Skip to main content

Advertisement

Log in

Matrix metalloproteinases and ADAMs in stroke

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Stroke is a leading cause of death and disability worldwide. However, after years of in-depth research, the pathophysiology of stroke is still not fully understood. Increasing evidence shows that matrix metalloproteinases (MMPs) and “a disintegrin and metalloproteinase” (ADAMs) participate in the neuro-inflammatory cascade that is triggered during stroke but also in recovery phases of the disease. This review covers the involvement of these proteins in brain injury following cerebral ischemia which has been widely studied in recent years, with efforts to modulate this group of proteins in neuroprotective therapies, together with their implication in neurorepair mechanisms. Moreover, the review also discusses the role of these proteins in specific forms of neurovascular disease, such as small vessel diseases and intracerebral hemorrhage. Finally, the potential use of MMPs and ADAMs as guiding biomarkers of brain injury and repair for decision-making in cases of stroke is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ADAM:

A disintegrin and metalloproteinase

ADAMTS:

A disintegrin and metalloproteinase with thrombospondin motifs

BBB:

Blood–brain barrier

CAA:

Cerebral amyloid angiopathy

COX:

Cyclooxygenase

CSF:

Cerebrospinal fluid

CSPGs:

Chondroitin sulfate-bearing proteoglycans

CT:

Computed tomography

EPCs:

Endothelial progenitor cells

ICH:

Intracerebral hemorrhage

MMP:

Matrix metalloproteinase

MT:

Mechanical thrombectomy

OGD:

Oxygen–glucose–deprivation

PHE:

Perihematomal edema

PNN:

Perineuronal net

SAH:

Subarachnoid hemorrhage

SIVD:

Subcortical ischemic vascular disease or vascular cognitive impairment

SVD:

Small vessel diseases

TACE:

Tumor necrosis factor alpha converting enzyme

TIMP:

Tissue inhibitor of MMPs

TNFa:

Tumor necrosis factor alpha

tPA:

Tissue-plasminogen activator

VWF:

Von Willebrand factor

WMH:

White matter hyperintensity

References

  1. Benjamin EJ, Virani SS, Callaway CW et al (2018) heart disease and stroke statistics—2018 update: a report from the American Heart Association. Circulation 137:e67–e492. https://doi.org/10.1161/CIR.0000000000000558

    Article  PubMed  Google Scholar 

  2. Hui C, Tadi P, Patti L (2019) Ischemic stroke. In: StatPearls [Internet]. StatPearls Publishing, Treasure Island (FL)

  3. Lo EH, Dalkara T, Moskowitz MA (2003) Neurological diseases: mechanisms, challenges and opportunities in stroke. Nat Rev Neurosci 4:399–414. https://doi.org/10.1038/nrn1106

    Article  CAS  PubMed  Google Scholar 

  4. Hacke W, Kaste M, Bluhmki E, Brozman M, Dávalos A, Guidetti D, Larrue V, Lees KR, Medeghri Z, Machnig T, Schneider D, von Kummer R, Wahlgren NTD (2005) Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. Clin Trials 359:1317–1329

    Google Scholar 

  5. Urra X, Abilleira S, Dorado L et al (2015) Mechanical thrombectomy in and outside the REVASCAT trial: insights from a concurrent population-based stroke registry. Stroke 46:3437–3442. https://doi.org/10.1161/STROKEAHA.115.011050

    Article  PubMed  Google Scholar 

  6. Nogueira RG, Jadhav AP, Haussen DC et al (2017) Thrombectomy 6 to 24 hours after stroke with a mismatch between deficit and infarct. N Engl J Med 378:11–21. https://doi.org/10.1056/NEJMoa1706442

    Article  PubMed  Google Scholar 

  7. Mac Grory B, Yaghi S (2018) Updates in stroke treatment. R I Med J 101:30–33

    Google Scholar 

  8. Bernhardt J, Zorowitz RD, Becker KJ et al (2018) Advances in stroke 2017. Stroke 49:e174–e199. https://doi.org/10.1161/STROKEAHA.118.021380

    Article  PubMed  Google Scholar 

  9. Vidale S, Consoli A, Arnaboldi M, Consoli D (2017) Postischemic inflammation in acute stroke. J Clin Neurol 13:1–9. https://doi.org/10.3988/jcn.2017.13.1.1

    Article  PubMed  Google Scholar 

  10. Ramiro L, Simats A, García-Berrocoso T, Montaner J (2018) Inflammatory molecules might become both biomarkers and therapeutic targets for stroke management. Ther Adv Neurol Disord. https://doi.org/10.1177/1756286418789340

    Article  PubMed  PubMed Central  Google Scholar 

  11. Asahi M, Wang X, Mori T et al (2001) Effects of matrix metalloproteinase-9 gene knock-out on the proteolysis of blood–brain barrier and white matter components after cerebral ischemia. J Neurosci 21:7724–7732. https://doi.org/10.1523/JNEUROSCI.21-19-07724.2001

    Article  CAS  PubMed  Google Scholar 

  12. Rosenberg GA, Estrada EY, Dencoff JE, Hsu CY (1998) Matrix metalloproteinases and TIMPs are associated with blood–brain barrier opening after reperfusion in rat brain editorial comment. Stroke 29:2189–2195. https://doi.org/10.1161/01.STR.29.10.2189

    Article  CAS  PubMed  Google Scholar 

  13. Romanic AM, White RF, Arleth AJ et al (1998) Matrix metalloproteinase expression increases after cerebral focal ischemia in rats: inhibition of matrix metalloproteinase-9 reduces infarct size. Stroke 29:1020–1030. https://doi.org/10.1161/01.STR.29.5.1020

    Article  CAS  PubMed  Google Scholar 

  14. Yang Y, Estrada EY, Thompson JF et al (2007) Matrix metalloproteinase-mediated disruption of tight junction proteins in cerebral vessels is reversed by synthetic matrix metalloproteinase inhibitor in focal ischemia in rat. J Cereb Blood Flow Metab 27:697–709. https://doi.org/10.1038/sj.jcbfm.9600375

    Article  CAS  PubMed  Google Scholar 

  15. Asahi M, Asahi K, Jung JC et al (2000) Role for matrix metalloproteinase 9 after focal cerebral ischemia: effects of gene knockout and enzyme inhibition with BB-94. J Cereb Blood Flow Metab 20:1681–1689. https://doi.org/10.1097/00004647-200012000-00007

    Article  CAS  PubMed  Google Scholar 

  16. Zhao BQ, Wang S, Kim HY et al (2006) Role of matrix metalloproteinases in delayed cortical responses after stroke. Nat Med 12:441–445. https://doi.org/10.1038/nm1387

    Article  CAS  PubMed  Google Scholar 

  17. Heo JH, Lucero J, Abumiya T et al (1999) Matrix metalloproteinases increase very early during experimental focal cerebral ischemia. J Cereb Blood Flow Metab 19:624–633. https://doi.org/10.1097/00004647-199906000-00005

    Article  CAS  PubMed  Google Scholar 

  18. Montaner J, Molina CA, Monasterio J et al (2003) Matrix metalloproteinase-9 pretreatment level predicts intracranial hemorrhagic complications after thrombolysis in human stroke. Circulation 107:598–603. https://doi.org/10.1161/01.CIR.0000046451.38849.90

    Article  CAS  PubMed  Google Scholar 

  19. Wang X, Lee SR, Arai K et al (2003) Lipoprotein receptor-mediated induction of matrix metalloproteinase by tissue plasminogen activator. Nat Med 9:1313–1317. https://doi.org/10.1038/nm926

    Article  CAS  PubMed  Google Scholar 

  20. Sumii T, Lo EH (2002) Involvement of matrix metalloproteinase in thrombolysis-associated hemorrhagic transformation after embolic focal ischemia in rats. Stroke 33:831–836. https://doi.org/10.1161/hs0302.104542

    Article  CAS  PubMed  Google Scholar 

  21. Rosenberg GA, Cunningham LA, Wallace J et al (2001) Immunohistochemistry of matrix metalloproteinases in reperfusion injury to rat brain: activation of MMP-9 linked to stromelysin-1 and microglia in cell cultures. Brain Res 893:104–112. https://doi.org/10.1016/S0006-8993(00)03294-7

    Article  CAS  PubMed  Google Scholar 

  22. Gasche Y, Fujimura M, Morita-Fujimura Y et al (1999) Early appearance of activated matrix metalloproteinase-9 after focal cerebral ischemia in mice: a possible role in blood–brain barrier dysfunction. J Cereb Blood Flow Metab 19:1020–1028. https://doi.org/10.1097/00004647-199909000-00010

    Article  CAS  PubMed  Google Scholar 

  23. Gidday JM, Gasche YG, Copin JC, Shah AR, Perez RS, Shapiro SD, Chan PHPT (2005) Leukocyte-derived matrix metalloproteinase-9 mediates blood–brain barrier breakdown and is proinflammatory after transient focal cerebral ischemia. AJP Hear Circ Physiol 289:H558–H568. https://doi.org/10.1152/ajpheart.01275.2004

    Article  CAS  Google Scholar 

  24. Gu Z, Cui J, Brown S et al (2005) A highly specific inhibitor of matrix metalloproteinase-9 rescues laminin from proteolysis and neurons from apoptosis in transient focal cerebral ischemia. J Neurosci 25:6401–6408. https://doi.org/10.1523/JNEUROSCI.1563-05.2005

    Article  CAS  PubMed  Google Scholar 

  25. Gasche Y, Copin JC, Sugawara T et al (2001) Matrix metalloproteinase inhibition prevents oxidative stress-associated blood–brain barrier disruption after transient focal cerebral ischemia. J Cereb Blood Flow Metab 21:1393–1400. https://doi.org/10.1097/00004647-200112000-00003

    Article  CAS  PubMed  Google Scholar 

  26. Lapchak PA, Chapman DF, Zivin JA (2000) Metalloproteinase inhibition reduces thrombolytic (tissue plasminogen activator)-induced hemorrhage after thromboembolic stroke. Stroke 31:3034–3040. https://doi.org/10.1161/01.STR.31.12.3034

    Article  CAS  PubMed  Google Scholar 

  27. Montaner J, Alvarez-Sabín J, Molina C et al (2001) Matrix metalloproteinase expression after human cardioembolic stroke: temporal profile and relation to neurological impairment. Stroke 32:1759–1766. https://doi.org/10.1161/01.STR.32.8.1759

    Article  CAS  PubMed  Google Scholar 

  28. Rosell A, Ortega-Aznar A, Alvarez-Sabín J et al (2006) Increased brain expression of matrix metalloproteinase-9 after ischemic and hemorrhagic human stroke. Stroke 37:1399–1406. https://doi.org/10.1161/01.STR.0000223001.06264.af

    Article  CAS  PubMed  Google Scholar 

  29. Castellanos M, Leira R, Serena J et al (2003) Plasma metalloproteinase-9 concentration predicts hemorrhagic transformation in acute ischemic stroke. Stroke 34:40–45. https://doi.org/10.1161/01.STR.0000046764.57344.31

    Article  CAS  PubMed  Google Scholar 

  30. Rosell A, Cuadrado E, Ortega-Aznar A et al (2008) MMP-9-positive neutrophil infiltration is associated to blood–brain barrier breakdown and basal lamina type IV collagen degradation during hemorrhagic transformation after human ischemic stroke. Stroke 39:1121–1126. https://doi.org/10.1161/STROKEAHA.107.500868

    Article  CAS  PubMed  Google Scholar 

  31. Fujimura M, Gasche Y, Morita-Fujimura Y et al (1999) Early appearance of activated matrix metalloproteinase-9 and blood–brain barrier disruption in mice after focal cerebral ischemia and reperfusion. Brain Res 842:92–100. https://doi.org/10.1016/S0006-8993(99)01843-0

    Article  CAS  PubMed  Google Scholar 

  32. Montaner J, Alvarez-Sabín J, Molina CA et al (2001) Matrix metalloproteinase expression is related to hemorrhagic transformation after cardioembolic stroke. Stroke 32:2762–2767. https://doi.org/10.1161/hs1201.99512

    Article  CAS  PubMed  Google Scholar 

  33. Clark AW, Krekoski CA, Bou SS et al (1997) Increased gelatinase A (MMP-2) and gelatinase B (MMP-9) activities in human brain after focal ischemia. Neurosci Lett 238:53–56. https://doi.org/10.1016/S0304-3940(97)00859-8

    Article  CAS  PubMed  Google Scholar 

  34. Rosenberg GA, Kornfeld M, Estrada E et al (1992) TIMP-2 reduces proteolytic opening of blood–brain barrier by type IV collagenase. Brain Res 576:203–207. https://doi.org/10.1016/0006-8993(92)90681-X

    Article  CAS  PubMed  Google Scholar 

  35. Anthony DC, Ferguson B, Matyzak MK et al (1997) Differential matrix metalloproteinase expression in cases of multiple sclerosis and stroke. Neuropathol Appl Neurobiol 23:406–415. https://doi.org/10.1111/j.1365-2990.1997.tb01315.x

    Article  CAS  PubMed  Google Scholar 

  36. Pfefferkorn T, Rosenberg GA (2003) Closure of the blood–brain barrier by matrix metalloproteinase inhibition reduces rtPA-mediated mortality in cerebral ischemia with delayed reperfusion. Stroke 34:2025–2030. https://doi.org/10.1161/01.STR.0000083051.93319.28

    Article  PubMed  Google Scholar 

  37. Lee SR, Kim HY, Rogowska J, Zhao BQ, Bhide P, Le Parent JM (2006) Involvement of matrix metalloproteinase in neuroblast cell migration from the subventricular zone after stroke. J Neurosci 26:3491–3495. https://doi.org/10.1523/JNEUROSCI.4085-05.2006

    Article  CAS  PubMed  Google Scholar 

  38. Wang J, Tsirka SE (2005) Neuroprotection by inhibition of matrix metalloproteinases in a mouse model of intracerebral haemorrhage. Brain 128:1622–1633. https://doi.org/10.1093/brain/awh489

    Article  PubMed  Google Scholar 

  39. Lee SR, Tsuji K, LE Lee SR (2004) Role of matrix metalloproteinases in delayed neuronal damage after transient global cerebral ischemia. J Neurosci 24:671–678. https://doi.org/10.1523/JNEUROSCI.4243-03.2004

    Article  CAS  PubMed  Google Scholar 

  40. Horstmann S, Kalb P, Koziol J et al (2003) Profiles of matrix metalloproteinases, their inhibitors, and laminin in stroke patients: influence of different therapies. Stroke 34:2165–2170. https://doi.org/10.1161/01.STR.0000088062.86084.F2

    Article  PubMed  Google Scholar 

  41. Park K-P, Rosell A, Foerch C et al (2009) Plasma and brain matrix metalloproteinase-9 after acute focal cerebral ischemia in rats. Stroke 40:2836–2842. https://doi.org/10.1161/STROKEAHA.109.554824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cuadrado E, Rosell A, Penalba A et al (2009) Vascular MMP-9/TIMP-2 and neuronal MMP-10 up-regulation in human brain after stroke: a combined laser microdissection and protein array study. J Proteome Res 8:3191–3197

    Article  CAS  Google Scholar 

  43. Lo EH, Wang X, Cuzner ML (2002) Extracellular proteolysis in brain injury and inflammation: role for plasminogen activators and matrix metalloproteinases. J Neurosci Res 69:1–9. https://doi.org/10.1002/jnr.10270

    Article  CAS  PubMed  Google Scholar 

  44. Planas AM, Solé S, Justicia C (2001) Expression and activation of matrix metalloproteinase-2 and -9 in rat brain after transient focal cerebral ischemia. Neurobiol Dis 8:834–846. https://doi.org/10.1006/nbdi.2001.0435

    Article  CAS  PubMed  Google Scholar 

  45. Solé S, Petegnief V, Gorina R et al (2004) Activation of matrix metalloproteinase-3 and agrin cleavage in cerebral ischemia/reperfusion. J Neuropathol Exp Neurol 63:338–349. https://doi.org/10.1093/jnen/63.4.338

    Article  PubMed  Google Scholar 

  46. Cuadrado E, Rosell A, Borrell-Pagès M et al (2009) Matrix metalloproteinase-13 is activated and is found in the nucleus of neural cells after cerebral ischemia. J Cereb Blood Flow Metab 29:398–410. https://doi.org/10.1038/jcbfm.2008.130

    Article  CAS  PubMed  Google Scholar 

  47. Gurney KJ, Estrada EY, Rosenberg GA (2006) Blood–brain barrier disruption by stromelysin-1 facilitates neutrophil infiltration in neuroinflammation. Neurobiol Dis 23:87–96. https://doi.org/10.1016/j.nbd.2006.02.006

    Article  CAS  PubMed  Google Scholar 

  48. Chelluboina B, Klopfenstein JD, Pinson DM et al (2015) Matrix metalloproteinase-12 induces blood–brain barrier damage after focal cerebral ischemia. Stroke 46:3523–3531. https://doi.org/10.1161/STROKEAHA.115.011031

    Article  CAS  PubMed  Google Scholar 

  49. Hurtado O, Cárdenas A, Lizasoain I et al (2001) Up-regulation of TNF-α convertase (TACE/ADAM17) after oxygen–glucose deprivation in rat forebrain slices. Neuropharmacology 40:1094–1102. https://doi.org/10.1016/S0028-3908(01)00035-1

    Article  CAS  PubMed  Google Scholar 

  50. Marshall AJ, Rattray M, Vaughan PFT (2006) Chronic hypoxia in the human neuroblastoma SH-SY5Y causes reduced expression of the putative α-secretases, ADAM10 and TACE, without altering their mRNA levels. Brain Res 1099:18–24. https://doi.org/10.1016/j.brainres.2006.05.008

    Article  CAS  PubMed  Google Scholar 

  51. Auerbach ID, Vinters HV (2006) Effects of anoxia and hypoxia on amyloid precursor protein processing in cerebral microvascular smooth muscle cells. J Neuropathol Exp Neurol 65:610–620

    Article  CAS  Google Scholar 

  52. Cross AK, Haddock G, Stock CJ et al (2006) ADAMTS-1 and -4 are up-regulated following transient middle cerebral artery occlusion in the rat and their expression is modulated by TNF in cultured astrocytes. Brain Res 1088:19–30. https://doi.org/10.1016/j.brainres.2006.02.136

    Article  CAS  PubMed  Google Scholar 

  53. Reid MJ, Cross AK, Haddock G et al (2009) ADAMTS-9 expression is up-regulated following transient middle cerebral artery occlusion (tMCAo) in the rat. Neurosci Lett 452:252–257. https://doi.org/10.1016/j.neulet.2009.01.058

    Article  CAS  PubMed  Google Scholar 

  54. Lemarchant S, Dunghana H, Pomeshchik Y et al (2016) Anti-inflammatory effects of ADAMTS-4 in a mouse model of ischemic stroke. Glia 64:1492–1507. https://doi.org/10.1002/glia.23017

    Article  PubMed  Google Scholar 

  55. Tejima E, Guo S, Murata Y et al (2009) Neuroprotective effects of overexpressing tissue inhibitor of metalloproteinase TIMP-1. J Neurotrauma 26:1935–1941. https://doi.org/10.1089/neu.2009.0959

    Article  PubMed  PubMed Central  Google Scholar 

  56. Lu A, Suofu Y, Guan F, Broderick JP, Wagner KRCJ (2013) Matrix metalloproteinase-2 deletions protect against hemorrhagic transformation after 1 h of cerebral ischemia and 23 h of reperfusion. Neuroscience 253:361–367. https://doi.org/10.1088/1367-2630/15/1/015008.Fluid

    Article  CAS  PubMed  Google Scholar 

  57. Jiang X, Namura S, Nagata I (2001) Matrix metalloproteinase inhibitor KB-R7785 attenuates brain damage resulting from permanent focal cerebral ischemia in mice. Neurosci Lett 305:41–44

    Article  CAS  Google Scholar 

  58. Lovering F, Zhang Y (2005) Therapeutic potential of TACE inhibitors in stroke. Curr Drug Target CNS Neurol Disord 4:161–168. https://doi.org/10.2174/1568007053544147

    Article  CAS  Google Scholar 

  59. Cui J, Chen S, Zhang C et al (2012) Inhibition of MMP-9 by a selective gelatinase inhibitor protects neurovasculature from embolic focal cerebral ischemia. Mol Neurodegener 7:21. https://doi.org/10.1186/1750-1326-7-21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ranasinghe HS, Scheepens A, Sirimanne E et al (2012) Inhibition of MMP-9 activity following hypoxic ischemia in the developing brain using a highly specific inhibitor. Dev Neurosci 34:417–427. https://doi.org/10.1159/000343257

    Article  CAS  PubMed  Google Scholar 

  61. Koistinaho M, Malm TM, Kettunen MI et al (2005) Minocycline protects against permanent cerebral ischemia in wild type but not in matrix metalloprotease-9-deficient mice. J Cereb Blood Flow Metab 25:460–467. https://doi.org/10.1038/sj.jcbfm.9600040

    Article  CAS  PubMed  Google Scholar 

  62. Machado LS, Sazonova I, Kozak A et al (2009) Minocycline and tissue plasminogen activator for stroke: assessment of interaction potential. Stroke 40:3028–3033. https://doi.org/10.1111/j.1365-2125.2008.03198.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Machado LS, Kozak A, Ergul A et al (2006) Delayed minocycline inhibits ischemia-activated matrix metalloproteinases 2 and 9 after experimental stroke. BMC Neurosci 7:1–7. https://doi.org/10.1186/1471-2202-7-56

    Article  CAS  Google Scholar 

  64. Zhang L, Chopp M, Jia L et al (2009) Atorvastatin extends the therapeutic window for tPA to 6 h after the onset of embolic stroke in rats. J Cereb Blood Flow Metab 29:1816–1824. https://doi.org/10.1038/jcbfm.2009.105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Jang JW, Lee JK, Lee MC et al (2012) Melatonin reduced the elevated matrix metalloproteinase-9 level in a rat photothrombotic stroke model. J Neurol Sci 323:221–227. https://doi.org/10.1016/j.jns.2012.09.021

    Article  CAS  PubMed  Google Scholar 

  66. Tanaka H, Takai S, Jin D et al (2007) Inhibition of matrix metalloproteinase-9 activity by trandolapril after middle cerebral artery occlusion in rats. Hypertens Res 30:469–475. https://doi.org/10.1291/hypres.30.469

    Article  CAS  PubMed  Google Scholar 

  67. Okamoto K, Takai S, Sasaki S, Miyazaki M (2002) Trandolapril reduces infarction area after middle cerebral artery occlusion in rats. Hypertens Res 25:583–588. https://doi.org/10.1291/hypres.25.583

    Article  CAS  PubMed  Google Scholar 

  68. Candelario-Jalil E, Taheri S, Yang Y et al (2007) Cyclooxygenase inhibition limits blood–brain barrier disruption following intracerebral injection of tumor necrosis factor-alpha in the rat. J Pharmacol Exp Ther 323:488–498. https://doi.org/10.1124/jpet.107.127035

    Article  CAS  PubMed  Google Scholar 

  69. Hamann GF, Burggraf D, Martens HK et al (2004) Mild to moderate hypothermia prevents microvascular basal lamina antigen loss in experimental focal cerebral ischemia. Stroke 35:764–769. https://doi.org/10.1161/01.STR.0000116866.60794.21

    Article  PubMed  Google Scholar 

  70. Wang X, Feuerstein GZ, Xu L, Wang H, Schumacher WA, Ogletree ML, Taub R, Duan JJ, Decicco CPLR (2004) Inhibition of tumor necrosis factor-α-converting enzyme by a selective antagonist protects brain from focal ischemic injury in rats. Mol Pharmacol 65:890–896. https://doi.org/10.1124/mol.65.4.890

    Article  CAS  PubMed  Google Scholar 

  71. Hurtado O, Lizasoain I, Fernández-Tomé P et al (2002) TACE/ADAM17-TNF-alpha pathway in rat cortical cultures after exposure to oxygen-glucose deprivation or glutamate. J Cereb Blood Flow Metab 22:576–585. https://doi.org/10.1097/00004647-200205000-00009

    Article  CAS  PubMed  Google Scholar 

  72. Vidal PM, Lemmens E, Avila A et al (2013) ADAM17 is a survival factor for microglial cells in vitro and in vivo after spinal cord injury in mice. Cell Death Dis 4:e954. https://doi.org/10.1038/cddis.2013.466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Cárdenas A, Moro MA, Leza JC et al (2002) Upregulation of TACE/ADAM17 after ischemic preconditioning is involved in brain tolerance. J Cereb Blood Flow Metab 22:1297–1302. https://doi.org/10.1097/01.WCB.0000033968.83623.D0

    Article  CAS  PubMed  Google Scholar 

  74. Wang Y, Herrera AH, Li Y et al (2009) Regulation of mature ADAM17 by redox agents for L-selectin shedding. J Immunol 182:2449–2457. https://doi.org/10.4049/jimmunol.0802770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Venturi GM, Tu L, Kadono T et al (2003) Leukocyte migration is regulated by L-selectin endoproteolytic release. Immunity 19:713–724. https://doi.org/10.1016/s1074-7613(03)00295-4

    Article  CAS  PubMed  Google Scholar 

  76. Schaff U, Mattila PE, Simon SI, Walcheck B (2007) Neutrophil adhesion to E-selectin under shear promotes the redistribution and co-clustering of ADAM17 and its proteolytic substrate L-selectin. J Leukoc Biol 83:99–105. https://doi.org/10.1189/jlb.0507304

    Article  CAS  PubMed  Google Scholar 

  77. Garton KJ, Gough PJ, Blobel CP et al (2001) Tumor necrosis factor-α-converting enzyme (ADAM17) mediates the cleavage and shedding of fractalkine (CX3CL1). J Biol Chem 276:37993–38001. https://doi.org/10.1074/jbc.M106434200

    Article  CAS  PubMed  Google Scholar 

  78. Koenen RR, Pruessmeyer J, Soehnlein O et al (2009) Regulated release and functional modulation of junctional adhesion molecule A by disintegrin metalloproteinases. Blood 113:4799–4809. https://doi.org/10.1182/blood-2008-04-152330

    Article  CAS  PubMed  Google Scholar 

  79. Zhao BQ, Chauhan AKK, Canault M et al (2009) von Willebrand factor-cleaving protease ADAMTS13 reduces ischemic brain injury in experimental stroke. Blood 114:3329–3334. https://doi.org/10.1182/blood-2009-03-213264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Fan M, Xu H, Wang L et al (2016) Tissue plasminogen activator neurotoxicity is neutralized by recombinant ADAMTS 13. Sci Rep 6:1–11. https://doi.org/10.1038/srep25971

    Article  CAS  Google Scholar 

  81. Khan M, Motto D, Lentz S, Chauhan A (2012) ADAMTS13 reduces VWF-mediated acute inflammation following focal cerebral ischemia in mice. J Thromb Haemost 10:1665–1671. https://doi.org/10.1111/j.1538-7836.2012.04822.x.ADAMTS13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Fujioka M, Nakano T, Hayakawa K et al (2012) ADAMTS13 gene deletion enhances plasma high-mobility group box1 elevation and neuroinflammation in brain ischemia-reperfusion injury. Neurol Sci 33:1107–1115. https://doi.org/10.1007/s10072-011-0913-9

    Article  PubMed  Google Scholar 

  83. Chauhan AK, Kisucka J, Brill A et al (2008) ADAMTS13: a new link between thrombosis and inflammation. J Exp Med 205:2065–2074. https://doi.org/10.1084/jem.20080130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. De Meyer SF, Stoll G, Wagner DD, Kleinschnitz C (2013) von Willebrand factor: an emerging target in stroke therapy. Stroke 6:599–606. https://doi.org/10.1021/nn300902w.Release

    Article  Google Scholar 

  85. Pendu R, Terraube V, Christophe OD et al (2006) P-selectin glycoprotein ligand 1 and B2-integrins cooperate in the adhesion of leukocytes to von Willebrand factor. Blood 108:3746–3752. https://doi.org/10.1182/blood-2006-03-010322

    Article  CAS  PubMed  Google Scholar 

  86. Bernardo A, Ball C, Nolasco L et al (2005) Platelets adhered to endothelial cell-bound ultra-large von Willebrand factor strings support leukocyte tethering and rolling under high shear stress. J Thromb Haemost 3:562–570. https://doi.org/10.1111/j.1538-7836.2005.01122.x

    Article  CAS  PubMed  Google Scholar 

  87. Tsuji K, Aoki T, Tejima E et al (2005) Tissue plasminogen activator promotes matrix metalloproteinase-9 upregulation after focal cerebral ischemia. Stroke 36:1954–1959. https://doi.org/10.1161/01.STR.0000177517.01203.eb

    Article  CAS  PubMed  Google Scholar 

  88. Hu K, Yang J, Tanaka S et al (2006) Tissue-type plasminogen activator acts as a cytokine that triggers intracellular signal transduction and induces matrix metalloproteinase-9 gene expression. J Biol Chem 281:2120–2127. https://doi.org/10.1074/jbc.M504988200

    Article  CAS  PubMed  Google Scholar 

  89. Suzuki Y (2010) Role of tissue-type plasminogen activator in ischemic stroke. J Pharmacol Sci 113:203–207. https://doi.org/10.1254/jphs.10R01CP

    Article  CAS  PubMed  Google Scholar 

  90. Cuadrado E, Ortega L, Hernandez-Guillamon M et al (2008) Tissue plasminogen activator (t-PA) promotes neutrophil degranulation and MMP-9 release. J Leukoc Biol 84:207–214. https://doi.org/10.1189/jlb.0907606

    Article  CAS  PubMed  Google Scholar 

  91. Mishiro K, Ishiguro M, Suzuki Y et al (2012) A broad-spectrum matrix metalloproteinase inhibitor prevents hemorrhagic complications induced by tissue plasminogen activator in mice. Neuroscience 205:39–48. https://doi.org/10.1016/j.neuroscience.2011.12.042

    Article  CAS  PubMed  Google Scholar 

  92. Murata Y, Rosell A, Scannevin RH et al (2008) Extension of the thrombolytic time window with minocycline in experimental stroke. Stroke 39:3372–3377. https://doi.org/10.1161/STROKEAHA.108.514026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Copin J, Merlani P, Sugawara T (2008) Delayed matrix metalloproteinase inhibition reduces intracerebral hemorrhage after embolic stroke in rats. Exp Neurol 213:196–201. https://doi.org/10.1016/j.expneurol.2008.05.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Fagan SC, Waller JL, Nichols FT et al (2010) Minocycline to improve neurologic outcome in stroke (MINOS): a dose-finding study. Stroke 41:2283–2287. https://doi.org/10.1161/STROKEAHA.110.582601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Switzer JA, Hess DC, Ergul A et al (2011) Matrix metalloproteinase-9 in an exploratory trial of intravenous minocycline for acute ischemic stroke. Stroke 42:2633–2635. https://doi.org/10.1161/STROKEAHA.111.618215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wang L, Fan W, Cai P et al (2013) Recombinant ADAMTS13 reduces tissue plasminogen activator-induced hemorrhage after stroke in mice. Ann Neurol 73:189–198. https://doi.org/10.1002/ana.23762

    Article  CAS  PubMed  Google Scholar 

  97. Denorme F, Langhauser F, Desender L et al (2016) ADAMTS13- mediated thrombolysis of t-PA resistant occlusions in ischemic stroke in mice. Blood 127:2337–2345. https://doi.org/10.1182/blood-2015-08-662650.The

    Article  CAS  PubMed  Google Scholar 

  98. Li Z, Nardi MA, Li YS et al (2009) C-terminal ADAMTS-18 fragment induces oxidative platelet fragmentation, dissolves platelet aggregates, and protects against carotid artery occlusion and cerebral stroke. Blood 113:6051–6060. https://doi.org/10.1182/blood-2008-07-170571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Rosell A, Lo EH (2008) Multiphasic roles for matrix metalloproteinases after stroke. Curr Opin Pharmacol 8:82–89. https://doi.org/10.1016/j.coph.2007.12.001

    Article  CAS  PubMed  Google Scholar 

  100. Lo EH (2008) A new penumbra: transitioning from injury into repair after stroke. Nat Med 14:497

    Article  CAS  Google Scholar 

  101. Carmichael T (2006) Cellular and molecular mechanisms of neural repair after stroke: making waves. Ann Neurol. https://doi.org/10.4261/1305-3825.DIR.3079-09.1

    Article  PubMed  Google Scholar 

  102. Sood RR, Taheri S, Candelario-Jalil E et al (2008) Early beneficial effect of matrix metalloproteinase inhibition on blood–brain barrier permeability as measured by magnetic resonance imaging countered by impaired long-term recovery after stroke in rat brain. J Cereb Blood Flow Metab 28:431–438. https://doi.org/10.1038/sj.jcbfm.9600534

    Article  CAS  PubMed  Google Scholar 

  103. Wójcik-Stanaszek L, Sypecka J, Szymczak P et al (2011) The potential role of metalloproteinases in neurogenesis in the gerbil hippocampus following global forebrain ischemia. PLoS One 6:e22465. https://doi.org/10.1371/journal.pone.0022465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wang L, Zhang ZG, Zhang RL, Gregg SR, Hozeska-Solgot A, LeTourneau Y, Wang YCM (2006) Matrix metalloproteinase 2 (MMP2) and MMP9 secreted by erythropoietin-activated endothelial cells promote neural progenitor cell migration. J Neurosci 26:5996–6003. https://doi.org/10.1523/JNEUROSCI.5380-05.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Barkho BZ, Munoz AE, Li X, Li L, La Cunningham ZX (2008) Endogenous matrix metalloproteinase (MMP)-3 and MMP-9 promote the differentiation and migration of adult neural progenitor cells in response to chemokines. Stem Cells 12:3139–3149

    Article  Google Scholar 

  106. Ma F, Martínez-San Segundo P, Barceló V et al (2016) Matrix metalloproteinase-13 participates in neuroprotection and neurorepair after cerebral ischemia in mice. Neurobiol Dis. https://doi.org/10.1016/j.nbd.2016.03.016

    Article  PubMed  PubMed Central  Google Scholar 

  107. Ohab JJ, Fleming S, Blesch A, Carmichael ST (2006) A neurovascular niche for neurogenesis after stroke. J Neurosci 26:13007–13016. https://doi.org/10.1523/JNEUROSCI.4323-06.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Ould-Yahoui A, Sbai O, Baranger K et al (2013) Role of matrix metalloproteinases in migration and neurotrophic properties of nasal olfactory stem and ensheathing cells. Cell Transplant 22:993–1010. https://doi.org/10.3727/096368912X657468

    Article  PubMed  Google Scholar 

  109. Esquiva G, Grayston A, Rosell A (2018) Revascularization and endothelial progenitor cells in stroke. Am J Physiol Cell Physiol 315:C664–C674. https://doi.org/10.1152/ajpcell.00200.2018

    Article  CAS  PubMed  Google Scholar 

  110. Huang PH, Chen YH, Wang CH, Chen JS, Tsai HY, Lin FY, Lo WY, Wu TC, Sata M, Chen JWLS (2009) Matrix metalloproteinase-9 is essential for ischemia-induced neovascularization by modulating bone marrow-derived endothelial progenitor cells. Arterioscler Thromb Vasc Biol 8:1179–1184

    Article  Google Scholar 

  111. Morancho A, Hernández-Guillamon M, Boada C et al (2013) Cerebral ischaemia and matrix metalloproteinase-9 modulate the angiogenic function of early and late outgrowth endothelial progenitor cells. J Cell Mol Med 17:1543–1553. https://doi.org/10.1111/jcmm.12116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Johnson C, Sung HJ, Lessner SM et al (2004) Matrix metalloproteinase-9 is required for adequate angiogenic revascularization of ischemic tissues: potential role in capillary branching. Circ Res 94:262–268. https://doi.org/10.1161/01.RES.0000111527.42357.62

    Article  CAS  PubMed  Google Scholar 

  113. Rosell A, Morancho A, Navarro-Sobrino M et al (2013) Factors secreted by endothelial progenitor cells enhance neurorepair responses after cerebral ischemia in mice. PLoS One. https://doi.org/10.1371/journal.pone.0073244

    Article  PubMed  PubMed Central  Google Scholar 

  114. Moubarik C, Guillet B, Youssef B et al (2011) Transplanted late outgrowth endothelial progenitor cells as cell therapy product for stroke. Stem Cell Rev Rep. https://doi.org/10.1007/s12015-010-9157-y

    Article  PubMed  Google Scholar 

  115. Morancho A, Ma F, Barceló V et al (2015) Impaired vascular remodeling after endothelial progenitor cell transplantation in MMP9-deficient mice suffering cortical cerebral ischemia. J Cereb Blood Flow Metab. https://doi.org/10.1038/jcbfm.2015.180

    Article  PubMed  PubMed Central  Google Scholar 

  116. Gottschall PE, Howell MD (2015) ADAMTS expression and function in central nervous system injury and disorders. Matrix Biol 44–46:70–76. https://doi.org/10.1016/j.matbio.2015.01.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Lemarchant S, Pruvost M, Montaner J et al (2013) ADAMTS proteoglycanases in the physiological and pathological central nervous system. J Neuroinflamm 10:133. https://doi.org/10.1186/1742-2094-10-133

    Article  CAS  Google Scholar 

  118. Quraishe S, Forbes LHAM (2018) The extracellular environment of the CNS: influence on plasticity, sprouting, and axonal regeneration after spinal cord injury. Neural Plast 2018:2952386

    Article  Google Scholar 

  119. Yuan W, Matthews RT, Sandy JD, Gottschall PE (2002) Association between protease-specific proteolytic cleavage of brevican and synaptic loss in the dentate gyrus of kainate-treated rats. Neuroscience. https://doi.org/10.1016/S0306-4522(02)00347-0

    Article  PubMed  Google Scholar 

  120. Hamel MG, Ajmo JM, Leonardo CC et al (2008) Multimodal signaling by the ADAMTSs (a disintegrin and metalloproteinase with thrombospondin motifs) promotes neurite extension. Exp Neurol 210:428–440. https://doi.org/10.1016/j.expneurol.2007.11.014

    Article  CAS  PubMed  Google Scholar 

  121. Wardlaw JM, Smith C, Dichgans M (2013) Mechanisms of sporadic cerebral small vessel disease: insights from neuroimaging. Lancet Neurol 12:483–497. https://doi.org/10.1016/S1474-4422(13)70060-7

    Article  PubMed  Google Scholar 

  122. Candelario-Jalil E, Thompson J, Taheri S et al (2011) Matrix metalloproteinases are associated with increased blood–brain barrier opening in vascular cognitive impairment. Stroke 42:1345–1350. https://doi.org/10.1161/STROKEAHA.110.600825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Bjerke M, Jonsson M, Nordlund A et al (2014) Cerebrovascular biomarker profile is related to white matter disease and ventricular dilation in a LADIS substudy. Dement Geriatr Cogn Dis Extra 4:385–394. https://doi.org/10.1159/000366119

    Article  PubMed  PubMed Central  Google Scholar 

  124. Barry Erhardt E, Pesko JC, Prestopnik J, Thompson J, Caprihan A, Rosenberg GA (2018) Biomarkers identify the Binswanger type of vascular cognitive impairment. J Cereb Blood Flow Metab 7:271678X18762655. https://doi.org/10.1177/0271678X18762655

    Article  Google Scholar 

  125. Rosenberg GA (2016) Matrix metalloproteinase-mediated neuroinflammation in vascular cognitive impairment of the Binswanger type. Cell Mol Neurobiol 36:195–202. https://doi.org/10.1007/s10571-015-0277-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Vilar-Bergua A, Riba-Llena I, Nafría C et al (2016) Blood and CSF biomarkers in brain subcortical ischemic vascular disease: involved pathways and clinical applicability. J Cereb Blood Flow Metab 36:55–71. https://doi.org/10.1038/jcbfm.2015.68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Arba F, Piccardi B, Palumbo V et al (2018) Small vessel disease is associated with tissue inhibitor of matrix metalloproteinase-4 after ischaemic stroke. Transl Stroke Res 10:44

    Article  Google Scholar 

  128. Ketsawatsomkron P, Keen HL, Davis DR et al (2016) Protective role for tissue inhibitor of metalloproteinase-4, a novel peroxisome proliferator-activated receptor-γ target gene, in smooth muscle in deoxycorticosterone acetate-salt hypertension. Hypertension 67:214–222. https://doi.org/10.1161/HYPERTENSIONAHA.115.06391

    Article  CAS  PubMed  Google Scholar 

  129. Radomski A, Jurasz P, Sanders EJ et al (2002) Identification, regulation and role of tissue inhibitor of metalloproteinases-4 (TIMP-4) in human platelets. Br J Pharmacol 137:1330–1338. https://doi.org/10.1038/sj.bjp.0704936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Yang YRG (2015) Matrix metalloproteinases as therapeutic targets for stroke. Brain Res 1623:30–38

    Article  CAS  Google Scholar 

  131. Walz WCF (2017) Neutrophil infiltration and matrix metalloproteinase-9 in lacunar infarction. Neurochem Res 42:2560–2565

    Article  CAS  Google Scholar 

  132. Kawano T, Miyashita K, Takeuchi M et al (2018) Blood biomarkers associated with neurological deterioration in patients with acute penetrating artery territory infarction: a multicenter prospective observational study. Int J Stroke 13:207–216. https://doi.org/10.1177/1747493016677982

    Article  PubMed  Google Scholar 

  133. Florczak-Rzepka M, Grond-Ginsbach C, Montaner J, Steiner T (2012) Matrix metalloproteinases in human spontaneous intracerebral hemorrhage: an update. Cerebrovasc Dis 34:249–262. https://doi.org/10.1159/000341686

    Article  CAS  PubMed  Google Scholar 

  134. Abilleira S, Montaner J, Molina CA, Monasterio J et al (2003) Matrix metalloproteinase-9 concentration after spontaneous intracerebral hemorrhage. J Neurosurg 99:65–70. https://doi.org/10.3171/jns.2003.99.1.0065

    Article  CAS  PubMed  Google Scholar 

  135. Silva Y, Leira R, Tejada J et al (2005) Molecular signatures of vascular injury are associated with early growth of intracerebral hemorrhage. Stroke 36:86–91. https://doi.org/10.1161/01.STR.0000149615.51204.0b

    Article  PubMed  Google Scholar 

  136. Alvarez-Sabín J, Delgado P, Abilleira S et al (2004) Temporal profile of matrix metalloproteinases and their inhibitors after spontaneous intracerebral hemorrhage: relationship to clinical and radiological outcome. Stroke 35:1316–1322. https://doi.org/10.1161/01.STR.0000126827.69286.90

    Article  CAS  PubMed  Google Scholar 

  137. Li N, Liu YF, Ma L et al (2013) Association of molecular markers with perihematomal edema and clinical outcome in intracerebral hemorrhage. Stroke 44:658–663. https://doi.org/10.1161/STROKEAHA.112.673590

    Article  CAS  PubMed  Google Scholar 

  138. Howe MD, Zhu L, Sansing LH et al (2018) Serum markers of blood–brain barrier remodeling and fibrosis as predictors of etiology and clinicoradiologic outcome in intracerebral hemorrhage. Front Neurol 9:746. https://doi.org/10.3389/fneur.2018.00746

    Article  PubMed  PubMed Central  Google Scholar 

  139. Rosenberg GA, Navratil M, Aschoff A, Schwab S (1997) Metalloproteinase inhibition blocks edema in intracerebral hemorrhage in the rat. Neurology 48:921–926. https://doi.org/10.1212/wnl.54.2.354

    Article  CAS  PubMed  Google Scholar 

  140. Power C, Henry S, Del Bigio MR et al (2003) Intracerebral hemorrhage induces macrophage activation and matrix metalloproteinases. Ann Neurol. https://doi.org/10.1002/ana.10553

    Article  PubMed  Google Scholar 

  141. Xue M, Fan Y, Liu S et al (2009) Contributions of multiple proteases to neurotoxicity in a mouse model of intracerebral haemorrhage. Brain 123:26–36. https://doi.org/10.1093/brain/awn215

    Article  Google Scholar 

  142. Tejima E, Zhao BQ, Tsuji K et al (2007) Astrocytic induction of matrix metalloproteinase-9 and edema in brain hemorrhage. J Cereb Blood Flow Metab 27:460–468. https://doi.org/10.1038/sj.jcbfm.9600354

    Article  CAS  PubMed  Google Scholar 

  143. Reuter B, Bugert P, Stroick M et al (2009) TIMP-2 gene polymorphism is associated with intracerebral hemorrhage. Cerebrovasc Dis 28:558–563. https://doi.org/10.1159/000247599

    Article  CAS  PubMed  Google Scholar 

  144. Wang HX, Yang QD, Liu BQ et al (2014) TIMP-1 polymorphisms in a Chinese Han population with intracerebral hemorrhage. Int J Neurosci 124:61–67. https://doi.org/10.3109/00207454.2013.823604

    Article  CAS  PubMed  Google Scholar 

  145. Chen YC, Ho WM, Lee YS et al (2015) Polymorphisms in the promoters of the MMP-2 and TIMP-2 genes are associated with spontaneous deep intracerebral hemorrhage in the Taiwan population. PLoS One 10:e0142482. https://doi.org/10.1371/journal.pone.0142482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Ho W-M, Chen C-M, Lee Y-S et al (2015) Association of MMP-9 haplotypes and TIMP-1 polymorphism with spontaneous deep intracerebral hemorrhage in the Taiwan population. PLoS One 10:e0125397. https://doi.org/10.1371/journal.pone.0125397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Lee JM, Yin KJ, Hsin I et al (2003) Matrix metalloproteinase-9 and spontaneous hemorrhage in an animal model of cerebral amyloid angiopathy. Ann Neurol 54:379–382. https://doi.org/10.1002/ana.10671

    Article  CAS  PubMed  Google Scholar 

  148. Hernandez-Guillamon M, Mawhirt S, Fossati S et al (2010) Matrix metalloproteinase 2 (MMP-2) degrades soluble vasculotropic amyloid-βE22Q and L34V mutants, delaying their toxicity for human brain microvascular endothelial cells. J Biol Chem 285:27144–27158. https://doi.org/10.1074/jbc.M110.135228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Hernandez-Guillamon M, Martinez-Saez E, Delgado P et al (2012) MMP-2/MMP-9 plasma level and brain expression in cerebral amyloid angiopathy-associated hemorrhagic stroke. Brain Pathol. https://doi.org/10.1111/j.1750-3639.2011.00512.x

    Article  PubMed  Google Scholar 

  150. Zhao L, Arbel-Ornath M, Wang X et al (2015) Matrix metalloproteinase 9-mediated intracerebral hemorrhage induced by cerebral amyloid angiopathy. Neurobiol Aging. https://doi.org/10.1016/j.neurobiolaging.2015.07.016

    Article  PubMed  PubMed Central  Google Scholar 

  151. Wells JE, Biernaskie J, Szymanska A, Larsen PH, Yong VWCD (2005) Matrix metalloproteinase (MMP)-12 expression has a negative impact on sensorimotor function following intracerebral haemorrhage in mice. Eur J Neurosci 21:187–196

    Article  Google Scholar 

  152. Tang J, Liu J, Zhou C et al (2004) MMP-9 deficiency enhances collagenase-induced intracerebral hemorrhage and brain injury in mutant mice. J Cereb Blood Flow Metab. https://doi.org/10.1097/01.WCB.0000135593.05952.DE

    Article  PubMed  Google Scholar 

  153. Grossetete M, Rosenberg GA (2008) Matrix metalloproteinase inhibition facilitates cell death in intracerebral hemorrhage in mouse. J Cereb Blood Flow Metab 28:752–763. https://doi.org/10.1038/sj.jcbfm.9600572

    Article  CAS  PubMed  Google Scholar 

  154. Parks WC, Parks WC, Wilson CL et al (2004) Matrix metalloproteinases as modulators of inflammation and innate immunity. Nat Rev Immunol 4:617–629. https://doi.org/10.1038/nri1418

    Article  CAS  PubMed  Google Scholar 

  155. Kim SC, Singh M, Huang J et al (1997) Matrix metalloproteinase-9 in cerebral aneurysms. Neurosurgery 41:642–666. https://doi.org/10.1097/00006123-199709000-00027

    Article  CAS  PubMed  Google Scholar 

  156. Bruno G, Todor R, Lewis I, Chyatte D (1998) Vascular extracellular matrix remodeling in cerebral aneurysms. J Neurosurg 89:431–440. https://doi.org/10.3171/jns.1998.89.3.0431

    Article  CAS  PubMed  Google Scholar 

  157. Fischer M, Dietmann A, Beer R et al (2013) Differential regulation of matrix-metalloproteinases and their tissue inhibitors in patients with aneurysmal subarachnoid hemorrhage. PLoS One 8:e59952. https://doi.org/10.1371/journal.pone.0059952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Wang LGZ (2018) Expression of MMP-9 and IL-6 in patients with subarachnoid hemorrhage and the clinical significance. Exp Ther Med 15:1510–1514

    CAS  PubMed  Google Scholar 

  159. Söderholm M, Nordin Fredrikson G, Nilsson JEG (2018) High serum level of matrix metalloproteinase-7 is associated with increased risk of spontaneous subarachnoid hemorrhage. Stroke 49:1626–1631

    Article  Google Scholar 

  160. Kumar M, Cao W, McDaniel JK, Pham HP, Raju D, Nawalinski K, Frangos S, Kung D, Zager E, Kasner SE, Levine JMZX (2017) Plasma ADAMTS13 activity and von Willebrand factor antigen and activity in patients with subarachnoid haemorrhage. Thromb Haemost 117:691–699

    Article  Google Scholar 

  161. Cai P, Luo H, Xu H et al (2015) Recombinant ADAMTS 13 attenuates brain injury after intracerebral hemorrhage. Stroke 46:2647–2653. https://doi.org/10.1161/STROKEAHA.115.009526

    Article  CAS  PubMed  Google Scholar 

  162. Rosell A, Alvarez-Sabín J, Arenillas JF et al (2005) A matrix metalloproteinase protein array reveals a strong relation between MMP-9 and MMP-13 with diffusion-weighted image lesion increase in human stroke. Stroke 36:1415–1420. https://doi.org/10.1161/01.STR.0000170641.01047.cc

    Article  CAS  PubMed  Google Scholar 

  163. Ning M, Furie KL, Koroshetz WJ et al (2006) Association between tPA therapy and raised early matrix metalloproteinase-9 in acute stroke. Neurology 66:1550–1555. https://doi.org/10.1212/01.wnl.0000216133.98416.b4

    Article  CAS  PubMed  Google Scholar 

  164. Rodríguez JA, Sobrino T, Orbe J et al (2013) proMetalloproteinase-10 is associated with brain damage and clinical outcome in acute ischemic stroke. J Thromb Haemost 11:1464–1473. https://doi.org/10.1111/jth.12312

    Article  CAS  PubMed  Google Scholar 

  165. Worthmann H, Tryc AB, Goldbecker A et al (2010) The temporal profile of inflammatory markers and mediators in blood after acute ischemic stroke differs depending on stroke outcome. Cerebrovasc Dis 30:85–92. https://doi.org/10.1159/000314624

    Article  CAS  PubMed  Google Scholar 

  166. McCabe DJH, Murphy SJX, Starke R et al (2015) Relationship between ADAMTS13 activity, von Willebrand factor antigen levels and platelet function in the early and late phases after TIA or ischaemic stroke. J Neurol Sci 348:35–40. https://doi.org/10.1016/j.jns.2014.10.035

    Article  CAS  PubMed  Google Scholar 

  167. Qu L, Jiang M, Qiu W et al (2016) Assessment of the diagnostic value of plasma levels, activities, and their ratios of von Willebrand factor and ADAMTS13 in patients with cerebral infarction. Clin Appl Thromb 22:252–259. https://doi.org/10.1177/1076029615583347

    Article  CAS  Google Scholar 

  168. Ling JY, Shen L, Liu Q et al (2013) Changes in platelet GPIbα and ADAM17 during the acute stage of atherosclerotic ischemic stroke among Chinese. J Huazhong Univ Sci Technol Med Sci 33:438–442. https://doi.org/10.1007/s11596-013-1138-3

    Article  CAS  PubMed  Google Scholar 

  169. Peeters SA, Engelen L, Buijs J et al (2017) Plasma matrix metalloproteinases are associated with incident cardiovascular disease and all-cause mortality in patients with type 1 diabetes: a 12-year follow-up study. Cardiovasc Diabetol 16:55. https://doi.org/10.1186/s12933-017-0539-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Tayebjee MH, Nadar S, Blann AD et al (2004) Matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 in hypertension and their relationship to cardiovascular risk and treatment: a substudy of the Anglo-Scandinavian Cardiac Outcomes Trial (ASCOT). Am J Hypertens 17:764–769. https://doi.org/10.1016/j.amjhyper.2004.05.019

    Article  CAS  PubMed  Google Scholar 

  171. Eldrup N, Grønholdt MLM, Sillesen H, Nordestgaard BG (2006) Elevated matrix metalloproteinase-9 associated with stroke or cardiovascular death in patients with carotid stenosis. Circulation. https://doi.org/10.1161/CIRCULATIONAHA.105.593483

    Article  PubMed  Google Scholar 

  172. Zielinska-Turek J, Dorobek M, Turek GB-KM (2018) MMP-9 and/or TIMP as predictors of ischaemic stroke in patients with symptomatic and asymptomatic atherosclerotic stenosis of carotid artery treated by stenting or endarterectomy—a review. Neurol Neurochir Pol 52:555–561

    Article  Google Scholar 

  173. Abbas A, Aukrust P, Russell D et al (2014) Matrix metalloproteinase 7 is associated with symptomatic lesions and adverse events in patients with carotid atherosclerosis. PLoS One. https://doi.org/10.1371/journal.pone.0084935

    Article  PubMed  PubMed Central  Google Scholar 

  174. Peeters W, Moll FL, Vink A et al (2011) Collagenase matrix metalloproteinase-8 expressed in atherosclerotic carotid plaques is associated with systemic cardiovascular outcome. Eur Heart J 32:2314–2325. https://doi.org/10.1093/eurheartj/ehq517

    Article  CAS  PubMed  Google Scholar 

  175. Tsioufis C, Konstantinidis D, Nikolakopoulos E, Vemou E, Kalos T, Georgiopoulos G, Vogiatzakis N, Ifantis A, Konstantinou K, Gennimata V, Tousoulis D (2019) Biomarkers of atrial fibrillation in hypertension. Curr Med Chem 26(5):888–897. https://doi.org/10.2174/0929867324666171006155516

    Article  CAS  PubMed  Google Scholar 

  176. Sonneveld MAH, De Maat MPM, Portegies MLP et al (2015) Low ADAMTS13 activity is associated with an increased risk of ischemic stroke. Blood. https://doi.org/10.1182/blood-2015-05-643338

    Article  PubMed  PubMed Central  Google Scholar 

  177. Kaikita K, Soejima K, Matsukawa M et al (2006) Reduced von Willebrand factor-cleaving protease (ADAMTS13) activity in acute myocardial infarction. J Thromb Haemost 4:2490–2493. https://doi.org/10.1111/j.1538-7836.2006.02161.x

    Article  CAS  PubMed  Google Scholar 

  178. Stefano R, Massimiliano C, Marina C et al (2015) A score including ADAM17 substrates correlates to recurring cardiovascular event in subjects with atherosclerosis. Atherosclerosis 239:459–464. https://doi.org/10.1016/j.atherosclerosis.2015.01.029

    Article  CAS  Google Scholar 

  179. Palau V, Riera M, Duran X, Valdivielso JM, Betriu A, Fernández E, Pascual J, Soler MJ (2018) Circulating ADAMs are associated with renal and cardiovascular outcomes in chronic kidney disease patients. Nephrol Dial Transplant. https://doi.org/10.1093/ndt/gfy240

    Article  PubMed  Google Scholar 

  180. Montaner J, Mendioroz M, Ribó M et al (2011) A panel of biomarkers including caspase-3 and d-dimer may differentiate acute stroke from stroke-mimicking conditions in the emergency department. J Intern Med 270:166–174. https://doi.org/10.1111/j.1365-2796.2010.02329.x

    Article  CAS  PubMed  Google Scholar 

  181. Bustamante A, López-Cancio E, Pich S et al (2017) Blood biomarkers for the early diagnosis of stroke: the stroke-chip study. Stroke 48:2419–2425. https://doi.org/10.1161/STROKEAHA.117.017076

    Article  CAS  PubMed  Google Scholar 

  182. Lind L, Siegbahn A, Lindahl B et al (2015) Discovery of new risk markers for ischemic stroke using a novel targeted proteomics chip. Stroke 46:3340–3347. https://doi.org/10.1161/STROKEAHA.115.010829

    Article  CAS  PubMed  Google Scholar 

  183. Sharma R, Macy S, Richardson K et al (2014) A blood-based biomarker panel to detect acute stroke. J Stroke Cerebrovasc Dis 23:910–918. https://doi.org/10.1016/j.jstrokecerebrovasdis.2013.07.034

    Article  PubMed  Google Scholar 

  184. Wang L, Wei C, Deng L et al (2018) The accuracy of serum matrix metalloproteinase-9 for predicting hemorrhagic transformation after acute ischemic stroke: a systematic review and meta-analysis. J Stroke Cerebrovasc Dis 27:1653–1665. https://doi.org/10.1016/j.jstrokecerebrovasdis.2018.01.023

    Article  PubMed  Google Scholar 

  185. Serena J, Blanco M, Castellanos M et al (2005) The prediction of malignant cerebral infarction by molecular brain barrier disruption markers. Stroke 36:1921–1926. https://doi.org/10.1161/01.STR.0000177870.14967.94

    Article  CAS  PubMed  Google Scholar 

  186. Piccardi B, Palumbo V, Nesi M et al (2015) Unbalanced metalloproteinase-9 and tissue inhibitors of metalloproteinases ratios predict hemorrhagic transformation of lesion in ischemic stroke patients treated with thrombolysis: results from the MAGIC study. Front Neurol 6:121. https://doi.org/10.3389/fneur.2015.00121

    Article  PubMed  PubMed Central  Google Scholar 

  187. Zhong C, Yang J, Xu T et al (2017) Serum matrix metalloproteinase-9 levels and prognosis of acute ischemic stroke. Neurology 89:805–812. https://doi.org/10.1212/WNL.0000000000004257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Gori AM, Giusti B, Piccardi B et al (2017) Inflammatory and metalloproteinases profiles predict three-month poor outcomes in ischemic stroke treated with thrombolysis. J Cereb Blood Flow Metab 37:3253–3261. https://doi.org/10.1177/0271678X17695572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Schuppner R, Dirks M, Grosse GM et al (2018) ADAMTS-13 activity predicts outcome in acute ischaemic stroke patients undergoing endovascular treatment. Thromb Haemost 118:758–767. https://doi.org/10.1055/s-0038-1637732

    Article  PubMed  Google Scholar 

  190. Prochazka V, Jonszta T, Czerny D, Krajca J, Roubec M, Macak J, Kovar P, Kovarova P, Pulcer M, Zoubkova R, Lochman I, Svachova V, Pavliska L, Vrtkova A, Kasprak D, Gumulec JWJ (2018) The role of von Willebrand factor, ADAMTS13, and cerebral artery thrombus composition in patient outcome following mechanical thrombectomy for acute ischemic stroke. Med Sci Monit 24:3929–3945

    Article  CAS  Google Scholar 

  191. Sharma R, Gowda H, Chavan S et al (2015) Proteomic signature of endothelial dysfunction identified in the serum of acute ischemic stroke patients by the iTRAQ-based LC–MS approach. J Proteome Res 14:2466–2479. https://doi.org/10.1021/pr501324n

    Article  CAS  PubMed  Google Scholar 

  192. Ma F, Rodriguez S, Buxo X et al (2016) Plasma matrix metalloproteinases in patients with Stroke during intensive rehabilitation therapy. Arch Phys Med Rehabil 97:1832–1840. https://doi.org/10.1016/j.apmr.2016.06.007

    Article  PubMed  Google Scholar 

  193. Zhong C, Bu X, Xu T et al (2018) Serum matrix metalloproteinase-9 and cognitive impairment after acute ischemic stroke. J Am Heart Assoc 7:e007776. https://doi.org/10.1161/JAHA.117.007776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Ruiz-Vega G, García-Robaina A, Ismail MB et al (2018) Detection of plasma MMP-9 within minutes. Unveiling some of the clues to develop fast and simple electrochemical magneto-immunosensors. Biosens Bioelectron 115:45–52. https://doi.org/10.1016/j.bios.2018.05.020

    Article  CAS  PubMed  Google Scholar 

  195. Cappellari M, Turcato G, Forlivesi S et al (2018) STARTING-SICH nomogram to predict symptomatic intracerebral hemorrhage after intravenous thrombolysis for stroke. Stroke 49:397–404. https://doi.org/10.1161/STROKEAHA.117.018427

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

L. R. holds a predoctoral fellowship (IFI17/00012), A. B. is supported by the Juan Rodes program (JR16/00008), and A. R. and M. H.-G. are supported by the Miguel Servet program (CPII15/00003 and CPII17/00010, respectively), all from the Instituto de Salud Carlos III. This research has been funded with the research Grants PI16/00981, PI15/00354 and RETICS INVICTUS RD16/0019/0021 from the Instituto de Salud Carlos III, Spain, co-financed by the European Regional Development Fund and SGR 2017/1427 from the Generalitat de Catalunya (AGAUR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joan Montaner.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montaner, J., Ramiro, L., Simats, A. et al. Matrix metalloproteinases and ADAMs in stroke. Cell. Mol. Life Sci. 76, 3117–3140 (2019). https://doi.org/10.1007/s00018-019-03175-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-019-03175-5

Keywords

Navigation