:3–16. https://doi.org/10.1016/j.molcel.2019.09.015

    Article  CAS  PubMed  Google Scholar 

  73. Brosh RM Jr (2013) DNA helicases involved in DNA repair and their roles in cancer. Nat Rev Cancer 13:542–558. https://doi.org/10.1038/nrc3560.DNA

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Duxin JP, Walter JC (2015) What is the DNA repair defect underlying Fanconi anemia? Curr Opin Cell Biol 37:49–60. https://doi.org/10.1016/j.ceb.2015.09.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Dingler FA, Wang M, Mu A et al (2020) Two aldehyde clearance systems are essential to prevent lethal formaldehyde accumulation in mice and humans. Mol Cell 80:996–1012. https://doi.org/10.1016/j.molcel.2020.10.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Pontel LB, Rosado IV, Burgos-Barragan G et al (2015) Endogenous formaldehyde is a hematopoietic stem cell genotoxin and metabolic carcinogen. Mol Cell 60:177–188. https://doi.org/10.1016/j.molcel.2015.08.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Rosado IV, Langevin F, Crossan GP et al (2011) Formaldehyde catabolism is essential in cells deficient for the Fanconi anemia DNA-repair pathway. Nat Struct Mol Biol 18:1432–1434. https://doi.org/10.1038/nsmb.2173

    Article  CAS  PubMed  Google Scholar 

  78. Garaycoechea JI, Crossan GP, Langevin F et al (2012) Genotoxic consequences of endogenous aldehydes on mouse haematopoietic stem cell function. Nature 489:571–575. https://doi.org/10.1038/nature11368

    Article  CAS  PubMed  Google Scholar 

  79. Langevin F, Crossan GP, Rosado IV et al (2011) Fancd2 counteracts the toxic effects of naturally produced aldehydes in mice. Nature 475:53–59. https://doi.org/10.1038/nature10192

    Article  CAS  PubMed  Google Scholar 

  80. Hira A, Yabe H, Yoshida K et al (2013) Variant ALDH2 is associated with accelerated progression of bone marrow failure in Japanese Fanconi anemia patients. Blood 122:3206–3209. https://doi.org/10.1182/blood-2013-06-507962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Bin FC, Wu HT, Zhang ML et al (2020) Fanconi anemia pathway: mechanisms of breast cancer predisposition development and potential therapeutic targets. Front Cell Dev Biol 8:160. https://doi.org/10.3389/fcell.2020.00160

    Article  Google Scholar 

  82. Michl J, Zimmer J, Tarsounas M (2016) Interplay between Fanconi anemia and homologous recombination pathways in genome integrity. EMBO J 35:909–923. https://doi.org/10.15252/embj.201693860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ceccaldi R, Sarangi P, D’Andrea AD (2016) The Fanconi anaemia pathway: new players and new functions. Nat Rev Mol Cell Biol 17:337–349. https://doi.org/10.1038/nrm.2016.48

    Article  CAS  PubMed  Google Scholar 

  84. Datta A, Brosh RM (2019) Holding all the cards—how Fanconi anemia proteins deal with replication stress and preserve genomic stability. Genes (Basel) 10:170. https://doi.org/10.3390/genes10020170

    Article  CAS  Google Scholar 

  85. Niraj J, Färkkilä A, D’Andrea AD (2019) The Fanconi anemia pathway in cancer. Annu Rev Cancer Biol 3:457–478. https://doi.org/10.1146/annurev-cancerbio-030617-050422

    Article  PubMed  Google Scholar 

  86. Semlow DR, Walter JC (2021) Mechanisms of vertebrate DNA interstrand cross-link repair. Annu Rev Biochem 90:107–135. https://doi.org/10.1146/annurev-biochem-080320-112510

    Article  CAS  PubMed  Google Scholar 

  87. Räschle M, Knipsheer P, Enoiu M et al (2008) Mechanism of replication-coupled DNA interstrand crosslink repair. Cell 134:969–980. https://doi.org/10.1016/j.cell.2008.08.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wu RA, Pellman DS, Walter JC (2021) The ubiquitin ligase TRAIP: double-edged sword at the replisome. Trends Cell Biol 31:75–85. https://doi.org/10.1016/j.tcb.2020.11.007

    Article  CAS  PubMed  Google Scholar 

  89. Wu RA, Semlow DR, Kamimae-Lanning AN et al (2019) TRAIP is a master regulator of DNA interstrand crosslink repair. Nature 567:267–272. https://doi.org/10.1038/s41586-019-1002-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Fullbright G, Rycenga HB, Gruber JD, Long DT (2016) p97 Promotes a conserved mechanism of helicase unloading during DNA cross-link repair. Mol Cell Biol 36:2983–2994. https://doi.org/10.1128/mcb.00434-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zhang J, Dewar JM, Budzowska M et al (2015) DNA interstrand cross-link repair requires replication-fork convergence. Nat Struct Mol Biol 22:242–247. https://doi.org/10.1038/nsmb.2956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Knipscheer P, Räschle M, Smogorzewska A et al (2009) The Fanconi anemia pathway promotes replication-dependent DNA interstrand cross-link repair. Science 326:1698–1701. https://doi.org/10.1126/science.1182372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zhang J, Walter JC (2014) Mechanism and regulation of incisions during DNA interstrand cross-link repair. DNA Repair (Amst) 19:135–142. https://doi.org/10.1016/j.dnarep.2014.03.018

    Article  CAS  Google Scholar 

  94. Wang R, Wang S, Dhar A et al (2020) DNA clamp function of the monoubiquitinated Fanconi anaemia ID complex. Nature 580:278–282. https://doi.org/10.1038/s41586-020-2110-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Alcón P, Shakeel S, Chen ZA et al (2020) FANCD2–FANCI is a clamp stabilized on DNA by monoubiquitination of FANCD2 during DNA repair. Nat Struct Mol Biol 27:240–248. https://doi.org/10.1038/s41594-020-0380-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Klein Douwel D, Boonen RACM, Long DT et al (2014) XPF-ERCC1 acts in unhooking DNA interstrand crosslinks in cooperation with FANCD2 and FANCP/SLX4. Mol Cell 54:460–471. https://doi.org/10.1016/j.molcel.2014.03.015

    Article  CAS  PubMed  Google Scholar 

  97. Yamamoto KN, Kobayashi S, Tsuda M et al (2011) Involvement of SLX4 in interstrand cross-link repair is regulated by the Fanconi anemia pathway. Proc Natl Acad Sci USA 108:6492–6496. https://doi.org/10.1073/pnas.1018487108

    Article  PubMed  PubMed Central  Google Scholar 

  98. Wang AT, Sengerová B, Cattell E et al (2011) Human SNM1a and XPF-ERCC1 collaborate to initiate DNA interstrand cross-link repair. Genes Dev 25:1859–1870. https://doi.org/10.1101/gad.15699211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Hoogenboom WS, Boonen RACM, Knipscheer P (2019) The role of SLX4 and its associated nucleases in DNA interstrand crosslink repair. Nucleic Acids Res 47:2377–2388. https://doi.org/10.1093/nar/gky1276

    Article  CAS  PubMed  Google Scholar 

  100. Baddock HT, Yosaatmadja Y, Newman JA et al (2020) The SNM1A DNA repair nuclease. DNA Repair (Amst) 95:102941. https://doi.org/10.1016/j.dnarep.2020.102941

    Article  CAS  Google Scholar 

  101. Amunugama R, Willcox S, Wu RA et al (2018) Replication fork reversal during DNA interstrand crosslink repair requires CMG unloading. Cell Rep 23:3419–3428. https://doi.org/10.1016/j.celrep.2018.05.061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Sabatella M, Pines A, Slyskova J et al (2020) ERCC1–XPF targeting to psoralen–DNA crosslinks depends on XPA and FANCD2. Cell Mol Life Sci 77:2005–2016. https://doi.org/10.1007/s00018-019-03264-5

    Article  CAS  PubMed  Google Scholar 

  103. Lachaud C, Castor D, Hain K et al (2014) Distinct functional roles for the two SLX4 ubiquitin-binding UBZ domains mutated in Fanconi anemia. J Cell Sci 127:2811–2817. https://doi.org/10.1242/jcs.146167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Semlow DR, Zhang J, Budzowska M et al (2016) Replication-dependent unhooking of DNA interstrand cross-links by the NEIL3 glycosylase. Cell 167:498–511. https://doi.org/10.1016/j.cell.2016.09.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Li N, Wang J, Wallace SS et al (2020) Cooperation of the NEIL3 and Fanconi anemia/BRCA pathways in interstrand crosslink repair. Nucleic Acids Res 48:3014–3028. https://doi.org/10.1093/nar/gkaa038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Hodskinson MR, Bolner A, Sato K et al (2020) Alcohol-derived DNA crosslinks are repaired by two distinct mechanisms. Nature 579:603–608. https://doi.org/10.1038/s41586-020-2059-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Jacome A, Fernandez-Capetillo O (2011) Lac operator repeats generate a traceable fragile site in mammalian cells. EMBO Rep 12:1032–1038. https://doi.org/10.1038/embor.2011.158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Ishimoto R, Tsuzuki Y, Matsumura T et al (2021) SLX4–XPF mediates DNA damage responses to replication stress induced by DNA–protein interactions. J Cell Biol 220:e202003148. https://doi.org/10.1083/jcb.202003148

    Article  CAS  PubMed  Google Scholar 

  109. Kim J, Sturgill D, Sebastian R et al (2018) Replication Stress Shapes a Protective Chromatin Environment across Fragile Genomic Regions. Mol Cell 69:36–47. https://doi.org/10.1016/j.molcel.2017.11.021

    Article  CAS  PubMed  Google Scholar 

  110. Beuzer P, Quivy JP, Almouzni G (2014) Establishment of a replication fork barrier following induction of DNA binding in mammalian cells. Cell Cycle 13:1607–1616. https://doi.org/10.4161/cc.28627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Hizume K, Endo S, Muramatsu S et al (2018) DNA polymerase ε-dependent modulation of the pausing property of the CMG helicase at the barrier. Genes Dev 32:1315–1320. https://doi.org/10.1101/gad.317073.118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Hanamshet K, Mazina OM, Mazin AV (2016) Reappearance from obscurity: mammalian Rad52 in homologous recombination. Genes (Basel) 7:63. https://doi.org/10.3390/genes7090063

    Article  CAS  Google Scholar 

  113. Niedernhofer LJ, Lalai AS, Hoeijmakers JHJ (2005) Fanconi anemia (cross)linked to DNA repair. Cell 123:1191–1198. https://doi.org/10.1016/j.cell.2005.12.009

    Article  CAS  PubMed  Google Scholar 

  114. Huang JW, Acharya A, Taglialatela A et al (2020) MCM8IP activates the MCM8-9 helicase to promote DNA synthesis and homologous recombination upon DNA damage. Nat Commun 11:2948. https://doi.org/10.1038/s41467-020-16718-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Hustedt N, Saito Y, Zimmermann M et al (2019) Control of homologous recombination by the HROB-MCM8-MCM9 pathway. Genes Dev 33:1397–1415. https://doi.org/10.1101/gad.329508.119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Lutzmann M, Grey C, Traver S et al (2012) MCM8- and MCM9-deficient mice reveal gametogenesis defects and genome instability due to impaired homologous recombination. Mol Cell 47:523–534. https://doi.org/10.1016/j.molcel.2012.05.048

    Article  CAS  PubMed  Google Scholar 

  117. Nishimura K, Ishiai M, Horikawa K et al (2012) Mcm8 and Mcm9 form a complex that functions in homologous recombination repair induced by DNA interstrand crosslinks. Mol Cell 47:511–522. https://doi.org/10.1016/j.molcel.2012.05.047

    Article  CAS  PubMed  Google Scholar 

  118. Park J, Long DT, Lee KY et al (2013) The MCM8-MCM9 complex promotes RAD51 recruitment at DNA damage sites to facilitate homologous recombination. Mol Cell Biol 33:1632–1644. https://doi.org/10.1128/mcb.01503-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Natsume T, Nishimura K, Minocherhomji S et al (2017) Acute inactivation of the replicative helicase in human cells triggers MCM8–9-dependent DNA synthesis. Genes Dev 31:816–829. https://doi.org/10.1101/gad.297663.117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Morii I, Iwabuchi Y, Mori S et al (2019) Inhibiting the MCM8-9 complex selectively sensitizes cancer cells to cisplatin and olaparib. Cancer Sci 110:1044–1053. https://doi.org/10.1111/cas.13941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Li S, Wang H, Jehi S et al (2021) PIF1 helicase promotes break-induced replication in mammalian cells. EMBO J 40:104509. https://doi.org/10.15252/embj.2020104509

    Article  CAS  Google Scholar 

  122. Mutreja K, Krietsch J, Hess J et al (2018) ATR-mediated global fork slowing and reversal assist fork traverse and prevent chromosomal breakage at DNA interstrand cross-links. Cell Rep 24:2629–2642. https://doi.org/10.1016/j.celrep.2018.08.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Huang J, Zhang J, Bellani MA et al (2019) Remodeling of interstrand crosslink proximal replisomes is dependent on ATR, FANCM, and FANCD2. Cell Rep 27:1794–1808. https://doi.org/10.1016/j.celrep.2019.04.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Huang J, Liu S, Bellani MA et al (2013) The DNA translocase FANCM/MHF promotes replication traverse of DNA interstrand crosslinks. Mol Cell 52:434–446. https://doi.org/10.1016/j.molcel.2013.09.021

    Article  CAS  PubMed  Google Scholar 

  125. Bellani MA, Huang J, Paramasivam M et al (2018) Imaging cellular responses to antigen tagged DNA damage. DNA Repair (Amst) 71:183–189. https://doi.org/10.1016/j.dnarep.2018.08.023

    Article  CAS  Google Scholar 

  126. Gaillard H, García-Muse T, Aguilera A (2015) Replication stress and cancer. Nat Rev Cancer 15:276–280. https://doi.org/10.1038/nrc3916

    Article  CAS  PubMed  Google Scholar 

  127. Kitao H, Iimori M, Kataoka Y et al (2018) DNA replication stress and cancer chemotherapy. Cancer Sci 109:264–271. https://doi.org/10.1111/cas.13455

    Article  CAS  PubMed  Google Scholar 

  128. Kotsantis P, Silva LM, Irmscher S et al (2016) Increased global transcription activity as a mechanism of replication stress in cancer. Nat Commun 7:13087. https://doi.org/10.1038/ncomms13087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Macheret M, Halazonetis TD (2018) Intragenic origins due to short G1 phases underlie oncogene-induced DNA replication stress. Nature 555:112–116. https://doi.org/10.1038/nature25507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Motegi A, Masutani M, Yoshioka K, Bessho T (2019) Aberrations in DNA repair pathways in cancer and therapeutic significances. Semin Cancer Biol 58:29–46. https://doi.org/10.1016/j.semcancer.2019.02.005

    Article  CAS  PubMed  Google Scholar 

  131. Gilad O, Nabet BY, Ragland RL et al (2010) Combining ATR suppression with oncogenic ras synergistically increases genomic instability, causing synthetic lethality or tumorigenesis in a dosage-dependent manner. Cancer Res 70:9693–9702. https://doi.org/10.1158/0008-5472.CAN-10-2286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Murga M, Campaner S, Lopez-Contreras AJ et al (2011) Exploiting oncogene-induced replicative stress for the selective killing of Myc-driven tumors. Nat Struct Mol Biol 18:1331–1335. https://doi.org/10.1038/nsmb.2189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Toledo LI, Murga M, Zur R et al (2011) A cell-based screen identifies ATR inhibitors with synthetic lethal properties for cancer-associated mutations. Nat Struct Mol Biol 18:721–727. https://doi.org/10.1038/nsmb.2076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Schoppy DW, Ragland RL, Gilad O et al (2012) Oncogenic stress sensitizes murine cancers to hypomorphic suppression of ATR. J Clin Invest 122:241–252. https://doi.org/10.1172/JCI58928

    Article  CAS  PubMed  Google Scholar 

  135. Lecona E, Fernandez-Capetillo O (2018) Targeting ATR in cancer. Nat Rev Cancer 18:586–595. https://doi.org/10.1038/s41568-018-0034-3

    Article  CAS  PubMed  Google Scholar 

  136. Karnitz LM, Zou L (2015) Molecular pathways: targeting ATR in cancer therapy. Clin Cancer Res 21:4780–4785. https://doi.org/10.1158/1078-0432.CCR-15-0479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Ubhi T, Brown GW (2019) Exploiting DNA replication stress for cancer treatment. Cancer Res 79:1730–1739. https://doi.org/10.1158/0008-5472.CAN-18-3631

    Article  CAS  PubMed  Google Scholar 

  138. Hong D, Infante J, Janku F et al (2016) Phase i study of LY2606368, a checkpoint kinase 1 inhibitor, in patients with advanced cancer. J Clin Oncol 34:1764–1771. https://doi.org/10.1200/JCO.2015.64.5788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Young LA, O’Connor LO, de Renty C et al (2019) Differential activity of ATR and Wee1 inhibitors in a highly sensitive subpopulation of DLBCL linked to replication stress. Cancer Res 79:3762–3775. https://doi.org/10.1158/0008-5472.CAN-18-2480

    Article  CAS  PubMed  Google Scholar 

  140. Jin J, Fang H, Yang F et al (2018) Combined inhibition of ATR and WEE1 as a novel therapeutic strategy in triple-negative breast cancer. Neoplasia 20:478–488. https://doi.org/10.1016/j.neo.2018.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Fragkos M, Naim V (2017) Rescue from replication stress during mitosis. Cell Cycle 16:613–633. https://doi.org/10.1080/15384101.2017.1288322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Wilhelm T, Olziersky AM, Harry D et al (2019) Mild replication stress causes chromosome mis-segregation via premature centriole disengagement. Nat Commun 10:3585. https://doi.org/10.1038/s41467-019-11584-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Masamsetti VP, Low RRJ, Mak KS et al (2019) Replication stress induces mitotic death through parallel pathways regulated by WAPL and telomere deprotection. Nat Commun 10:4224. https://doi.org/10.1038/s41467-019-12255-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We apologize to our colleagues whose work we were unable to cite due to space limitations. We thank members of the Fujita lab for helpful discussions and comments on the manuscript.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

KY and MF wrote the manuscript.

Corresponding author

Correspondence to Masatoshi Fujita.

Ethics declarations

Conflict of interest

The authors declare no potential conflicts of interest.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoshida, K., Fujita, M. DNA damage responses that enhance resilience to replication stress. Cell. Mol. Life Sci. 78, 6763–6773 (2021). https://doi.org/10.1007/s00018-021-03926-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-021-03926-3

Keywords

Navigation