Skip to main content
Log in

The role of SIRT3-mediated mitochondrial homeostasis in osteoarthritis

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Osteoarthritis is the most common degenerative joint disease and causes major pain and disability in adults. It has been reported that mitochondrial dysfunction in chondrocytes is associated with osteoarthritis. Sirtuins are a family of nicotinamide adenine dinucleotide-dependent histone deacetylases that have the ability to deacetylate protein targets and play an important role in the regulation of cell physiological and pathological processes. Among sirtuin family members, sirtuin 3, which is mainly located in mitochondria, can exert its deacetylation activity to regulate mitochondrial function, regeneration, and dynamics; these processes are presently recognized to maintain redox homeostasis to prevent oxidative stress in cell metabolism. In this review, we provide present opinions on the effect of mitochondrial dysfunction in osteoarthritis. Furthermore, the potential protective mechanism of SIRT3-mediated mitochondrial homeostasis in the progression of osteoarthritis is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kaplan W, Wirtz VJ, Mantel-Teeuwisse A, Stolk P, Duthey B, Laing R (2007) Priority Medicines for Europe and the World 2013 update. World Health Organization. https://www.who.int/medicines/areas/priority_medicines/MasterDocJune28_FINAL_Web.pdf?ua=1 Accessed 9 July 2013

  2. Aigner T, Kurz B, Fukui N, Sandell L (2002) Roles of chondrocytes in the pathogenesis of osteoarthritis. Curr Opin Rheumatol 14(5):578–584. https://doi.org/10.1097/00002281-200209000-00018

    Article  CAS  PubMed  Google Scholar 

  3. Malemud CJ (2017) Matrix metalloproteinases and synovial joint pathology. Progress Mol Biol Transl Sci 148:305–325. https://doi.org/10.1016/bs.pmbts.2017.03.003

    Article  CAS  Google Scholar 

  4. Funck-Brentano T, Cohen-Solal M (2015) Subchondral bone and osteoarthritis. Curr Opin Rheumatol 27(4):420–426. https://doi.org/10.1097/bor.0000000000000181

    Article  PubMed  Google Scholar 

  5. Li D, Xie G, Wang W (2012) Reactive oxygen species: the 2-edged sword of osteoarthritis. Am J Med Sci 344(6):486–490. https://doi.org/10.1097/MAJ.0b013e3182579dc6

    Article  PubMed  Google Scholar 

  6. Lepetsos P (1862) Papavassiliou AG (2016) ROS/oxidative stress signaling in osteoarthritis. Biochem Biophys Acta 4:576–591. https://doi.org/10.1016/j.bbadis.2016.01.003

    Article  CAS  Google Scholar 

  7. Blanco FJ, Rego I, Ruiz-Romero C (2011) The role of mitochondria in osteoarthritis. Nat Rev Rheumatol 7(3):161–169. https://doi.org/10.1038/nrrheum.2010.213

    Article  CAS  PubMed  Google Scholar 

  8. Archer CW, Francis-West P (2003) The chondrocyte. Int J Biochem Cell Biol 35(4):401–404

    Article  CAS  PubMed  Google Scholar 

  9. Ansari A, Rahman MS, Saha SK, Saikot FK, Deep A, Kim KH (2017) Function of the SIRT3 mitochondrial deacetylase in cellular physiology, cancer, and neurodegenerative disease. Aging Cell 16(1):4–16. https://doi.org/10.1111/acel.12538

    Article  CAS  PubMed  Google Scholar 

  10. Bause AS, Haigis MC (2013) SIRT3 regulation of mitochondrial oxidative stress. Exp Gerontol 48(7):634–639. https://doi.org/10.1016/j.exger.2012.08.007

    Article  CAS  PubMed  Google Scholar 

  11. Blanco FJ, Valdes AM, Rego-Perez I (2018) Mitochondrial DNA variation and the pathogenesis of osteoarthritis phenotypes. Nat Rev Rheumatol 14(6):327–340. https://doi.org/10.1038/s41584-018-0001-0

    Article  CAS  PubMed  Google Scholar 

  12. Henrotin Y, Kurz B, Aigner T (2005) Oxygen and reactive oxygen species in cartilage degradation: friends or foes? Osteoarthr Cartil 13(8):643–654. https://doi.org/10.1016/j.joca.2005.04.002

    Article  CAS  Google Scholar 

  13. Henrotin YE, Bruckner P, Pujol JP (2003) The role of reactive oxygen species in homeostasis and degradation of cartilage. Osteoarthr Cartil 11(10):747–755. https://doi.org/10.1016/s1063-4584(03)00150-x

    Article  CAS  Google Scholar 

  14. Blanco FJ, Guitian R, Vazquez-Martul E, de Toro FJ, Galdo F (1998) Osteoarthritis chondrocytes die by apoptosis: a possible pathway for osteoarthritis pathology. Arthritis Rheum 41(2):284–289

    Article  CAS  PubMed  Google Scholar 

  15. Yudoh K, Nguyen VT, Nakamura H, Hongo-Masuko K, Kato T, Nishioka K (2005) Potential involvement of oxidative stress in cartilage senescence and development of osteoarthritis: oxidative stress induces chondrocyte telomere instability and downregulation of chondrocyte function. Arthritis Res Therapy 7(2):R380–R391. https://doi.org/10.1186/ar1499

    Article  CAS  Google Scholar 

  16. Shi Q, Vaillancourt F, Cote V, Fahmi H, Lavigne P, Afif H, Di Battista JA, Fernandes JC, Benderdour M (2006) Alterations of metabolic activity in human osteoarthritic osteoblasts by lipid peroxidation end product 4-hydroxynonenal. Arthritis Res Therapy 8(6):R159. https://doi.org/10.1186/ar2066

    Article  CAS  Google Scholar 

  17. Marcus RE (1973) The effect of low oxygen concentration on growth, glycolysis, and sulfate incorporation by articular chondrocytes in monolayer culture. Arthritis Rheum 16(5):646–656. https://doi.org/10.1002/art.1780160509

    Article  CAS  PubMed  Google Scholar 

  18. Lee RB, Urban JP (1997) Evidence for a negative Pasteur effect in articular cartilage. Biochem J 321:95–102. https://doi.org/10.1042/bj3210095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Terkeltaub R, Johnson K, Murphy A, Ghosh S (2002) Invited review: the mitochondrion in osteoarthritis. Mitochondrion 1(4):301–319. https://doi.org/10.1016/s1567-7249(01)00037-x

    Article  CAS  PubMed  Google Scholar 

  20. Maneiro E, Martin MA, de Andres MC, Lopez-Armada MJ, Fernandez-Sueiro JL, del Hoyo P, Galdo F, Arenas J, Blanco FJ (2003) Mitochondrial respiratory activity is altered in osteoarthritic human articular chondrocytes. Arthritis Rheum 48(3):700–708. https://doi.org/10.1002/art.10837

    Article  CAS  PubMed  Google Scholar 

  21. Wang Y, Zhao X, Lotz M, Terkeltaub R, Liu-Bryan R (2015) Mitochondrial biogenesis is impaired in osteoarthritis chondrocytes but reversible via peroxisome proliferator-activated receptor gamma coactivator 1alpha. Arthritis Rheumatol (Hoboken, NJ) 67(8):2141–2153. https://doi.org/10.1002/art.39182

    Article  CAS  Google Scholar 

  22. Johnson K, Svensson CI, Etten DV, Ghosh SS, Murphy AN, Powell HC, Terkeltaub R (2004) Mediation of spontaneous knee osteoarthritis by progressive chondrocyte ATP depletion in Hartley guinea pigs. Arthritis Rheum 50(4):1216–1225. https://doi.org/10.1002/art.20149

    Article  CAS  PubMed  Google Scholar 

  23. Tchetina EV, Markova GA (2018) Regulation of energy metabolism in the growth plate and osteoarthritic chondrocytes. Rheumatol Int 38(11):1963–1974. https://doi.org/10.1007/s00296-018-4103-4

    Article  CAS  PubMed  Google Scholar 

  24. Liu-Bryan R, Terkeltaub R (2015) Emerging regulators of the inflammatory process in osteoarthritis. Nat Rev Rheumatol 11(1):35–44. https://doi.org/10.1038/nrrheum.2014.162

    Article  CAS  PubMed  Google Scholar 

  25. O'Neill LA, Hardie DG (2013) Metabolism of inflammation limited by AMPK and pseudo-starvation. Nature 493(7432):346–355. https://doi.org/10.1038/nature11862

    Article  CAS  PubMed  Google Scholar 

  26. Martin JA, Martini A, Molinari A, Morgan W, Ramalingam W, Buckwalter JA, McKinley TO (2012) Mitochondrial electron transport and glycolysis are coupled in articular cartilage. Osteoarthr Cartil 20(4):323–329. https://doi.org/10.1016/j.joca.2012.01.003

    Article  CAS  Google Scholar 

  27. Wolff KJ, Ramakrishnan PS, Brouillette MJ, Journot BJ, McKinley TO, Buckwalter JA, Martin JA (2013) Mechanical stress and ATP synthesis are coupled by mitochondrial oxidants in articular cartilage. J Orthop Res 31(2):191–196. https://doi.org/10.1002/jor.22223

    Article  CAS  PubMed  Google Scholar 

  28. Qu J, Lu D, Guo H, Miao W, Wu G, Zhou M (2016) PFKFB3 modulates glycolytic metabolism and alleviates endoplasmic reticulum stress in human osteoarthritis cartilage. Clin Exp Pharmacol Physiol 43(3):312–318. https://doi.org/10.1111/1440-1681.12537

    Article  CAS  PubMed  Google Scholar 

  29. Nishida T, Kubota S, Aoyama E, Takigawa M (2013) Impaired glycolytic metabolism causes chondrocyte hypertrophy-like changes via promotion of phospho-Smad1/5/8 translocation into nucleus. Osteoarthr Cartil 21(5):700–709. https://doi.org/10.1016/j.joca.2013.01.013

    Article  CAS  Google Scholar 

  30. Liu JT, Guo X, Ma WJ, Zhang YG, Xu P, Yao JF, Bai YD (2010) Mitochondrial function is altered in articular chondrocytes of an endemic osteoarthritis. Kashin-Beck Dis Osteoarthr Cartil 18(9):1218–1226. https://doi.org/10.1016/j.joca.2010.07.003

    Article  CAS  Google Scholar 

  31. Lopez-Armada MJ, Carames B, Martin MA, Cillero-Pastor B, Lires-Dean M, Fuentes-Boquete I, Arenas J, Blanco FJ (2006) Mitochondrial activity is modulated by TNFalpha and IL-1beta in normal human chondrocyte cells. Osteoarthr Cartil 14(10):1011–1022. https://doi.org/10.1016/j.joca.2006.03.008

    Article  CAS  Google Scholar 

  32. Cillero-Pastor B, Rego-Perez I, Oreiro N, Fernandez-Lopez C, Blanco FJ (2013) Mitochondrial respiratory chain dysfunction modulates metalloproteases-1, -3 and -13 in human normal chondrocytes in culture. BMC Musculoskelet Disord 14:235. https://doi.org/10.1186/1471-2474-14-235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Krause KH (2007) Aging: a revisited theory based on free radicals generated by NOX family NADPH oxidases. Exp Gerontol 42(4):256–262. https://doi.org/10.1016/j.exger.2006.10.011

    Article  CAS  PubMed  Google Scholar 

  34. Drevet S, Gavazzi G, Grange L, Dupuy C, Lardy B (2018) Reactive oxygen species and NADPH oxidase 4 involvement in osteoarthritis. Exp Gerontol 111:107–117. https://doi.org/10.1016/j.exger.2018.07.007

    Article  CAS  PubMed  Google Scholar 

  35. Grange L, Nguyen MV, Lardy B, Derouazi M, Campion Y, Trocme C, Paclet MH, Gaudin P, Morel F (2006) NAD(P)H oxidase activity of Nox4 in chondrocytes is both inducible and involved in collagenase expression. Antioxid Redox Signal 8(9–10):1485–1496. https://doi.org/10.1089/ars.2006.8.1485

    Article  CAS  PubMed  Google Scholar 

  36. Moulton PJ, Goldring MB, Hancock JT (1998) NADPH oxidase of chondrocytes contains an isoform of the gp91phox subunit. Biochem J 329(Pt 3):449–451. https://doi.org/10.1042/bj3290449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Stockwell RA (1991) Morphometry of cytoplasmic components of mammalian articular chondrocytes and corneal keratocytes: species and zonal variations of mitochondria in relation to nutrition. J Anat 175:251–261

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Chance B, Williams GR (1955) Respiratory enzymes in oxidative phosphorylation. II. Difference spectra. J Biol Chem 217(1):395–407

    CAS  PubMed  Google Scholar 

  39. Wang J, Wang K, Huang C, Lin D, Zhou Y, Wu Y, Tian N, Fan P, Pan X, Xu D, Hu J, Zhou Y, Wang X, Zhang X (2018) SIRT3 Activation by Dihydromyricetin Suppresses Chondrocytes Degeneration via Maintaining Mitochondrial Homeostasis. Int J Biol Sci 14(13):1873–1882. https://doi.org/10.7150/ijbs.27746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jones DP (2008) Radical-free biology of oxidative stress. Am J Physiol Cell Physiol 295(4):C849–868. https://doi.org/10.1152/ajpcell.00283.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Altay MA, Erturk C, Bilge A, Yapti M, Levent A, Aksoy N (2015) Evaluation of prolidase activity and oxidative status in patients with knee osteoarthritis: relationships with radiographic severity and clinical parameters. Rheumatol Int 35(10):1725–1731. https://doi.org/10.1007/s00296-015-3290-5

    Article  CAS  PubMed  Google Scholar 

  42. Altindag O, Erel O, Aksoy N, Selek S, Celik H, Karaoglanoglu M (2007) Increased oxidative stress and its relation with collagen metabolism in knee osteoarthritis. Rheumatol Int 27(4):339–344. https://doi.org/10.1007/s00296-006-0247-8

    Article  CAS  PubMed  Google Scholar 

  43. Reed KN, Wilson G, Pearsall A, Grishko VI (2014) The role of mitochondrial reactive oxygen species in cartilage matrix destruction. Mol Cell Biochem 397(1–2):195–201. https://doi.org/10.1007/s11010-014-2187-z

    Article  CAS  PubMed  Google Scholar 

  44. Vaamonde-Garcia C, Riveiro-Naveira RR, Valcarcel-Ares MN, Hermida-Carballo L, Blanco FJ, Lopez-Armada MJ (2012) Mitochondrial dysfunction increases inflammatory responsiveness to cytokines in normal human chondrocytes. Arthritis Rheum 64(9):2927–2936. https://doi.org/10.1002/art.34508

    Article  CAS  PubMed  Google Scholar 

  45. Buckwalter JA, Anderson DD, Brown TD, Tochigi Y, Martin JA (2013) The roles of mechanical stresses in the pathogenesis of osteoarthritis: implications for treatment of joint injuries. Cartilage 4(4):286–294. https://doi.org/10.1177/1947603513495889

    Article  PubMed  PubMed Central  Google Scholar 

  46. Brouillette MJ, Ramakrishnan PS, Wagner VM, Sauter EE, Journot BJ, McKinley TO, Martin JA (2014) Strain-dependent oxidant release in articular cartilage originates from mitochondria. Biomech Model Mechanobiol 13(3):565–572. https://doi.org/10.1007/s10237-013-0518-8

    Article  CAS  PubMed  Google Scholar 

  47. Tiku ML, Liesch JB, Robertson FM (1990) Production of hydrogen peroxide by rabbit articular chondrocytes. Enhancement by cytokines. J Immunol 145(2):690–696

    CAS  PubMed  Google Scholar 

  48. Johnson K, Jung A, Murphy A, Andreyev A, Dykens J, Terkeltaub R (2000) Mitochondrial oxidative phosphorylation is a downstream regulator of nitric oxide effects on chondrocyte matrix synthesis and mineralization. Arthritis Rheum 43(7):1560–1570. https://doi.org/10.1002/1529-0131(200007)43:7%3c1560:aid-anr21%3e3.0.co;2-s

    Article  CAS  PubMed  Google Scholar 

  49. Baker MS, Feigan J, Lowther DA (1989) The mechanism of chondrocyte hydrogen peroxide damage. Depletion of intracellular ATP due to suppression of glycolysis caused by oxidation of glyceraldehyde-3-phosphate dehydrogenase. J Rheumatol 16(1):7–14

    CAS  PubMed  Google Scholar 

  50. Morita K, Miyamoto T, Fujita N, Kubota Y, Ito K, Takubo K, Miyamoto K, Ninomiya K, Suzuki T, Iwasaki R, Yagi M, Takaishi H, Toyama Y, Suda T (2007) Reactive oxygen species induce chondrocyte hypertrophy in endochondral ossification. J Exp Med 204(7):1613–1623. https://doi.org/10.1084/jem.20062525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sen CK (1995) Oxygen toxicity and antioxidants: state of the art. Indian J Physiol Pharmacol 39(3):177–196

    CAS  PubMed  Google Scholar 

  52. Fernandez-Moreno M, Soto-Hermida A, Pertega S, Oreiro N, Fernandez-Lopez C, Rego-Perez I, Blanco FJ (2011) Mitochondrial DNA (mtDNA) haplogroups and serum levels of anti-oxidant enzymes in patients with osteoarthritis. BMC Musculoskelet Disord 12:264. https://doi.org/10.1186/1471-2474-12-264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Regan EA, Bowler RP, Crapo JD (2008) Joint fluid antioxidants are decreased in osteoarthritic joints compared to joints with macroscopically intact cartilage and subacute injury. Osteoarthr Cartil 16(4):515–521. https://doi.org/10.1016/j.joca.2007.09.001

    Article  CAS  Google Scholar 

  54. Grishko VI, Ho R, Wilson GL, Pearsall AWT (2009) Diminished mitochondrial DNA integrity and repair capacity in OA chondrocytes. Osteoarthr Cartil 17(1):107–113. https://doi.org/10.1016/j.joca.2008.05.009

    Article  CAS  Google Scholar 

  55. Tomita M, Sato EF, Nishikawa M, Yamano Y, Inoue M (2001) Nitric oxide regulates mitochondrial respiration and functions of articular chondrocytes. Arthritis Rheum 44(1):96–104. https://doi.org/10.1002/1529-0131(200101)44:1%3c96:aid-anr13%3e3.0.co;2-#

    Article  CAS  PubMed  Google Scholar 

  56. Kogaya Y, Furuhashi K (1988) Comparison of the calcium distribution pattern among several kinds of hard tissue forming cells of some living vertebrates. Scan Microsc 2(4):2029–2043

    CAS  Google Scholar 

  57. Shapiro IM, Lee NH (1975) Calcium accumulation by chondrocyte mitochondria. Clin Orthop Relat Res 106:323–329. https://doi.org/10.1097/00003086-197501000-00044

    Article  Google Scholar 

  58. Olmez N, Schumacher HR Jr (1999) Crystal deposition and osteoarthritis. Curr Rheumatol Rep 1(2):107–111. https://doi.org/10.1007/s11926-999-0006-4

    Article  CAS  PubMed  Google Scholar 

  59. Nalbant S, Martinez JA, Kitumnuaypong T, Clayburne G, Sieck M, Schumacher HR Jr (2003) Synovial fluid features and their relations to osteoarthritis severity: new findings from sequential studies. Osteoarthr Cartil 11(1):50–54. https://doi.org/10.1053/joca.2002.0861

    Article  CAS  Google Scholar 

  60. Hashimoto S, Ochs RL, Rosen F, Quach J, McCabe G, Solan J, Seegmiller JE, Terkeltaub R, Lotz M (1998) Chondrocyte-derived apoptotic bodies and calcification of articular cartilage. Proc Natl Acad Sci USA 95(6):3094–3099. https://doi.org/10.1073/pnas.95.6.3094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Anderson HC (1995) Molecular biology of matrix vesicles. Clin Orthop Relat Res 314:266–280

    Google Scholar 

  62. Fukuda K (2009) Progress of research in osteoarthritis. Involvement of reactive oxygen species in the pathogenesis of osteoarthritis. Clin Cal 19(11):1602–1606

    CAS  Google Scholar 

  63. Li YS, Xiao WF, Luo W (2017) Cellular aging towards osteoarthritis. Mech Ageing Dev 162:80–84. https://doi.org/10.1016/j.mad.2016.12.012

    Article  CAS  PubMed  Google Scholar 

  64. Habiballa L, Salmonowicz H, Passos JF (2019) Mitochondria and cellular senescence: implications for musculoskeletal ageing. Free Radical Biol Med 132:3–10. https://doi.org/10.1016/j.freeradbiomed.2018.10.417

    Article  CAS  Google Scholar 

  65. McCulloch K, Litherland GJ, Rai TS (2017) Cellular senescence in osteoarthritis pathology. Aging Cell 16(2):210–218. https://doi.org/10.1111/acel.12562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Loeser RF (2009) Aging and osteoarthritis: the role of chondrocyte senescence and aging changes in the cartilage matrix. Osteoarthr Cartil 17(8):971–979. https://doi.org/10.1016/j.joca.2009.03.002

    Article  CAS  Google Scholar 

  67. Xu M, Bradley EW, Weivoda MM, Hwang SM, Pirtskhalava T, Decklever T, Curran GL, Ogrodnik M, Jurk D, Johnson KO, Lowe V, Tchkonia T, Westendorf JJ, Kirkland JL (2017) Transplanted senescent cells induce an osteoarthritis-like condition in mice. J Gerontol Ser A 72(6):780–785. https://doi.org/10.1093/gerona/glw154

    Article  CAS  Google Scholar 

  68. Jeon OH, Kim C, Laberge RM, Demaria M (2017) Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nat Med 23(6):775–781. https://doi.org/10.1038/nm.4324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Martin JA, Buckwalter JA (2003) The role of chondrocyte senescence in the pathogenesis of osteoarthritis and in limiting cartilage repair. J Bone Joint Surg Am 85(2):106–110. https://doi.org/10.2106/00004623-200300002-00014

    Article  PubMed  Google Scholar 

  70. Chang Z, Huo L, Li P, Wu Y, Zhang P (2015) Ascorbic acid provides protection for human chondrocytes against oxidative stress. Mol Med Rep 12(5):7086–7092. https://doi.org/10.3892/mmr.2015.4231

    Article  CAS  PubMed  Google Scholar 

  71. Ruiz-Romero C, Lopez-Armada MJ, Blanco FJ (2005) Proteomic characterization of human normal articular chondrocytes: a novel tool for the study of osteoarthritis and other rheumatic diseases. Proteomics 5(12):3048–3059. https://doi.org/10.1002/pmic.200402106

    Article  CAS  PubMed  Google Scholar 

  72. Matsumoto H, Silverton SF, Debolt K, Shapiro IM (1991) Superoxide dismutase and catalase activities in the growth cartilage: relationship between oxidoreductase activity and chondrocyte maturation. J Bone Miner Res 6(6):569–574. https://doi.org/10.1002/jbmr.5650060607

    Article  CAS  PubMed  Google Scholar 

  73. Jallali N, Ridha H, Thrasivoulou C, Underwood C, Butler PE, Cowen T (2005) Vulnerability to ROS-induced cell death in ageing articular cartilage: the role of antioxidant enzyme activity. Osteoarthr Cartil 13(7):614–622. https://doi.org/10.1016/j.joca.2005.02.011

    Article  CAS  Google Scholar 

  74. Kim HA, Blanco FJ (2007) Cell death and apoptosis in osteoarthritic cartilage. Curr Drug Targets 8(2):333–345. https://doi.org/10.2174/138945007779940025

    Article  CAS  PubMed  Google Scholar 

  75. Green DR, Reed JC (1998) Mitochondria and apoptosis. Science (New York, NY) 281(5381):1309–1312. https://doi.org/10.1126/science.281.5381.1309

    Article  CAS  Google Scholar 

  76. Crompton M (1999) The mitochondrial permeability transition pore and its role in cell death. Biochem J 341(Pt 2):233–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zhao H, Qiu GX, Guan J, Zhao Y, Zhou X (2008) Correlation of apoptosis of articular chondrocytes in osteoarthritis with degree of cartilage destruction and expression of apoptosis-related proteins: surviving, caspase-3, and Bcl-xl. Zhonghua yi xue za zhi 88(19):1339–1341

    CAS  PubMed  Google Scholar 

  78. Pelletier JP, Jovanovic DV, Lascau-Coman V, Fernandes JC, Manning PT, Connor JR, Currie MG, Martel-Pelletier J (2000) Selective inhibition of inducible nitric oxide synthase reduces progression of experimental osteoarthritis in vivo: possible link with the reduction in chondrocyte apoptosis and caspase 3 level. Arthritis Rheum 43(6):1290–1299. https://doi.org/10.1002/1529-0131(200006)43:6%3c1290:aid-anr11%3e3.0.co;2-r

    Article  CAS  PubMed  Google Scholar 

  79. D'Lima D, Hermida J, Hashimoto S, Colwell C, Lotz M (2006) Caspase inhibitors reduce severity of cartilage lesions in experimental osteoarthritis. Arthritis Rheum 54(6):1814–1821. https://doi.org/10.1002/art.21874

    Article  CAS  PubMed  Google Scholar 

  80. Winston FK, Thibault LE, Macarak EJ (1993) An analysis of the time-dependent changes in intracellular calcium concentration in endothelial cells in culture induced by mechanical stimulation. J Biomech Eng 115(2):160–168. https://doi.org/10.1115/1.2894116

    Article  CAS  PubMed  Google Scholar 

  81. Grapengiesser E, Gylfe E, Dansk H, Hellman B (2003) Stretch activation of Ca2+ transients in pancreatic beta cells by mobilization of intracellular stores. Pancreas 26(1):82–86. https://doi.org/10.1097/00006676-200301000-00014

    Article  CAS  PubMed  Google Scholar 

  82. Lv M, Zhou Y, Chen X, Han L, Wang L, Lu XL (2018) Calcium signaling of in situ chondrocytes in articular cartilage under compressive loading: Roles of calcium sources and cell membrane ion channels. J Orthop Res 36(2):730–738. https://doi.org/10.1002/jor.23768

    Article  CAS  PubMed  Google Scholar 

  83. D'Andrea P, Calabrese A, Capozzi I, Grandolfo M, Tonon R, Vittur F (2000) Intercellular Ca2+ waves in mechanically stimulated articular chondrocytes. Biorheology 37(1–2):75–83

    CAS  PubMed  Google Scholar 

  84. Duchen MR (1999) Contributions of mitochondria to animal physiology: from homeostatic sensor to calcium signalling and cell death. J Physiol 516(Pt 1):1–17. https://doi.org/10.1111/j.1469-7793.1999.001aa.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Borutaite V, Morkuniene R, Brown GC (1999) Release of cytochrome c from heart mitochondria is induced by high Ca2+ and peroxynitrite and is responsible for Ca(2+)-induced inhibition of substrate oxidation. Biochem Biophys Acta 1453(1):41–48. https://doi.org/10.1016/s0925-4439(98)00082-9

    Article  CAS  PubMed  Google Scholar 

  86. Hashimoto S, Ochs RL, Komiya S, Lotz M (1998) Linkage of chondrocyte apoptosis and cartilage degradation in human osteoarthritis. Arthritis Rheum 41(9):1632–1638. https://doi.org/10.1002/1529-0131(199809)41:9%3c1632:aid-art14%3e3.0.co;2-a

    Article  CAS  PubMed  Google Scholar 

  87. Lu HB, Zhou Y, Hu JZ, Lei GH, Zhu M, Li KH (2006) Mitochondrial DNA deletion mutations in articular chondrocytes of cartilage affected by osteoarthritis. Zhong nan da xue xue bao Yi xue ban 31(5):640–644

    CAS  PubMed  Google Scholar 

  88. Rego-Perez I, Fernandez-Moreno M, Fernandez-Lopez C, Arenas J, Blanco FJ (2008) Mitochondrial DNA haplogroups: role in the prevalence and severity of knee osteoarthritis. Arthritis Rheum 58(8):2387–2396. https://doi.org/10.1002/art.23659

    Article  CAS  PubMed  Google Scholar 

  89. Soto-Hermida A, Fernandez-Moreno M, Pertega-Diaz S, Oreiro N, Fernandez-Lopez C, Blanco FJ, Rego-Perez I (2015) Mitochondrial DNA haplogroups modulate the radiographic progression of Spanish patients with osteoarthritis. Rheumatol Int 35(2):337–344. https://doi.org/10.1007/s00296-014-3104-1

    Article  CAS  PubMed  Google Scholar 

  90. Scher MB, Vaquero A, Reinberg D (2007) SirT3 is a nuclear NAD+-dependent histone deacetylase that translocates to the mitochondria upon cellular stress. Genes Dev 21(8):920–928. https://doi.org/10.1101/gad.1527307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Baeza J, Smallegan MJ, Denu JM (2016) Mechanisms and Dynamics of Protein Acetylation in Mitochondria. Trends Biochem Sci 41(3):231–244. https://doi.org/10.1016/j.tibs.2015.12.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Carrico C, Meyer JG, He W, Gibson BW, Verdin E (2018) The Mitochondrial Acylome Emerges: Proteomics, Regulation by Sirtuins, and Metabolic and Disease Implications. Cell Metab 27(3):497–512. https://doi.org/10.1016/j.cmet.2018.01.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hebert AS, Dittenhafer-Reed KE, Yu W, Bailey DJ, Selen ES, Boersma MD, Carson JJ, Tonelli M, Balloon AJ, Higbee AJ, Westphall MS, Pagliarini DJ, Prolla TA, Assadi-Porter F, Roy S, Denu JM, Coon JJ (2013) Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome. Mol Cell 49(1):186–199. https://doi.org/10.1016/j.molcel.2012.10.024

    Article  CAS  PubMed  Google Scholar 

  94. Rardin MJ, Newman JC, Held JM, Cusack MP, Sorensen DJ, Li B, Schilling B, Mooney SD, Kahn CR, Verdin E, Gibson BW (2013) Label-free quantitative proteomics of the lysine acetylome in mitochondria identifies substrates of SIRT3 in metabolic pathways. Proc Natl Acad Sci USA 110(16):6601–6606. https://doi.org/10.1073/pnas.1302961110

    Article  PubMed  PubMed Central  Google Scholar 

  95. Sol EM, Wagner SA, Weinert BT, Kumar A, Kim HS, Deng CX, Choudhary C (2012) Proteomic investigations of lysine acetylation identify diverse substrates of mitochondrial deacetylase sirt3. PLoS ONE 7(12):e50545. https://doi.org/10.1371/journal.pone.0050545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Tao R, Coleman MC, Pennington JD, Ozden O, Park SH, Jiang H, Kim HS, Flynn CR, Hill S, Hayes McDonald W, Olivier AK, Spitz DR, Gius D (2010) Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress. Mol Cell 40(6):893–904. https://doi.org/10.1016/j.molcel.2010.12.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Yu W, Dittenhafer-Reed KE, Denu JM (2012) SIRT3 protein deacetylates isocitrate dehydrogenase 2 (IDH2) and regulates mitochondrial redox status. J Biol Chem 287(17):14078–14086. https://doi.org/10.1074/jbc.M112.355206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Hafner AV, Dai J, Gomes AP, Xiao CY, Palmeira CM, Rosenzweig A, Sinclair DA (2010) Regulation of the mPTP by SIRT3-mediated deacetylation of CypD at lysine 166 suppresses age-related cardiac hypertrophy. Aging 2(12):914–923. https://doi.org/10.18632/aging.100252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Yang W, Nagasawa K, Munch C, Xu Y, Satterstrom K, Jeong S, Hayes SD, Jedrychowski MP, Vyas FS, Zaganjor E, Guarani V, Ringel AE, Gygi SP, Harper JW, Haigis MC (2016) Mitochondrial sirtuin network reveals dynamic SIRT3-dependent deacetylation in response to membrane depolarization. Cell 167(4):985–1000.e1021. https://doi.org/10.1016/j.cell.2016.10.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Osborne B, Cooney GJ (1840) Turner N (2014) Are sirtuin deacylase enzymes important modulators of mitochondrial energy metabolism? Biochem Biophys Acta 4:1295–1302. https://doi.org/10.1016/j.bbagen.2013.08.016

    Article  CAS  Google Scholar 

  101. He DS, Hu XJ, Yan YQ, Liu H (2017) Underlying mechanism of Sirt1 on apoptosis and extracellular matrix degradation of osteoarthritis chondrocytes. Mol Med Rep 16(1):845–850. https://doi.org/10.3892/mmr.2017.6659

    Article  CAS  PubMed  Google Scholar 

  102. Zhang D, Zhang G, Li Z, Li B (2018) Activation of the cannabinoid receptor 1 by ACEA suppresses senescence in human primary chondrocytes through sirt1 activation. Exp Biol Med (Maywood, NJ) 243(5):437–443. https://doi.org/10.1177/1535370218757950

    Article  CAS  Google Scholar 

  103. Duarte JH (2015) Osteoarthritis: SIRT6 prevents chondrocyte senescence and DNA damage. Nat Rev Rheumatol 11(5):260. https://doi.org/10.1038/nrrheum.2015.52

    Article  PubMed  Google Scholar 

  104. Wu Y, Chen L, Wang Y, Li W, Lin Y, Yu D, Zhang L, Li F, Pan Z (2015) Overexpression of Sirtuin 6 suppresses cellular senescence and NF-kappaB mediated inflammatory responses in osteoarthritis development. Sci Rep 5:17602. https://doi.org/10.1038/srep17602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Chen LY, Wang Y, Terkeltaub R, Liu-Bryan R (2018) Activation of AMPK-SIRT3 signaling is chondroprotective by preserving mitochondrial DNA integrity and function. Osteoarthr Cartil 26(11):1539–1550. https://doi.org/10.1016/j.joca.2018.07.004

    Article  Google Scholar 

  106. Fu Y, Kinter M, Hudson J, Humphries KM, Lane RS, White JR, Hakim M, Pan Y, Verdin E, Griffin TM (2016) Aging promotes sirtuin 3-dependent cartilage superoxide dismutase 2 acetylation and osteoarthritis. Arthritis Rheumatol (Hoboken, NJ) 68(8):1887–1898. https://doi.org/10.1002/art.39618

    Article  CAS  Google Scholar 

  107. Koike M, Nojiri H, Ozawa Y, Watanabe K, Muramatsu Y, Kaneko H, Morikawa D, Kobayashi K, Saita Y, Sasho T, Shirasawa T, Yokote K, Kaneko K, Shimizu T (2015) Mechanical overloading causes mitochondrial superoxide and SOD2 imbalance in chondrocytes resulting in cartilage degeneration. Sci Rep 5:11722. https://doi.org/10.1038/srep11722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Zhu S, Makosa D, Miller B, Griffin TM (2020) Glutathione as a mediator of cartilage oxidative stress resistance and resilience during aging and osteoarthritis. Connect Tissue Res 61(1):34–47. https://doi.org/10.1080/03008207.2019.1665035

    Article  CAS  PubMed  Google Scholar 

  109. Chae U, Park JW, Lee SR, Lee HJ, Lee HS, Lee DS (2019) Reactive oxygen species-mediated senescence is accelerated by inhibiting Cdk2 in Idh2-deficient conditions. Aging 11(17):7242–7256. https://doi.org/10.18632/aging.102259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Carlo MD Jr, Loeser RF (2003) Increased oxidative stress with aging reduces chondrocyte survival: correlation with intracellular glutathione levels. Arthritis Rheum 48(12):3419–3430. https://doi.org/10.1002/art.11338

    Article  CAS  PubMed  Google Scholar 

  111. Vassilopoulos A, Pennington JD, Andresson T, Rees DM, Bosley AD, Fearnley IM, Ham A, Flynn CR, Hill S, Rose KL, Kim HS, Deng CX, Walker JE, Gius D (2014) SIRT3 deacetylates ATP synthase F1 complex proteins in response to nutrient- and exercise-induced stress. Antioxid Redox Signal 21(4):551–564. https://doi.org/10.1089/ars.2013.5420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Rahman M, Nirala NK, Singh A, Zhu LJ, Taguchi K, Bamba T, Fukusaki E, Shaw LM, Lambright DG, Acharya JK, Acharya UR (2014) Drosophila Sirt2/mammalian SIRT3 deacetylates ATP synthase beta and regulates complex V activity. J Cell Biol 206(2):289–305. https://doi.org/10.1083/jcb.201404118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Zhao X, Petursson F, Viollet B, Lotz M, Terkeltaub R, Liu-Bryan R (2014) Peroxisome proliferator-activated receptor gamma coactivator 1alpha and FoxO3A mediate chondroprotection by AMP-activated protein kinase. Arthritis Rheumatol (Hoboken, NJ) 66(11):3073–3082. https://doi.org/10.1002/art.38791

    Article  CAS  Google Scholar 

  114. Yakes FM, Van Houten B (1997) Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc Natl Acad Sci USA 94(2):514–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Chandel NS, Schumacker PT (1999) Cells depleted of mitochondrial DNA (rho0) yield insight into physiological mechanisms. FEBS Lett 454(3):173–176

    Article  CAS  PubMed  Google Scholar 

  116. Ames BN, Shigenaga MK, Hagen TM (1993) Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci USA 90(17):7915–7922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Chang MC, Hung SC, Chen WY, Chen TL, Lee CF, Lee HC, Wang KL, Chiou CC, Wei YH (2005) Accumulation of mitochondrial DNA with 4977-bp deletion in knee cartilage: an association with idiopathic osteoarthritis. Osteoarthr Cartil 13(11):1004–1011. https://doi.org/10.1016/j.joca.2005.06.011

    Article  Google Scholar 

  118. Gavriilidis C, Miwa S, von Zglinicki T, Taylor RW, Young DA (2013) Mitochondrial dysfunction in osteoarthritis is associated with down-regulation of superoxide dismutase 2. Arthritis Rheum 65(2):378–387. https://doi.org/10.1002/art.37782

    Article  CAS  PubMed  Google Scholar 

  119. Cheng Y, Ren X, Gowda AS, Shan Y, Zhang L, Yuan YS, Patel R, Wu H, Huber-Keener K, Yang JW, Liu D, Spratt TE, Yang JM (2013) Interaction of Sirt3 with OGG1 contributes to repair of mitochondrial DNA and protects from apoptotic cell death under oxidative stress. Cell death & disease 4:e731. https://doi.org/10.1038/cddis.2013.254

    Article  CAS  Google Scholar 

  120. Kang L, Zhao W, Zhang G, Wu J, Guan H (2015) Acetylated 8-oxoguanine DNA glycosylase 1 and its relationship with p300 and SIRT1 in lens epithelium cells from age-related cataract. Exp Eye Res 135:102–108. https://doi.org/10.1016/j.exer.2015.02.005

    Article  CAS  PubMed  Google Scholar 

  121. Hill JW, Hu JJ, Evans MK (2008) OGG1 is degraded by calpain following oxidative stress and cisplatin exposure. DNA Repair 7(4):648–654. https://doi.org/10.1016/j.dnarep.2008.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Chen XJ, Wang X, Kaufman BA, Butow RA (2005) Aconitase couples metabolic regulation to mitochondrial DNA maintenance. Science (New York, NY) 307(5710):714–717. https://doi.org/10.1126/science.1106391

    Article  CAS  Google Scholar 

  123. Panduri V, Liu G, Surapureddi S, Kondapalli J, Soberanes S, de Souza-Pinto NC, Bohr VA, Budinger GR, Schumacker PT, Weitzman SA, Kamp DW (2009) Role of mitochondrial hOGG1 and aconitase in oxidant-induced lung epithelial cell apoptosis. Free Radical Biol Med 47(6):750–759. https://doi.org/10.1016/j.freeradbiomed.2009.06.010

    Article  CAS  Google Scholar 

  124. Benigni A, Perico L, Macconi D (2016) Mitochondrial dynamics Is linked to longevity and protects from end-organ injury: the emerging role of sirtuin 3. Antioxid Redox Signal 25(4):185–199. https://doi.org/10.1089/ars.2016.6682

    Article  CAS  PubMed  Google Scholar 

  125. Garcia D, Shaw RJ (2017) AMPK: mechanisms of cellular energy sensing and restoration of metabolic balance. Mol Cell 66(6):789–800. https://doi.org/10.1016/j.molcel.2017.05.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Salminen A, Hyttinen JM, Kaarniranta K (2011) AMP-activated protein kinase inhibits NF-kappaB signaling and inflammation: impact on healthspan and lifespan. J Mol Med (Berl Ger) 89(7):667–676. https://doi.org/10.1007/s00109-011-0748-0

    Article  CAS  Google Scholar 

  127. Gleyzer N, Vercauteren K, Scarpulla RC (2005) Control of mitochondrial transcription specificity factors (TFB1M and TFB2M) by nuclear respiratory factors (NRF-1 and NRF-2) and PGC-1 family coactivators. Mol Cell Biol 25(4):1354–1366. https://doi.org/10.1128/mcb.25.4.1354-1366.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Larsson NG, Wang J, Wilhelmsson H, Oldfors A, Rustin P, Lewandoski M, Barsh GS, Clayton DA (1998) Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice. Nat Genet 18(3):231–236. https://doi.org/10.1038/ng0398-231

    Article  CAS  PubMed  Google Scholar 

  129. Kong X, Wang R, Xue Y, Liu X, Zhang H, Chen Y, Fang F, Chang Y (2010) Sirtuin 3, a new target of PGC-1alpha, plays an important role in the suppression of ROS and mitochondrial biogenesis. PLoS ONE 5(7):e11707. https://doi.org/10.1371/journal.pone.0011707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Planavila A, Iglesias R, Giralt M, Villarroya F (2011) Sirt1 acts in association with PPARalpha to protect the heart from hypertrophy, metabolic dysregulation, and inflammation. Cardiovasc Res 90(2):276–284. https://doi.org/10.1093/cvr/cvq376

    Article  CAS  PubMed  Google Scholar 

  131. Satterstrom FK, Swindell WR, Laurent G, Vyas S, Bulyk ML, Haigis MC (2015) Nuclear respiratory factor 2 induces SIRT3 expression. Aging Cell 14(5):818–825. https://doi.org/10.1111/acel.12360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Samant SA, Zhang HJ, Hong Z, Pillai VB, Sundaresan NR, Wolfgeher D, Archer SL, Chan DC, Gupta MP (2014) SIRT3 deacetylates and activates OPA1 to regulate mitochondrial dynamics during stress. Mol Cell Biol 34(5):807–819. https://doi.org/10.1128/mcb.01483-13

    Article  PubMed  PubMed Central  Google Scholar 

  133. Yoon Y, Krueger EW, Oswald BJ, McNiven MA (2003) The mitochondrial protein hFis1 regulates mitochondrial fission in mammalian cells through an interaction with the dynamin-like protein DLP1. Mol Cell Biol 23(15):5409–5420. https://doi.org/10.1128/mcb.23.15.5409-5420.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Kim D, Song J, Kang Y, Park S, Kim YI, Kwak S, Lim D, Park R, Chun CH, Choe SK, Jin EJ (2016) Fis1 depletion in osteoarthritis impairs chondrocyte survival and peroxisomal and lysosomal function. J Mol Med (Berl Ger) 94(12):1373–1384. https://doi.org/10.1007/s00109-016-1445-9

    Article  CAS  Google Scholar 

  135. Zhou J, Shi M, Li M, Cheng L, Yang J, Huang X (2019) Sirtuin 3 inhibition induces mitochondrial stress in tongue cancer by targeting mitochondrial fission and the JNK-Fis1 biological axis. Cell Stress Chaperones 24(2):369–383. https://doi.org/10.1007/s12192-019-00970-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Lee YJ, Jeong SY, Karbowski M, Smith CL, Youle RJ (2004) Roles of the mammalian mitochondrial fission and fusion mediators Fis1, Drp1, and Opa1 in apoptosis. Mol Biol Cell 15(11):5001–5011. https://doi.org/10.1091/mbc.e04-04-0294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Olichon A, Baricault L, Gas N, Guillou E, Valette A, Belenguer P, Lenaers G (2003) Loss of OPA1 perturbates the mitochondrial inner membrane structure and integrity, leading to cytochrome c release and apoptosis. J Biol Chem 278(10):7743–7746. https://doi.org/10.1074/jbc.C200677200

    Article  CAS  PubMed  Google Scholar 

  138. Park J, Choi H, Min JS, Park SJ, Kim JH, Park HJ, Kim B, Chae JI, Yim M, Lee DS (2013) Mitochondrial dynamics modulate the expression of pro-inflammatory mediators in microglial cells. J Neurochem 127(2):221–232. https://doi.org/10.1111/jnc.12361

    Article  CAS  PubMed  Google Scholar 

  139. Ichinohe T, Yamazaki T, Koshiba T, Yanagi Y (2013) Mitochondrial protein mitofusin 2 is required for NLRP3 inflammasome activation after RNA virus infection. Proc Natl Acad Sci USA 110(44):17963–17968. https://doi.org/10.1073/pnas.1312571110

    Article  PubMed  PubMed Central  Google Scholar 

  140. White JP, Puppa MJ, Sato S, Gao S, Price RL, Baynes JW, Kostek MC, Matesic LE, Carson JA (2012) IL-6 regulation on skeletal muscle mitochondrial remodeling during cancer cachexia in the ApcMin/+ mouse. Skelet Muscle 2:14. https://doi.org/10.1186/2044-5040-2-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Li YS, Zhang FJ, Zeng C, Luo W, Xiao WF, Gao SG, Lei GH (2016) Autophagy in osteoarthritis. Joint Bone Spine 83(2):143–148. https://doi.org/10.1016/j.jbspin.2015.06.009

    Article  PubMed  Google Scholar 

  142. Lopez de Figueroa P, Lotz MK, Blanco FJ, Carames B (2015) Autophagy activation and protection from mitochondrial dysfunction in human chondrocytes. Arthritis Rheumatol (Hoboken, NJ) 67(4):966–976. https://doi.org/10.1002/art.39025

    Article  CAS  Google Scholar 

  143. Carames B, Olmer M, Kiosses WB, Lotz MK (2015) The relationship of autophagy defects to cartilage damage during joint aging in a mouse model. Arthritis Rheumatol (Hoboken, NJ) 67(6):1568–1576. https://doi.org/10.1002/art.39073

    Article  CAS  Google Scholar 

  144. Choi AM, Ryter SW, Levine B (2013) Autophagy in human health and disease. N Engl J Med 368(7):651–662. https://doi.org/10.1056/NEJMra1205406

    Article  CAS  PubMed  Google Scholar 

  145. Carames B, Hasegawa A, Taniguchi N, Miyaki S, Blanco FJ, Lotz M (2012) Autophagy activation by rapamycin reduces severity of experimental osteoarthritis. Ann Rheum Dis 71(4):575–581. https://doi.org/10.1136/annrheumdis-2011-200557

    Article  CAS  PubMed  Google Scholar 

  146. Ansari MY, Khan NM, Ahmad I, Haqqi TM (2018) Parkin clearance of dysfunctional mitochondria regulates ROS levels and increases survival of human chondrocytes. Osteoarthr Cartil 26(8):1087–1097. https://doi.org/10.1016/j.joca.2017.07.020

    Article  CAS  Google Scholar 

  147. Blanco FJ, Rego-Perez I (2018) Mitochondria and mitophagy: biosensors for cartilage degradation and osteoarthritis. Osteoarthr Cartil 26(8):989–991. https://doi.org/10.1016/j.joca.2018.05.018

    Article  CAS  Google Scholar 

  148. Yu W, Gao B, Li N, Wang J, Qiu C, Zhang G, Liu M, Zhang R, Li C, Ji G (1863) Zhang Y (2017) Sirt3 deficiency exacerbates diabetic cardiac dysfunction: role of Foxo3A-Parkin-mediated mitophagy. Biochim Biophys Acta 8:1973–1983. https://doi.org/10.1016/j.bbadis.2016.10.021

    Article  CAS  Google Scholar 

  149. Akasaki Y, Alvarez-Garcia O, Saito M, Carames B, Iwamoto Y, Lotz MK (2014) FoxO transcription factors support oxidative stress resistance in human chondrocytes. Arthritis Rheumatol (Hoboken, NJ) 66(12):3349–3358. https://doi.org/10.1002/art.38868

    Article  CAS  Google Scholar 

  150. Akasaki Y, Hasegawa A, Saito M, Asahara H, Iwamoto Y, Lotz MK (2014) Dysregulated FOXO transcription factors in articular cartilage in aging and osteoarthritis. Osteoarthr Cartil 22(1):162–170. https://doi.org/10.1016/j.joca.2013.11.004

    Article  CAS  Google Scholar 

  151. Li J, Chen T, Xiao M, Li N, Wang S, Su H, Guo X, Liu H, Yan F, Yang Y, Zhang Y, Bu P (2016) Mouse Sirt3 promotes autophagy in AngII-induced myocardial hypertrophy through the deacetylation of FoxO1. Oncotarget 7(52):86648–86659. https://doi.org/10.18632/oncotarget.13429

    Article  PubMed  PubMed Central  Google Scholar 

  152. Mammucari C, Milan G, Romanello V, Masiero E, Rudolf R, Del Piccolo P, Burden SJ, Di Lisi R, Sandri C, Zhao J, Goldberg AL, Schiaffino S, Sandri M (2007) FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab 6(6):458–471. https://doi.org/10.1016/j.cmet.2007.11.001

    Article  CAS  PubMed  Google Scholar 

  153. Qiao A, Wang K, Yuan Y, Guan Y, Ren X, Li L, Chen X, Li F, Chen AF, Zhou J, Yang JM, Cheng Y (2016) Sirt3-mediated mitophagy protects tumor cells against apoptosis under hypoxia. Oncotarget 7(28):43390–43400. https://doi.org/10.18632/oncotarget.9717

    Article  PubMed  PubMed Central  Google Scholar 

  154. Wang C, Yang Y, Zhang Y, Liu J, Yao Z, Zhang C (2018) Protective effects of metformin against osteoarthritis through upregulation of SIRT3-mediated PINK1/Parkin-dependent mitophagy in primary chondrocytes. Biosci Trends 12(6):605–612. https://doi.org/10.5582/bst.2018.01263

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as potential conflicts of interest. This study was supported by the Natural Science Foundation of Zhejiang Province (Grant No. LD19H060001) and the National Natural Science Foundation of China (Grant No. 81871793).

Author information

Authors and Affiliations

Authors

Contributions

The idea for the manuscript came from YH. ZW, LX, KX, and ZC performed the literature search and data analysis, and KX and ZC, JR and LW critically revised the manuscript. All authors read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Jisheng Ran or Lidong Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Wu, Z., Xu, L. et al. The role of SIRT3-mediated mitochondrial homeostasis in osteoarthritis. Cell. Mol. Life Sci. 77, 3729–3743 (2020). https://doi.org/10.1007/s00018-020-03497-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-020-03497-9

Keywords

Navigation