Skip to main content

Advertisement

Log in

Macrophage ubiquitin-specific protease 2 contributes to motility, hyperactivation, capacitation, and in vitro fertilization activity of mouse sperm

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Macrophages are innate immune cells that contribute to classical immune functions and tissue homeostasis. Ubiquitin-specific protease 2 (USP2) controls cytokine production in macrophages, but its organ-specific roles are still unknown. In this study, we generated myeloid-selective Usp2 knockout (msUsp2KO) mice and specifically explored the roles of testicular macrophage-derived USP2 in reproduction. The msUsp2KO mice exhibited normal macrophage characteristics in various tissues. In the testis, macrophage Usp2 deficiency negligibly affected testicular macrophage subpopulations, spermatogenesis, and testicular organogenesis. However, frozen–thawed sperm derived from msUsp2KO mice exhibited reduced motility, capacitation, and hyperactivation. In addition, macrophage Usp2 ablation led to a decrease in the sperm population exhibiting high intracellular pH, calcium influx, and mitochondrial membrane potential. Interrupted pronuclei formation in eggs was observed when using frozen–thawed sperm from msUsp2KO mice for in vitro fertilization. Administration of granulocyte macrophage-colony stimulating factor (GM-CSF), whose expression was decreased in testicular macrophages derived from msUsp2KO mice, restored mitochondrial membrane potential and total sperm motility. Our observations demonstrate a distinct role of the deubiquitinating enzyme in organ-specific macrophages that directly affect sperm function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and material

The datasets in this study are available from the corresponding author upon reasonable request.

Code availability

All software used in this study was obtained legally, and custom code is available from the corresponding author on reasonable request.

Abbreviations

ALDH1A2:

Aldehyde dehydrogenase 1a2

ALH:

Amplitude of lateral head displacement

Ar :

Androgen receptor

BCF:

Beat-cross frequency

BSA:

Bovine serum albumin

CASA:

Computer-assisted sperm motility analysis

CSF1R:

Colony-stimulating factor 1 receptor

CSF2Rα:

Colony-stimulating factor 2 receptor α chain

CTC:

Chlortetracycline

DDX:

DEAD-box helicase

FACS:

Fluorescence-activated cell sorting

GM-CSF:

Granulocyte macrophage-colony stimulating factor

HSD3B:

3-β-Hydroxysteroid dehydrogenase

Hvcn1 :

Voltage-gated hydrogen channel1

IL:

Interleukin

iNOS:

Inducible nitric oxide synthase

IVF:

In vitro fertilization

KD:

Knockdown

KO:

Knockout

Lhcgr :

Luteinizing hormone receptor

LyzM-Cre :

B6.129P2-Lyzstm1(cre)Ifo

M-CSF:

Macrophage-colony stimulating factor

MCT:

Monocarboxylate transporter

MHCII:

Major histocompatibility complex class II

MMP:

Mitochondrial membrane potential

OXPHOS:

Oxidative phosphorylation

PI:

Propidium iodide

Q-FISH:

Quantitative-fluorescent in situ hybridization

qRT-PCR:

Quantitative reverse transcription-polymerase chain reaction

R26GRR:

C57BL/6 N-Gt(ROSA)26Sortm1(CAGEGFP,tdsRed)Utr/Rbrc

RDH10:

Retinol dehydrogenase 10

Slc9c1 :

Solute carrier family 9 member C1

Sox:

Sex-determining region Y-box transcription factor

Stra8 :

Stimulated by retinoic acid 8

TMB:

3,3′,5,5′-Tetramethylbenzidine

TNF:

Tumor necrosis factor

TREM:

Tetramethylrhodamine methyl ester

USP:

Ubiquitin-specific protease

VCL:

Curvilinear velocity

VSL:

Straight-line velocity

References

  1. Kharraz Y, Guerra J, Mann CJ et al (2013) Macrophage plasticity and the role of inflammation in skeletal muscle repair. Mediat Inflamm 2013:491497. https://doi.org/10.1155/2013/491497

    Article  CAS  Google Scholar 

  2. Lavine KJ, Pinto AR, Epelman S et al (2018) The Macrophage in cardiac homeostasis and disease: JACC macrophage in CVD series (part 4). J Am Coll Cardiol 72:2213–2230. https://doi.org/10.1016/j.jacc.2018.08.2149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rosin JM, Kurrasch DM (2019) Emerging roles for hypothalamic microglia as regulators of physiological homeostasis. Front Neuroendocrinol 54:100748. https://doi.org/10.1016/j.yfrne.2019.100748

    Article  CAS  PubMed  Google Scholar 

  4. Benoit M, Desnues B, Mege J-L (2008) Macrophage polarization in bacterial infections. J Immunol 181:3733–3739. https://doi.org/10.4049/jimmunol.181.6.3733

    Article  CAS  PubMed  Google Scholar 

  5. Kitamura H, Naoe Y, Kimura S et al (2013) Beneficial effects of Brazilian propolis on type 2 diabetes in ob/ob mice. Adipocyte 2:227–236. https://doi.org/10.4161/adip.25608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Xiao-Ming M, Shiu-Kwong MT, Lan H-Y (2019) Macrophages in renal fibrosis. Adv Exp Med Biol 1165:285–303. https://doi.org/10.1007/978-981-13-8871-2_13

    Article  CAS  Google Scholar 

  7. Meinhardt A, Wang M, Schulz C, Bhushan S (2018) Microenvironmental signals govern the cellular identity of testicular macrophages. J Leukoc Biol 104:757–766. https://doi.org/10.1002/JLB.3MR0318-086RR

    Article  CAS  PubMed  Google Scholar 

  8. Gaytan F, Bellido C, Morales C et al (1995) Response to Leydig cell apoptosis in the absence of testicular macrophages. J Reprod Immunol 29:81–94. https://doi.org/10.1016/0165-0378(95)00934-D

    Article  CAS  PubMed  Google Scholar 

  9. DeFalco T, Potter SJ, Williams AV et al (2015) Macrophages contribute to the spermatogonial niche in the adult testis. Cell Rep 12:1107–1119. https://doi.org/10.1016/j.celrep.2015.07.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mossadegh-Keller N, Gentek R, Gimenez G et al (2017) Developmental origin and maintenance of distinct testicular macrophage populations. J Exp Med 214:2829–2841. https://doi.org/10.1084/jem.20170829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wynn TA, Chawla A, Pollard JW (2013) Macrophage biology in development, homeostasis and disease. Nature 496:445–455. https://doi.org/10.1038/nature12034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cohen PE, Chisholm O, Arceci RJ et al (1996) Absence of colony-stimulating factor-1 in osteopetrotic (csfmoP/csfmOP) mice results in male fertility defects. Biol Reprod 55:310–317. https://doi.org/10.1095/biolreprod55.2.310

    Article  CAS  PubMed  Google Scholar 

  13. Bergh A, Damber JE, Van Rooijen N (1993) Liposome-mediated macrophage depletion: an experimental approach to study the role of testicular macrophages in the rat. J Endocrinol 136:407–413. https://doi.org/10.1677/joe.0.1360407

    Article  CAS  PubMed  Google Scholar 

  14. Gaytan F, Bellido C, Aguilar E, Van Rooijen N (1994) Requirement for testicular macrophages in Leydig cell proliferation and differentiation during prepubertal development in rats. J Reprod Fertil 102:393–399. https://doi.org/10.1530/jrf.0.1020393

    Article  CAS  PubMed  Google Scholar 

  15. Hales DB (2002) Testicular macrophage modulation of Leydig cell steroidogenesis. J Reprod Immunol 57:3–18. https://doi.org/10.1016/S0165-0378(02)00020-7

    Article  CAS  PubMed  Google Scholar 

  16. Hedger MP, Meinhardt A (2003) Cytokines and the immune-testicular axis. J Reprod Immunol 58:1–26. https://doi.org/10.1016/S0165-0378(02)00060-8

    Article  CAS  PubMed  Google Scholar 

  17. Oatley JM, Oatley MJ, Avarbock MR et al (2009) Colony stimulating factor 1 is an extrinsic stimulator of mouse spermatogonial stem cell self-renewal. Development 136:1191–1199. https://doi.org/10.1242/dev.032243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kern S, Robertson SA, Mau VJ, Maddocks S (1995) Cytokine secretion by macrophages in the rat testis1. Biol Reprod 53:1407–1416. https://doi.org/10.1095/biolreprod53.6.1407

    Article  CAS  PubMed  Google Scholar 

  19. Rodríguez-Gil JE, Silvers G, Flores E et al (2007) Expression of the GM-CSF receptor in ovine spermatozoa: GM-CSF effect on sperm viability and motility of sperm subpopulations after the freezing-thawing process. Theriogenology 67:1359–1370. https://doi.org/10.1016/j.theriogenology.2007.02.008

    Article  CAS  PubMed  Google Scholar 

  20. Du Plessis SS, Agarwal A, Mohanty G, Van Der Linde M (2015) Oxidative phosphorylation versus glycolysis: what fuel do spermatozoa use? Asian J Androl 17:230–235. https://doi.org/10.4103/1008-682X.135123

    Article  CAS  PubMed  Google Scholar 

  21. Suarez SS (2008) Control of hyperactivation in sperm. Hum Reprod Update 14:647–657. https://doi.org/10.1093/humupd/dmn029

    Article  CAS  PubMed  Google Scholar 

  22. Jin SK, Yang WX (2017) Factors and pathways involved in capacitation: how are they regulated? Oncotarget 8:3600–3627. https://doi.org/10.18632/oncotarget.12274

    Article  PubMed  Google Scholar 

  23. Lishko PV, Kirichok Y, Ren D et al (2012) The control of male fertility by spermatozoan ion channels. Annu Rev Physiol 74:453–475. https://doi.org/10.1146/annurev-physiol-020911-153258

    Article  CAS  PubMed  Google Scholar 

  24. Song L, Luo ZQ (2019) Post-translational regulation of ubiquitin signaling. J Cell Biol 218:1776–1786. https://doi.org/10.1083/JCB.201902074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shan J, Zhao W, Gu W (2009) Suppression of cancer cell growth by promoting cyclin D1 degradation. Mol Cell 36:469–476. https://doi.org/10.1016/j.molcel.2009.10.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gewies A, Grimm S (2003) UBP41 is a proapoptotic ubiquitin-specific protease. Cancer Res 63:682–688

    CAS  PubMed  Google Scholar 

  27. Priolo C, Tang D, Brahamandan M et al (2006) The isopeptidase USP2a protects human prostate cancer from apoptosis. Cancer Res 66:8625–8632. https://doi.org/10.1158/0008-5472.CAN-06-1374

    Article  CAS  PubMed  Google Scholar 

  28. Molusky MM, Li S, Ma D et al (2012) Ubiquitin-specific protease 2 regulates hepatic gluconeogenesis and diurnal glucose metabolism through 11b -hydroxysteroid dehydrogenase 1. Diabetes 61:1025–1035. https://doi.org/10.2337/db11-0970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kitamura H, Kimura S, Shimamoto Y et al (2013) Ubiquitin-specific protease 2–69 in macrophages potentially modulates metainflammation. FASEB J 27:4940–4953. https://doi.org/10.1096/fj.13-233528

    Article  CAS  PubMed  Google Scholar 

  30. Hashimoto M, Saito N, Ohta H et al (2019) Inhibition of ubiquitin-specific protease 2 causes accumulation of reactive oxygen species, mitochondria dysfunction, and intracellular ATP decrement in C2C12 myoblasts. Physiol Rep 7:1–14. https://doi.org/10.14814/phy2.14193

    Article  CAS  Google Scholar 

  31. Saito N, Kimura S, Miyamoto T et al (2017) Macrophage ubiquitin-specific protease 2 modifies insulin sensitivity in obese mice. Biochem Biophys Rep 9:322–329. https://doi.org/10.1016/j.bbrep.2017.01.009

    Article  PubMed  PubMed Central  Google Scholar 

  32. Li C, Zhang J, Xu H et al (2018) Retigabine ameliorates acute stress-induced impairment of spatial memory retrieval through regulating USP2 signaling pathways in hippocampal CA1 area. Neuropharmacology 135:151–162. https://doi.org/10.1016/j.neuropharm.2018.02.034

    Article  CAS  PubMed  Google Scholar 

  33. He X, Li Y, Li C et al (2013) USP2a negatively regulates IL-1β- and virus-induced NF-κB activation by deubiquitinating TRAF6. J Mol Cell Biol 5:39–47. https://doi.org/10.1093/jmcb/mjs024

    Article  CAS  PubMed  Google Scholar 

  34. Kitamura H, Ishino T, Shimamoto Y et al (2017) Ubiquitin-specific protease 2 modulates the lipopolysaccharide-elicited expression of proinflammatory cytokines in macrophage-like HL-60 cells. Mediat Inflamm 2017:6909415. https://doi.org/10.1155/2017/6909415

    Article  CAS  Google Scholar 

  35. Metzig M, Nickles D, Falschlehner C et al (2011) An RNAi screen identifies USP2 as a factor required for TNF-α-induced NF-κB signaling. Int J Cancer 129:607–618. https://doi.org/10.1002/ijc.26124

    Article  CAS  PubMed  Google Scholar 

  36. Lin H, Keriel A, Morales CR et al (2001) Divergent N-terminal sequences target an inducible testis deubiquitinating enzyme to distinct subcellular structures. Mol Cell Biol 21:977–977. https://doi.org/10.1128/mcb.21.3.977-977.2001

    Article  CAS  PubMed Central  Google Scholar 

  37. Bedard N, Yang Y, Gregory M et al (2011) Mice lacking the USP2 deubiquitinating enzyme have severe male subfertility associated with defects in fertilization and sperm motility. Biol Reprod 85:594–604. https://doi.org/10.1095/biolreprod.110.088542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hasegawa Y, Daitoku Y, Sekiguchi K et al (2013) Novel ROSA26 Cre-reporter knock-in C57BL/6N mice exhibiting green emission before and red emission after Cre-mediated recombination. Exp Anim 62:295–304. https://doi.org/10.1538/expanim.62.295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Clausen BE, Burkhardt C, Reith W et al (1999) Conditional gene targeting in macrophages and granulocytes using LysMcre mice. Transgenic Res 8:265–277

    Article  CAS  PubMed  Google Scholar 

  40. Zhang X, Goncalves R, Mosser DM (2008) The isolation and characterization of murine macrophages. Curr Protoc Immunol. https://doi.org/10.1002/0471142735.im1401s83

    Article  PubMed  PubMed Central  Google Scholar 

  41. Bryniarski K, Szczepanik M, Maresz K et al (2004) Subpopulations of mouse testicular macrophages and their immunoregulatory function. Am J Reprod Immunol 52:27–35. https://doi.org/10.1111/j.1600-0897.2004.00178.x

    Article  PubMed  Google Scholar 

  42. Handel-Fernandez ME, Ilkovitch D, Iragavarapu-Charyulu V et al (2009) Decreased levels of both Stat1 and Stat3 in T lymphocytes from mice bearing mammary tumors. Anticancer Res 29:2051–2058

    CAS  PubMed  Google Scholar 

  43. Metsalu T, Vilo J (2015) ClustVis: a web tool for visualizing clustering of multivariate data using principal component analysis and heatmap. Nucleic Acids Res 43:W566–W570. https://doi.org/10.1093/nar/gkv468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yanagawa Y, Matsuura Y, Suzuki M et al (2015) Accessory corpora lutea formation in pregnant hokkaido sika deer (Cervus nippon yesoensis) investigated by examination of ovarian dynamics and steroid hormone concentrations. J Reprod Dev 61:61–66. https://doi.org/10.1262/jrd.2014-076

    Article  CAS  PubMed  Google Scholar 

  45. Kanno C, Sakamoto KQ, Yanagawa Y et al (2017) Comparison of sperm subpopulation structures in first and second ejaculated semen from Japanese black bulls by a cluster analysis of sperm motility evaluated by a CASA system. J Vet Med Sci 79:1359–1365. https://doi.org/10.1292/jvms.17-0012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang WH, Abeydeera LR, Fraser LR, Niwa K (1995) Functional analysis using chlortetracycline fluorescence and in vitro fertilization of frozen–thawed ejaculated boar spermatozoa incubated in a protein-free chemically defined medium. J Reprod Fertil 104:305–313. https://doi.org/10.1530/jrf.0.1040305

    Article  CAS  PubMed  Google Scholar 

  47. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675. https://doi.org/10.1038/nmeth.2089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Peer NR, Law SM, Murdoch B et al (2018) Germ cell–specific retinoic acid receptor a functions in germ cell organization, meiotic integrity, and spermatogonia. Endocrinology 159:3403–3420. https://doi.org/10.1210/en.2018-00533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Vernet N, Dennefeld C, Guillou F et al (2006) Prepubertal testis development relies on retinoic acid but not rexinoid receptors in Sertoli cells. EMBO J 25:5816–5825. https://doi.org/10.1038/sj.emboj.7601447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Abram McBride J, Lipshultz L (2018) Male fertility preservation. Curr Urol Rep 19:49. https://doi.org/10.1007/s11934-018-0803-2

    Article  CAS  PubMed  Google Scholar 

  51. Morrell JM, Mayer I (2017) Reproduction biotechnologies in germplasm banking of livestock species: a review. Zygote 25:545–557. https://doi.org/10.1017/S0967199417000442

    Article  CAS  PubMed  Google Scholar 

  52. Comizzoli P (2015) Biobanking efforts and new advances in male fertility preservation for rare and endangered species. Asian J Androl 17:640–645. https://doi.org/10.4103/1008-682X.153849

    Article  PubMed  PubMed Central  Google Scholar 

  53. Matamoros-Volante A, Treviño CL (2020) Capacitation-associated alkalization in human sperm is differentially controlled at the subcellular level. J Cell Sci 133:jcs238816. https://doi.org/10.1242/jcs.238816

    Article  CAS  PubMed  Google Scholar 

  54. Gruschwitz MS, Brezinschek R, Brezinschek HP (1996) Cytokine levels in the seminal plasma of infertile males. J Androl 17:158–163

    CAS  PubMed  Google Scholar 

  55. Bernabò N, Di AR, Ordinelli A et al (2016) The maturation of murine spermatozoa membranes within the epididymis, a computational biology perspective. Syst Biol Reprod Med 62:299–308. https://doi.org/10.1080/19396368.2016.1205679

    Article  CAS  PubMed  Google Scholar 

  56. Smith TB, Cortez-Retamozo V, Grigoryeva LS et al (2014) Mononuclear phagocytes rapidly clear apoptotic epithelial cells in the proximal epididymis. Andrology 2:755–762. https://doi.org/10.1111/j.2047-2927.2014.00251.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Da Silva N, Smith TB (2015) Exploring the role of mononuclear phagocytes in the epididymis. Asian J Androl 17:591–596. https://doi.org/10.4103/1008-682X.153540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Shum WW, Smith TB, Cortez-Retamozo V et al (2014) Epithelial basal cells are distinct from dendritic cells and macrophages in the mouse epididymis. Biol Reprod 90:1–10. https://doi.org/10.1095/biolreprod.113.116681

    Article  CAS  Google Scholar 

  59. Padilla L, Martínez-Hernández J, Barranco I et al (2020) Granulocyte-macrophage colony stimulating factor (GM-CSF) is fully expressed in the genital tract, seminal plasma and spermatozoa of male pigs. Sci Rep 10:1–12. https://doi.org/10.1038/s41598-020-70302-9

    Article  CAS  Google Scholar 

  60. Turner RM (2006) Moving to the beat: a review of mammalian sperm motility regulation. Reprod Fertil Dev 18:25–38. https://doi.org/10.1071/RD05120

    Article  PubMed  Google Scholar 

  61. Loveland KL, Klein B, Pueschl D et al (2017) Cytokines in male fertility and reproductive pathologies: immunoregulation and beyond. Front Endocrinol (Lausanne) 8:1–16. https://doi.org/10.3389/fendo.2017.00307

    Article  Google Scholar 

  62. Eisermann J, Register K, Strickler R, Collins J (1989) The Effect of tumor necrosis factor on human sperm motility in vitro. J Androl 10:270–274. https://doi.org/10.1002/j.1939-4640.1989.tb00100.x

    Article  CAS  PubMed  Google Scholar 

  63. Ganaiem M, AbuElhija M, Lunenfeld E et al (2009) Effect of interleukin-1 receptor antagonist gene deletion on male mouse fertility. Endocrinology 150:295–303. https://doi.org/10.1210/en.2008-0848

    Article  CAS  PubMed  Google Scholar 

  64. Isobe T, Minoura H, Tanaka K et al (2002) The effect of RANTES on human sperm chemotaxis. Hum Reprod 17:1441–1446. https://doi.org/10.1093/humrep/17.6.1441

    Article  CAS  PubMed  Google Scholar 

  65. Naz R, Kaplan P (1994) Interleukin-6 enhances the fertilizing capacity of human sperm by increasing capacitation and acrosome reaction. J Androl 15:228–233. https://doi.org/10.1002/j.1939-4640.1994.tb00438.x

    Article  CAS  PubMed  Google Scholar 

  66. McLay RN, Banks WA, Kastin AJ (1997) Granulocyte macrophage-colony stimulating factor crosses the blood-testis barrier in mice. Biol Reprod 57:822–826. https://doi.org/10.1095/biolreprod57.4.822

    Article  CAS  PubMed  Google Scholar 

  67. Zambrano A, Noli C, Rauch MC et al (2001) Expression of GM-CSF receptors in male germ cells and their role in signaling for increased glucose and vitamin C transport. J Cell Biochem 80:625–634. https://doi.org/10.1002/1097-4644(20010315)80:4%3c625::AID-JCB1017%3e3.0.CO;2-9

    Article  CAS  PubMed  Google Scholar 

  68. Vilanova LT, Rauch MC, Mansilla A, Werner E (2003) Expression of granulocyte–macrophage colony stimulating factor ( GM-CSF ) in male germ cells : GM-CSF enhances sperm motility. Theriogenology 60:1083–1095. https://doi.org/10.1016/S0093-691X(03)00106-7

    Article  CAS  PubMed  Google Scholar 

  69. Leu JIJ, Barnoud T, Zhang G et al (2017) Inhibition of stress-inducible HSP70 impairs mitochondrial proteostasis and function. Oncotarget 8:45656–45669. https://doi.org/10.18632/oncotarget.17321

    Article  PubMed  PubMed Central  Google Scholar 

  70. Calle-Guisado V, Bragado MJ, García-Marín LJ, González-Fernández L (2017) HSP90 maintains boar spermatozoa motility and mitochondrial membrane potential during heat stress. Anim Reprod Sci 187:13–19. https://doi.org/10.1016/j.anireprosci.2017.09.009

    Article  CAS  PubMed  Google Scholar 

  71. Al-Shami A, Mahanna W, Naccache PH (1998) Granulocyte-macrophage colony-stimulating factor-activated signaling pathways in human neutrophils. J Biol Chem 273:1058–1063. https://doi.org/10.1074/jbc.273.2.1058

    Article  CAS  PubMed  Google Scholar 

  72. Stephanou A, Latchman DS (1999) Transcriptional regulation of the heat shock protein genes by STAT family transcription factors. Gene Exp 7:311–319

    CAS  Google Scholar 

  73. Ward CR, Storey BT (1984) Determination of the time course of capacitation in mouse spermatozoa using a chlortetracycline fluorescence assay. Dev Biol 104:287–296. https://doi.org/10.1016/0012-1606(84)90084-8

    Article  CAS  PubMed  Google Scholar 

  74. Liu YX (2007) Involvement of plasminogen activator and plasminogen activator inhibitor type 1 in spermatogenesis, sperm capacitation, and fertilization. Semin Thromb Hemost 33:29–40. https://doi.org/10.1055/s-2006-958459

    Article  CAS  PubMed  Google Scholar 

  75. Ebisch IMW, Steegers-Theunissen RPM, Sweep FCGJ et al (2007) Possible role of the plasminogen activation system in human subfertility. Fertil Steril 87:619–626. https://doi.org/10.1016/j.fertnstert.2006.07.1510

    Article  CAS  PubMed  Google Scholar 

  76. Cabrillana ME, Monclus MDLÁ, Lancellotti TES et al (2017) Thiols of flagellar proteins are essential for progressive motility in human spermatozoa. Reprod Fertil Dev 29:1435–1446. https://doi.org/10.1071/RD16225

    Article  CAS  PubMed  Google Scholar 

  77. Dirami G, Poulter LW, Cooke BA (1991) Separation and characterization of Leydig cells and macrophages from rat testes. J Endocrinol 130:357–365. https://doi.org/10.1677/joe.0.1300357

    Article  CAS  PubMed  Google Scholar 

  78. Cudicini C, Lejeune H, Gomez E et al (1997) Human leydig cells and sertoli cells are producers of interleukins-1 and-6. J Clin Endocrinol Metab 82:1426–1433. https://doi.org/10.1210/jcem.82.5.3938

    Article  CAS  PubMed  Google Scholar 

  79. Gérard N, Syed V, Bardin W et al (1991) Sertoli cells are the site of interleukin-1α synthesis in rat testis. Mol Cell Endocrinol 82:13–16. https://doi.org/10.1016/0303-7207(91)90019-O

    Article  Google Scholar 

  80. Bou Ghosn EE, Cassado AA, Govoni GR et al (2010) Two physically, functionally, and developmentally distinct peritoneal macrophage subsets. Proc Natl Acad Sci USA 107:2568–2573. https://doi.org/10.1073/pnas.0915000107

    Article  Google Scholar 

  81. White SL, Belov L, Barber N et al (2005) Immunophenotypic changes induced on human HL60 leukaemia cells by 1α,25-dihydroxyvitamin D3 and 12-O-tetradecanoyl phorbol-13-acetate. Leuk Res 29:1141–1151. https://doi.org/10.1016/j.leukres.2005.02.012

    Article  CAS  PubMed  Google Scholar 

  82. Cockerill GW, Bert AG, Ryan GR et al (1995) Regulation of granulocyte-macrophage colony-stimulating factor and E- selectin expression in endothelial cells by cyclosporin A and the T-cell transcription factor NFAT. Blood 86:2689–2698. https://doi.org/10.1182/blood.v86.7.2689.2689

    Article  CAS  PubMed  Google Scholar 

  83. Schreck R, Baeuerle PA (1990) NF-kB inducible transcriptional activator of the granulocyte- macrophage colony-stimulating factor gene. Mol Cell Biol 10:1281–1286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ghiorzo P, Musso M, Mantelli M et al (1997) C-Rel and p65 subunits bind to an upstream NF-κB site in human granulocyte macrophage-colony stimulating factor promoter involved in phorbol ester response in 5637 cells. FEBS Lett 418:215–218. https://doi.org/10.1016/S0014-5793(97)01387-2

    Article  CAS  PubMed  Google Scholar 

  85. Yang TC, Chang PY, Kuo TL, Lu SC (2017) Electronegative L5-LDL induces the production of G-CSF and GM-CSF in human macrophages through LOX-1 involving NF-κB and ERK2 activation. Atherosclerosis 267:1–9. https://doi.org/10.1016/j.atherosclerosis.2017.10.016

    Article  CAS  PubMed  Google Scholar 

  86. Seiler P, Cooper TG, Yeung CH, Nieschlag E (1999) Regional variation in macrophage antigen expression by murine epididymal basal cells and their regulation by testicular factors. J Androl 20:738–746. https://doi.org/10.1002/j.1939-4640.1999.tb03379.x

    Article  CAS  PubMed  Google Scholar 

  87. Da Silva N, Barton CR (2016) Macrophages and dendritic cells in the post-testicular environment. Cell Tissue Res 363:97–104. https://doi.org/10.1007/s00441-015-2270-0

    Article  CAS  PubMed  Google Scholar 

  88. Ge W, Yue Y, Xiong S (2019) POM121 inhibits the macrophage inflammatory response by impacting NF-κB P65 nuclear accumulation. Exp Cell Res 377:17–23. https://doi.org/10.1016/j.yexcr.2019.02.021

    Article  CAS  PubMed  Google Scholar 

  89. Wang Y, Dong G, Jeon HH et al (2015) FOXO1 mediates RANKL-induced osteoclast formation and activity. J Immunol 194:2878–2887. https://doi.org/10.4049/jimmunol.1402211

    Article  CAS  PubMed  Google Scholar 

  90. Zhang Y, Xu S, Li K et al (2017) mTORC1 inhibits NF-κB/NFATc1 signaling and prevents osteoclast precursor differentiation, in vitro and in mice. J Bone Miner Res 32:1829–1840. https://doi.org/10.1002/jbmr.3172

    Article  CAS  PubMed  Google Scholar 

  91. Orthgiess J, Gericke M, Immig K et al (2016) Neurons exhibit Lyz2 promoter activity in vivo: Implications for using LysM-Cre mice in myeloid cell research. Eur J Immunol 46:1529–1532. https://doi.org/10.1002/eji.201546108

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Keiji Ueno, Mr. Takeshi Ishino, Ms. Misato Amagasa, Ms. Aya Iida, and Ms. Marina Tanaka from Rakuno Gakuen University, and Dr. Yuko Okamatsu from Hokkaido University. The authors also acknowledge the editing services provided by Uni-edit.

Funding

This work was supported by the Japan Society for the Promotion of Science KAKENHI (15K06805 and 18K06035) and the Rakuno Gakuen University Research Fund (No. 2018-02, 2019-03, and 2020-04).

Author information

Authors and Affiliations

Authors

Contributions

MH and SK performed the experiments, analyzed the data, and wrote and revised the manuscript. CK, YY, TW, and ET performed the experiments. JO revised the manuscript. MN designed and performed the experiments and revised the manuscript. HK designed and performed the experiments, analyzed data, and wrote and revised the manuscript. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Hiroshi Kitamura.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest/competing interests to declare.

Ethical approval

All animal experiments were approved by the Ethical Review Committee for Animal Experimentation of Rakuno Gakuen University (Approval Numbers VH15A30, VH16A25, VH17A1). We made all efforts to reduce the number of animals used, and to alleviate their suffering.

Consent to participate/Consent for publication

Consent to participate/consent for publication is not applicable to this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17441 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashimoto, M., Kimura, S., Kanno, C. et al. Macrophage ubiquitin-specific protease 2 contributes to motility, hyperactivation, capacitation, and in vitro fertilization activity of mouse sperm. Cell. Mol. Life Sci. 78, 2929–2948 (2021). https://doi.org/10.1007/s00018-020-03683-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-020-03683-9

Keywords

Navigation