Skip to main content
Log in

The role of mitochondrial reactive oxygen species in cartilage matrix destruction

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Upregulation of matrix metalloproteinases (MMPs) is a hallmark of osteoarthritis progression; along with the role reactive oxygen species (ROS) may play in this process. Moreover, mitochondrial DNA damage and dysfunction are also present in osteoarthritic chondrocytes. However, there are no studies published investigating the direct relationship between mitochondrial ROS, mitochondrial DNA damage, and MMP expression. Therefore, the purpose of the present study was to evaluate whether mitochondrial DNA damage and mitochondrial-originated oxidative stress modulates matrix destruction through the upregulation of MMP protein levels. MitoSox red was utilized to observe mitochondrial ROS production while a Quantitative Southern blot technique was conducted to analyze mitochondrial DNA damage. Additionally, Western blot analysis was used to determine MMP protein levels. The results of the present study show that menadione augmented mitochondrial-generated ROS and increased mitochondrial DNA damage. This increase in mitochondrial-generated ROS led to an increase in MMP levels. When a mitochondrial ROS scavenger was added, there was a subsequent reduction in MMP levels. These studies reveal that mitochondrial integrity is essential for maintaining the cartilage matrix by altering MMP levels. This provides new and important insights into the role of mitochondria in chondrocyte function and its potential importance in therapeutic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pagano G, Talamanca AA, Castello G, Cordero MD, d’Ischia M, Gadaleta MN, Pallardo FV, Petrovic S, Tiano L, Zatterale A (2014) Oxidative stress and mitochondrial dysfunction across broad-ranging pathologies: toward mitochondria-targeted clinical strategies. Oxid Med Cell Longev 1–27 doi.org/10.1155/2014/541230

  2. Ruiz-Romero C, Calamia V, Mateos J, Carreira V, Martinez-Gomariz M, Fernandez M, Blanco F (2009) Mitochondrial dysregulation of osteoarthritic human articular chondrocytes analyzed by proteomics. Mol Cell Proteomics 8(1):172–189

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Pelletier JP, Jovanovic DV, Lascau-Coman V, Fernandes JC, Manning PT, Connor JR et al (2000) Selective inhibition of inducible nitric oxide synthase reduces progression of experimental osteoarthritis in vivo: possible link with the reduction in chondrocyte apoptosis and caspase 3 level. Arthritis Rheum 43:1290–1299

    Article  PubMed  CAS  Google Scholar 

  4. Grishko V, Renee H, Wilson GL, Pearsall AW (2009) Diminished mtDNA integrity and repair capacity in OA chondrocytes. Osteoarthritis Cartilage 17:107–113

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Johnson K, Jung AS, Andreyev A, Murphy A, Dykens J, Terkeltaub R (2000) Mitochondrial oxidative phosphorylation is a downstream regulator of nitric oxide effects on chondrocyte matrix synthesis and mineralization. Arthritis Rheum 43(7):1560–1570

    Article  PubMed  CAS  Google Scholar 

  6. Loeser RF, Carlson CS, Del Carlo M, Cole A (2002) Detection of nitrotyrosine in aging and osteoarthritic cartilage: correlation of oxidative damage with the presence of interleukin-1 beta and with chondrocyte resistance to insulin-like growth factor 1. Arthritis Rheum 46:2349–2357

    Article  PubMed  CAS  Google Scholar 

  7. Carlo MD, Schwartz D, Erickson EA, Loeser RF (2007) Endogenous production of reactive oxygen species is required for stimulation of human articular chondrocyte matrix metalloproteinase production by fibronectin fragments. Free Radic Biol Med 42:1350–1358

    Article  PubMed  PubMed Central  Google Scholar 

  8. Nelson KK, Melendez JA (2004) Mitochondrial Redox Control of Matrix Metalloproteinases. Free Radic Biol Med 37:768–784

    Article  PubMed  CAS  Google Scholar 

  9. Lewis EJ, Bishop J, Bottomley KM, Bradshaw D, Brewster M, Broadhurst MJ, Brown PA, Budd JM, Elliott L, Greenham AK, Johnson WH, Nixon JS, Rose F, Sutton B, Wilson K (1997) Ro 32-3555, an orally active collagenase inhibitor, prevents cartilage breakdown in vitro and in vivo. Br J Pharmacol 121:540–546

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol 552:335–344

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Chance B, Williams GR (1995) Respiratory enzymes in oxidative phophorylation. I. Kinetics of oxygen utilization. J Biol Chem 217:383–393

    Google Scholar 

  12. Grill L, Nohl H (2001) The ubiquinol/bc1 redox couple regulates mitochondrial oxygen radical formation. Arch Biochem Biophys 388:34–38

    Article  Google Scholar 

  13. Lee RB, Urban JP (1997) Evidence for a negative Pasteur effect in articular cartilage. Biochem J 321:95–102

    PubMed  CAS  PubMed Central  Google Scholar 

  14. Maneiro E, Martin MA, de Andres MC, Lopez-Armada MJ, Fernandez-Sueiro JL, del Hoyo P et al (2003) Mitochondrial respiratory activity is altered in OA human articular chondrocytes. Arthritis Rheum 48:700–708

    Article  PubMed  CAS  Google Scholar 

  15. Roach HI (2008) The complex pathology of osteoarthritis: even mitochondria are involved. Arthritis Rheum 58(8):2217–2218 (32)

    Article  PubMed  Google Scholar 

  16. Mukhopadhyay P, Rajesh M, Yoshihiro K, Hasko G, Pacher P (2007) Simple quantitative detection of mitochondrial superoxide production in live cell. Biochem Biophys Res Commun 358(1):203–208

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Grishko V, Xu M, Wilson G, Pearsall A (2010) Apoptosis and mitochondrial dysfunction in human chondrocytes following exposure to lidocaine, bupivacaine, and ropivacaine. J Bone Joint Surg Am 92:609–618

    Article  PubMed  Google Scholar 

  18. Schon EA, DiMauro S, Hirano M (2012) Human mitochondrial DNA: roles of inherited and somatic mutations. Nat Rev Genet 13(12):878–890

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Suzuki S, Hinokio Y, Komatu K, Ohtomo M, Onoda M, Hirai S, Hirai M et al (1999) Oxidative damage to mitochondrial DNA and its relationship to diabetic complications. Diabetes Res Clin Pract 45(2–3):161–168

    Article  PubMed  CAS  Google Scholar 

  20. Lim PS, Cheng YM, Wei YH (2000) Large-scale mitochondrial DNA deletions in skeletal muscle of patients with end stage renal disease. Free Radic Biol Med 29:454–463

    Article  PubMed  CAS  Google Scholar 

  21. Linnane AW, Marzuki S, Wzawa T, Tanaka M (1989) Mitochondrial DNA mutations as an important contributor to aging and degenerative disease. Lancet i:642–645

  22. Sohal RS, Agarwal A, Agarwal S, Orr WC (1995) Simultaneous overexpression of copper and zinc-containing superoxide dismutase and catalase retards age-related oxidative damage and increases metabolic potential in Drosophila melanogaster. J Biol Chem 270:15671–15674

    Article  PubMed  CAS  Google Scholar 

  23. Sohal RS, Agarwal S, Bubey A, Orr WC (1993) Protein oxidative damage is associated with life expectancy of houseflies. Proc Natl Acad Sci USA 90:7255–7259

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Rego-Perez I, Fernandez-Moreno M, Fernandez-Lopez C, Arenas J, Blanco FJ (2008) Mitochondrial DNA haplogroups: role in the prevalence and severity of knee osteoarthritis. Arthritis Rheum 58(8):2387–2396

    Article  PubMed  CAS  Google Scholar 

  25. Kim J, Xu M, Ho R, Mates A, Wilson GL, Pearsall AW, Grishko V (2010) Mitochondrial DNA damage is involved in apoptosis caused by pro-inflammatory cytokines in human OA. Osteoarthritis Cartilage 18:424–432

    Article  PubMed  CAS  Google Scholar 

  26. Lopez-Armada MJ, Carames B, Martin MA, Cillero-Pastor B, Lires-Dean M, Fuentes-Boquete I, Arenas J, Blanco FJ (2006) Mitochondrial activity is modulated by TNF alpha and IL-1beta in normal human chondrocyte cell. Osteoarthritis Cartilage 14(10):1011–1022

    Article  PubMed  CAS  Google Scholar 

  27. Wolff KJ, Ramakrishnan PS, Brouillette MJ, Journot BJ, McKinley TO, Buckwalter JA, Martin JA (2013) Mechanical stress and ATP synthesis are coupled by mitochondrial oxidants in articular cartilage. J Orthop Res 31(2):191–196

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Brenneisen P, Wenk J, Klotz LO, Wlaschek M, Briviba K, Krieg T, Sies H, Scharffetter-Kochanek K (1998) Central role of ferrous/ferric iron in the ultraviolet B irradiation-mediated signaling pathway leading to increased interstitial collagenase (matrix-degrading metalloprotease (MMP)-1) and stromelysin-1 (MMP-3) mRNA levels in cultured human dermal fibroblasts. J Biol Chem 273(9):5279–5287

    Article  PubMed  CAS  Google Scholar 

  29. Vaamonde-García C, Riveiro-Naveira RR, Valcárcel-Ares MN (2012) Mitochondrial dysfunction increases inflammatory responsiveness to cytokines in normal human chondrocytes. Arthritis Rheum 64:2927–2936

    Article  PubMed  Google Scholar 

  30. Stowe DF, Camara AK (2009) Mitochondrial reactive oxygen species production in excitable cells: modulators of mitochondrial and cell function. Antioxid Redox Signal 11:1373–1414

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Vincent F, Brun H, Clain E, Ronot X, Adolphe M (1989) Effects of oxygen free radicals on proliferation kinetics of cultured rabbit articular chondrocytes. J Cell Physiol 141:262–266

    Article  PubMed  CAS  Google Scholar 

  32. Monboisse JC, Braquet P, Borel JP (1983) Non enxymatic degradation of acid soluble collagen by superoxide anion: protective effect of flavonoids. Biochem Pharmacol 32:53–58

    Article  PubMed  CAS  Google Scholar 

  33. Cillero-Pastor B, Rego-Perez I, Oreiro N, Fernandez-Lopez C, Blanco Francisco (2013) Mitochondrial respiratory chain dysfunction modulates metalloproteases -1, -3 and -13 in human normal chondrocytes in culture. BMC Musculoskelet Disord 14:235

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Henrotin E, Bruckner P, Pujol JP (2003) The role of reactive oxygen species in homeostasis and degradation of cartilage. Osteoarthritis Cartilage 11:747–755

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glenn Wilson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reed, K.N., Wilson, G., Pearsall, A. et al. The role of mitochondrial reactive oxygen species in cartilage matrix destruction. Mol Cell Biochem 397, 195–201 (2014). https://doi.org/10.1007/s11010-014-2187-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-014-2187-z

Keywords

Navigation