Skip to main content

Mitochondrial Function and Male Infertility

  • Chapter
  • First Online:
Genetics of Male Infertility

Abstract

Spermatozoa are motile cells specifically designed to transfer the paternal genetic material across a challenging spatial route to an ovum. The importance of sperm motility to fertility has been firmly established. In this chapter, we address the central role that sperm mitochondria play in providing the energy necessary for the generation of motility by summarizing the metabolic pathways for both anaerobic (glycolytic) and aerobic (mitochondrial) generation of ATP. We stress the importance of the glycolytic-metabolic end products being essential metabolic substrates for the mitochondria oxidative phosphorylation, where ATP production is dramatically escalated. The anomaly and duality of mitochondrial and nuclear DNA, and their interplay in ensuring functional oxidative phosphorylation, are discussed by illustrating how single-point or serial mutations have the ability to infer male infertility. In this regard, the balance of redox reactions is therefore crucial in preventing oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gray MW. Mitochondrial evolution. Cold Spring Harb Perspect Biol. 2012;4:a011403.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Croteau DL, Stierum RH, Bohr VA. Mitochondrial DNA repair pathways. Mutat Res. 1999;434:137–48.

    Article  CAS  PubMed  Google Scholar 

  3. Folgero T, Bertheussen K, Lindal S, Torbergsen T, Oian P. Mitochondrial disease and reduced sperm motility. Hum Reprod. 1993;8:1863–8.

    Article  CAS  PubMed  Google Scholar 

  4. Lodish H, Berk A, Matsudaira P, Kaiser CA, Krieger M, Scott MP, Zipursky L, Darnell J. Molecular cell biology. 6th ed. New York: W.H. Freeman, ©; 2008.

    Google Scholar 

  5. Piomboni P, Focarelli R, Stendardi A, Ferramosca A, Zara V. The role of mitochondria in energy production for human sperm motility. Int J Androl. 2012;35:109–24.

    Article  CAS  PubMed  Google Scholar 

  6. Davila MP, Muñoz PM, Bolaños JMG, Stout TAE, Gadella BM, Tapia JA, da Silva CB, Ferrusola CO, Peña FJ. Mitochondrial ATP is required for the maintenance of membrane integrity in stallion spermatozoa, whereas motility requires both glycolysis and oxidative phosphorylation. Reproduction. 2016;152:683–94.

    Article  CAS  PubMed  Google Scholar 

  7. St John JC, Jokhi RP, Barratt CL. The impact of mitochondrial genetics on male infertility. Int J Androl. 2005;28(2):65–73.

    Article  CAS  PubMed  Google Scholar 

  8. Koppers AJ, De Iuliis GN, Finnie JM, McLaughlin EA, Aitken RJ. Significance of mitochondrial reactive oxygen species in the generation of oxidative stress in spermatozoa. J Clin Endocrinol Metab. 2008;93:3199–207.

    Article  CAS  PubMed  Google Scholar 

  9. Kim KH, Son JM, Benayoun BA, Lee C. The mitochondrial-encoded peptide MOTS-c translocates to the nucleus to regulate nuclear gene expression in response to metabolic stress. Cell Metab. 2018;28(3):516–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sharpley MS, Marciniak C, Eckel-Mahan K, McManus M, Crimi M, Waymire K, Lin CS, Masubuchi S, Friend N, Koike M, et al. Heteroplasmy of mouse mtDNA is genetically unstable and results in altered behavior and cognition. Cell. 2012;151:333–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Luo S, Valencia CA, Zhang J, Lee NC, Slone J, Gui B, Wang X, Li Z, Dell S, Brown J, Chen SM, Chien YH, Hwu WL, Fan PC, Wong LI, Atwal PS, Huang T. Biparental inheritance of mitochondrial DNA in humans. Proc Natl Acad Sci U S A. 2018;115(51):13039–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cummings JM, Jequier AM, Kan R. Molecular biology of human male infertility: links with aging, mitochondrial genetics, and oxidative stress? Mol Reprod Dev. 1994;37:345–62.

    Article  Google Scholar 

  13. Lestienne P, Reynier P, Chretien MF, Penisson-Besnier I, Malthiery Y, Rohmer V. Oligoasthenospermia associated with multiple mitochondrial DNA rearrangements. Mol Hum Reprod. 1997;3:811–4.

    Article  CAS  PubMed  Google Scholar 

  14. Rajender S, Rahul P, Mahdi AA. Mitochondria, spermatogenesis and male infertility. Mitochondrion. 2010;10:419–28.

    Article  CAS  PubMed  Google Scholar 

  15. Ferramosca A, Focarelli R, Piomboni P, Coppola L, Zara V. Oxygen uptake by mitochondria in demembranated human sperma- tozoa: a reliable tool for the evaluation of sperm respiratory efficiency. Int J Androl. 2008;31:337–45.

    Article  CAS  PubMed  Google Scholar 

  16. Green DR, Reed JC. Mitochondria and apoptosis. Science. 1998;281:1309–12.

    Article  CAS  PubMed  Google Scholar 

  17. Desagher S, Martinou JC. Mitochondria as the central control point of apoptosis. Trends Cell Biol. 2000;10:369–77.

    Article  CAS  PubMed  Google Scholar 

  18. Leist M, Nicotera P. The shape of cell death. Biochem Biophys Res Commun. 1997;236:1–9.

    Article  CAS  PubMed  Google Scholar 

  19. Kasai T, Ogawa K, Mizuno K, Nagai S, Uchida Y, Ohta S, Fujie M, Suzuki K, Hirata S, Hoshi K. Relationship between sperm mitochondrial membrane potential, sperm motility, and fertility potential. Asian J Androl. 2002;4:97–103.

    PubMed  Google Scholar 

  20. Gallon F, Marchetti C, Jouy N, Marchetti P. The functionality of mitochondria differentiates human spermatozoa with high and low fertilizing capability. Fertil Steril. 2006;86:1526–30.

    Article  PubMed  Google Scholar 

  21. Espinoza JA, Schulz MA, Sanchez R, Villegas JV. Integrity of mitochondrial membrane potential reflects human sperm quality. Andrologia. 2009;41:51–4.

    Article  CAS  PubMed  Google Scholar 

  22. Paoli D, Gallo M, Rizzo F, Baldi E, Francavilla S, Lenzi A, Lombardo F, Gandini L. Mitochondrial membrane potential profile and its correlation with increasing sperm motility. Fertil Steril. 2011;95:2315–9.

    Article  CAS  PubMed  Google Scholar 

  23. Marchetti P, Ballot C, Jouy N, Thomas P, Marchetti C. Influence of mitochondrial membrane potential of spermatozoa on in vitro fertilisation outcome. Andrologia. 2012;44:136–41.

    Article  CAS  PubMed  Google Scholar 

  24. Sharbatoghli M, Valojerdi MR, Amanlou M, Khosravi F, Jafar-abadi MA. Relationship of sperm DNA fragmentation, apoptosis and dysfunction of mitochondrial membrane potential with semen parameters and ART outcome after intracytoplasmic sperm injection. Arch Gynecol Obstet. 2012;286:1315–22.

    Article  CAS  PubMed  Google Scholar 

  25. Agnihotri SK, Agrawal AK, Hakim BA, Vishwakarma AL, Narender T, Sachan R, Sachdev M. Mitochondrial membrane potential (MMP) regulates sperm motility. In Vitro Cell Dev Biol Anim. 2016;52:953–60.

    Article  CAS  PubMed  Google Scholar 

  26. Henkel R. ROS and DNA integrity—implications of male accessory gland infections. In: Björndahl L, Giwercman A, Tournaye H, Weidner W, editors. Clinical andrology. London: Informa Healthcare (incorporating Parthenon Publishing, Marcel Dekker, and Taylor & Francis Medical; 2010. p. 324–8.

    Chapter  Google Scholar 

  27. Zhang WD, Zhang Z, Jia LT, Zhang LL, Fu T, Li YS, Wang P, Sun L, Shi Y, Zhang HZ. Oxygen free radicals and mitochondrial signaling in oligospermia and asthenospermia. Mol Med Rep. 2014;10:1875–80.

    Article  CAS  PubMed  Google Scholar 

  28. Treulen F, Uribe P, Boguen R, Villegas JV. Mitochondrial permeability transition increases reactive oxygen species production and induces DNA fragmentation in human spermatozoa. Hum Reprod. 2015;30:767–76.

    Article  CAS  PubMed  Google Scholar 

  29. Zhang G, Yang W, Zou P, Jiang F, Zeng Y, Chen Q, Sun L, Yang H, Zhou N, Wang X, Liu J, Cao J, Zhou Z, Ao L. Mitochondrial functionality modifies human sperm acrosin activity, acrosome reaction capability and chromatin integrity. Hum Reprod. 2019;34:3–11.

    Article  CAS  PubMed  Google Scholar 

  30. Marchetti C, Obert G, Deffosez A, Formstecher P, Marchetti P. Study of mitochondrial membrane potential, reactive oxygen species, DNA fragmentation and cell viability by flow cytometry in human sperm. Hum Reprod. 2002;17:1257–65.

    Article  PubMed  Google Scholar 

  31. Reed JC. Mechanisms of apoptosis. Am J Pathol. 2000;157:1415–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Green DR. Overview: apoptotic signaling pathways in the immune system. Immunol Rev. 2003;193:5–9.

    Article  CAS  PubMed  Google Scholar 

  33. Koppers AJ, Mitchell LA, Wang P, Lin M, Aitken RJ. Phosphoinositide-3-kinase signaling pathway involvement in a truncated apoptotic cascade associated with motility loss and oxidative DNA damage in human spermatozoa. Biochem J. 2011;436:687–98.

    Article  CAS  PubMed  Google Scholar 

  34. Aitken RJ, Gibb Z, Baker MA, Drevet J, Gharagozloo P. Causes and consequences of oxidative stress in spermatozoa. Reprod Fertil Dev. 2016;28:1–10.

    Article  CAS  PubMed  Google Scholar 

  35. Ohno M, Sakumi K, Fukumura R, Furuichi M, Iwasaki Y, Hokama M, Ikemura T, Tsuzuki T, Gondo Y, Nakabeppu Y. 8-oxoguanine causes spontaneous de novo germline mutations in mice. Sci Rep. 2014;4:4689.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Sotolongo B, Huang TT, Isenberger E, Ward WS. An endogenous nuclease in hamster, mouse, and human spermatozoa cleaves DNA into loop-sized fragments. J Androl. 2005;26:272–80.

    Article  CAS  PubMed  Google Scholar 

  37. Thomson LK, Fleming SD, Aitken RJ, De Iuliis GN, Zieschang JA, Clark AM. Cryopreservation-induced human sperm DNA damage is predominantly mediated by oxidative stress rather than apoptosis. Hum Reprod. 2009;24:2061–70.

    Article  CAS  PubMed  Google Scholar 

  38. Hezavehei M, Sharafi M, Kouchesfahani HM, Henkel R, Agarwal A, Esmaeili V, Shahverdi A. Sperm cryopreservation: a review on current molecular cryobiology and advanced approaches. Reprod Biomed Online. 2018;37:327–39.

    Article  CAS  PubMed  Google Scholar 

  39. Aitken RJ, Curry BJ. Redox regulation of human sperm function: from the physiological control of sperm capacitation to the etiology of infertility and DNA damage in the germ line. Antioxid Redox Signal. 2011;14:367–81.

    Article  CAS  PubMed  Google Scholar 

  40. Agarwal A, Majzoub A. Role of antioxidants in male infertility. BJUI Knowledge. 2016:1–9.

    Google Scholar 

  41. Lavi R, Shainberg A, Shneyvays V, Hochauser E, Isaac A, Zinman T, Friedmann H, Lubart R. Detailed analysis of reactive oxygen species induced by visible light in various cell types. Lasers Surg Med. 2010;42:473–80.

    Article  PubMed  Google Scholar 

  42. Kesari KK, Agarwal A, Henkel R. Radiations and male fertility. Reprod Biol Endocrinol. 2018;16:118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Henkel R, Kierspel E, Stalf T, Mehnert C, Menkveld R, Tinneberg HR, Schill WB, Kruger TF. Effect of reactive oxygen species produced by spermatozoa and leukocytes on sperm functions in non-leukocytospermic patients. Fertil Steril. 2005;83:635–42.

    Article  CAS  PubMed  Google Scholar 

  44. Zorn B, Ihan A, Kopitar AN, Kolbezen M, Sesek-Briski A, Meden-Vrtovec H. Changes in sperm apoptotic markers as related to seminal leukocytes and elastase. Reprod Biomed Online. 2010;21:84–92.

    Article  CAS  PubMed  Google Scholar 

  45. Shi TY, Chen G, Huang X, Yuan Y, Wu X, Wu B, Li Z, Shun F, Chen H, Shi H. Effects of reactive oxygen species from activated leucocytes on human sperm motility, viability and morphology. Andrologia. 2012;44(Suppl. 1):696–703.

    Article  PubMed  CAS  Google Scholar 

  46. Aitken RJ, Whiting S, De Iuliis GN, McClymont S, Mitchell LA, Baker MA. Electrophilic aldehydes generated by sperm metabolism activate mitochondrial reactive oxygen species generation and apoptosis by targeting succinate dehydrogenase. J Biol Chem. 2012;287:33048–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Platt N, da Silva RP, Gordon S. Recognizing death: the phagocytosis of apoptotic cells. Trends Cell Biol. 1998;8:365–72.

    Article  CAS  PubMed  Google Scholar 

  48. Fawzy F, Hussein A, Eid MM, El Kashash AM, Salem HK. Cryptorchidism and fertility. Clin Med Insights Reprod Health. 2015;9:39–43.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Bedford JM. Human spermatozoa and temperature: the elephant in the room. Biol Reprod. 2015;93(4):97, 1–5.

    Article  CAS  Google Scholar 

  50. Rao M, Xia W, Yang J, Hu LX, Hu SF, Lei H, Wu YQ, Zhu CH. Transient scrotal hyperthermia affects human sperm DNA integrity, sperm apoptosis, and sperm protein expression. Andrology. 2016;4(6):1054–63.

    Article  CAS  PubMed  Google Scholar 

  51. Gong Y, Guo H, Zhang Z, Zhou H, Zhao R, He B. Heat stress reduces sperm motility via activation of glycogen synthase kinase-3α and inhibition of mitochondrial protein import. Front Physiol. 2017;8:718, 1–10.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Henkel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fisher, D., Henkel, R. (2020). Mitochondrial Function and Male Infertility. In: Arafa, M., Elbardisi, H., Majzoub, A., Agarwal, A. (eds) Genetics of Male Infertility. Springer, Cham. https://doi.org/10.1007/978-3-030-37972-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37972-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37971-1

  • Online ISBN: 978-3-030-37972-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics