Skip to main content

Advertisement

Log in

Integration of multiomics analyses reveals unique insights into CD24-mediated immunosuppressive tumor microenvironment of breast cancer

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Background

Tumor immunotherapy brings new light and vitality to breast cancer patients, but low response rate and limitations of therapeutic targets become major obstacles to its clinical application. Recent studies have shown that CD24 is involved in an important process of tumor immune regulation in breast cancer and is a promising target for immunotherapy.

Methods

In this study, singleR was used to annotate each cell subpopulation after t-distributed stochastic neighbor embedding (t-SNE) methods. Pseudo-time trace analysis and cell communication were analyzed by Monocle2 package and CellChat, respectively. A prognostic model based on CD24-related genes was constructed using several machine learning methods. Multiple quantitative immunofluorescence (MQIF) was used to evaluate the spatial relationship between CD24+PANCK+cells and exhausted CD8+T cells.

Results

Based on the scRNA-seq analysis, 1488 CD24-related differential genes were identified, and a risk model consisting of 15 prognostic characteristic genes was constructed by combining the bulk RNA-seq data. Patients were divided into high- and low-risk groups based on the median risk score. Immune landscape analysis showed that the low-risk group showed higher infiltration of immune-promoting cells and stronger immune reactivity. The results of cell communication demonstrated a strong interaction between CD24+epithelial cells and CD8+T cells. Subsequent MQIF demonstrated a strong interaction between CD24+PANCK+ and exhausted CD8+T cells with FOXP3+ in breast cancer. Additionally, CD24+PANCK+ and CD8+FOXP3+T cells were positively associated with lower survival rates.

Conclusion

This study highlights the importance of CD24+breast cancer cells in clinical prognosis and immunosuppressive microenvironment, which may provide a new direction for improving patient outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and material

The scRNA-seq data of GSE148673 was obtained from TISCH (http://tisch.comp-genomics.org/). Additional data and materials of TCGA-GDC- BRCA are available from the University of California, Santa Cruz (UCSC) Xena browser (https://xenabrowser.net/) and the Gene Expression Omnibus (GEO) with accession number GSE20685 (https://www.ncbi.nlm.nih.gov/geo/).

References

  1. Veronesi U, Boyle P, Goldhirsch A, Orecchia R, Viale G. Breast cancer. Lancet. 2005;365:1727–41. https://doi.org/10.1016/S0140-6736(05)66546-4.

    Article  PubMed  Google Scholar 

  2. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 Countries. CA Cancer J Clin. 2021;71:209–49. https://doi.org/10.3322/caac.21660.

    Article  CAS  PubMed  Google Scholar 

  3. Waks AG, Winer EP. Breast cancer treatment: a review. JAMA. 2019;321:288–300. https://doi.org/10.1001/jama.2018.19323.

    Article  CAS  PubMed  Google Scholar 

  4. Gotwals P, Cameron S, Cipolletta D, Cremasco V, Crystal A, Hewes B, Mueller B, Quaratino S, Sabatos-Peyton C, Petruzzelli L, et al. Prospects for combining targeted and conventional cancer therapy with immunotherapy. Nat Rev Cancer. 2017;17:286–301. https://doi.org/10.1038/nrc.2017.17.

    Article  CAS  PubMed  Google Scholar 

  5. Baxevanis CN, Fortis SP, Perez SA. The balance between breast cancer and the immune system: challenges for prognosis and clinical benefit from immunotherapies. Semin Cancer Biol. 2021;72:76–89. https://doi.org/10.1016/j.semcancer.2019.12.018.

    Article  PubMed  Google Scholar 

  6. Heeke AL, Tan AR. Checkpoint inhibitor therapy for metastatic triple-negative breast cancer. Cancer Metastasis Rev. 2021;40:537–47. https://doi.org/10.1007/s10555-021-09972-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Szeto GL, Finley SD. Integrative Approaches to Cancer Immunotherapy. Trends Cancer. 2019;5:400–10. https://doi.org/10.1016/j.trecan.2019.05.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mediratta K, El-Sahli S, D’Costa V, Wang L. Current progresses and challenges of immunotherapy in triple-negative breast cancer. Cancers (Basel). 2020. https://doi.org/10.3390/cancers12123529.

    Article  PubMed  Google Scholar 

  9. Pitt JM, Marabelle A, Eggermont A, Soria JC, Kroemer G, Zitvogel L. Targeting the tumor microenvironment: removing obstruction to anticancer immune responses and immunotherapy. Ann Oncol. 2016;27:1482–92. https://doi.org/10.1093/annonc/mdw168.

    Article  CAS  PubMed  Google Scholar 

  10. Fang X, Zheng P, Tang J, Liu Y. CD24: from A to Z. Cell Mol Immunol. 2010;7:100–3. https://doi.org/10.1038/cmi.2009.119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Altevogt P, Sammar M, Huser L, Kristiansen G. Novel insights into the function of CD24: a driving force in cancer. Int J Cancer. 2021;148:546–59. https://doi.org/10.1002/ijc.33249.

    Article  CAS  PubMed  Google Scholar 

  12. Barkal AA, Brewer RE, Markovic M, Kowarsky M, Barkal SA, Zaro BW, Krishnan V, Hatakeyama J, Dorigo O, Barkal LJ, et al. CD24 signalling through macrophage Siglec-10 is a target for cancer immunotherapy. Nature. 2019;572:392–6. https://doi.org/10.1038/s41586-019-1456-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang R, Tu J, Liu S. Novel molecular regulators of breast cancer stem cell plasticity and heterogeneity. Semin Cancer Biol. 2022;82:11–25. https://doi.org/10.1016/j.semcancer.2021.03.008.

    Article  CAS  PubMed  Google Scholar 

  14. Sheng W, Zhang C, Mohiuddin TM, Al-Rawe M, Zeppernick F, Falcone FH, Meinhold-Heerlein I, Hussain AF. Multiplex immunofluorescence: a powerful tool in cancer immunotherapy. Int J Mol Sci. 2023. https://doi.org/10.3390/ijms24043086.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zhai Y, Zhang J, Huang Z, Shi R, Guo F, Zhang F, Chen M, Gao Y, Tao X, Jin Z, et al. Single-cell RNA sequencing integrated with bulk RNA sequencing analysis reveals diagnostic and prognostic signatures and immunoinfiltration in gastric cancer. Comput Biol Med. 2023;163:107239. https://doi.org/10.1016/j.compbiomed.2023.107239.

    Article  CAS  PubMed  Google Scholar 

  16. Guo S, Liu X, Zhang J, Huang Z, Ye P, Shi J, Stalin A, Wu C, Lu S, Zhang F, et al. Integrated analysis of single-cell RNA-seq and bulk RNA-seq unravels T cell-related prognostic risk model and tumor immune microenvironment modulation in triple-negative breast cancer. Comput Biol Med. 2023;161:107066. https://doi.org/10.1016/j.compbiomed.2023.107066.

    Article  CAS  PubMed  Google Scholar 

  17. Zhou B, Jin W. Visualization of single cell RNA-Seq data using t-SNE in R. Methods Mol Biol. 2020;2117:159–67. https://doi.org/10.1007/978-1-0716-0301-7_8.

    Article  CAS  PubMed  Google Scholar 

  18. Aran D, Looney AP, Liu L, Wu E, Fong V, Hsu A, Chak S, Naikawadi RP, Wolters PJ, Abate AR, et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat Immunol. 2019;20:163–72. https://doi.org/10.1038/s41590-018-0276-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Qiu X, Mao Q, Tang Y, Wang L, Chawla R, Pliner HA, Trapnell C. Reversed graph embedding resolves complex single-cell trajectories. Nat Methods. 2017;14:979–82. https://doi.org/10.1038/nmeth.4402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jin S, Guerrero-Juarez CF, Zhang L, Chang I, Ramos R, Kuan CH, Myung P, Plikus MV, Nie Q. Inference and analysis of cell-cell communication using cell chat. Nat Commun. 2021;12:1088. https://doi.org/10.1038/s41467-021-21246-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Simon N, Friedman J, Hastie T, Tibshirani R. Regularization paths for Cox’s proportional hazards model via coordinate descent. J Stat Softw. 2011;39:1–13. https://doi.org/10.18637/jss.v039.i05.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Obuchowski NA, Bullen JA. Receiver operating characteristic (ROC) curves: review of methods with applications in diagnostic medicine. Phys Med Biol. 2018. https://doi.org/10.1088/1361-6560/aab4b1.

    Article  PubMed  Google Scholar 

  23. Jin C, Cao J, Cai Y, Wang L, Liu K, Shen W, Hu J. A nomogram for predicting the risk of invasive pulmonary adenocarcinoma for patients with solitary peripheral subsolid nodules. J Thorac Cardiovasc Surg. 2017;153:462-469 e461. https://doi.org/10.1016/j.jtcvs.2016.10.019.

    Article  PubMed  Google Scholar 

  24. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102:15545–50. https://doi.org/10.1073/pnas.0506580102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Xu Z, Song J, Cao L, Rong Z, Zhang W, He J, Li K, Hou Y. Improving ovarian cancer treatment decision using a novel risk predictive tool. Aging (Albany NY). 2022;14:3464–83. https://doi.org/10.18632/aging.204023.

    Article  CAS  PubMed  Google Scholar 

  26. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, Hoang CD, Diehn M, Alizadeh AA. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods. 2015;12:453–7. https://doi.org/10.1038/nmeth.3337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Charoentong P, Finotello F, Angelova M, Mayer C, Efremova M, Rieder D, Hackl H, Trajanoski Z. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep. 2017;18:248–62. https://doi.org/10.1016/j.celrep.2016.12.019.

    Article  CAS  PubMed  Google Scholar 

  28. Li H, Chen J, Li Z, Chen M, Ou Z, Mo M, Wang R, Tong S, Liu P, Cai Z, et al. S100A5 attenuates efficiency of anti-PD-L1/PD-1 immunotherapy by inhibiting CD8(+) T cell-mediated anti-cancer immunity in bladder carcinoma. Adv Sci (Weinh). 2023;10:e2300110. https://doi.org/10.1002/advs.202300110.

    Article  CAS  PubMed  Google Scholar 

  29. Martelotto LG, Ng CK, Piscuoglio S, Weigelt B, Reis-Filho JS. Breast cancer intra-tumor heterogeneity. Breast Cancer Res. 2014;16:210. https://doi.org/10.1186/bcr3658.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Joseph C, Papadaki A, Althobiti M, Alsaleem M, Aleskandarany MA, Rakha EA. Breast cancer intratumour heterogeneity: current status and clinical implications. Histopathology. 2018;73:717–31. https://doi.org/10.1111/his.13642.

    Article  PubMed  Google Scholar 

  31. Allemani C, Matsuda T, Di Carlo V, Harewood R, Matz M, Niksic M, Bonaventure A, Valkov M, Johnson CJ, Esteve J, et al. Global surveillance of trends in cancer survival 2000–14 (CONCORD-3): analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. Lancet. 2018;391:1023–75. https://doi.org/10.1016/S0140-6736(17)33326-3.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Pan H, Gray R, Braybrooke J, Davies C, Taylor C, McGale P, Peto R, Pritchard KI, Bergh J, Dowsett M, et al. 20-Year Risks of breast-cancer recurrence after stopping endocrine therapy at 5 years. N Engl J Med. 2017;377:1836–46. https://doi.org/10.1056/NEJMoa1701830.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Grinda T, Antoine A, Jacot W, Blaye C, Cottu PH, Dieras V, Dalenc F, Goncalves A, Debled M, Patsouris A, et al. Evolution of overall survival and receipt of new therapies by subtype among 20 446 metastatic breast cancer patients in the 2008–2017 ESME cohort. ESMO Open. 2021;6: 100114. https://doi.org/10.1016/j.esmoop.2021.100114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Suzuki T, Kiyokawa N, Taguchi T, Sekino T, Katagiri YU, Fujimoto J. CD24 induces apoptosis in human B cells via the glycolipid-enriched membrane domains/rafts-mediated signaling system. J Immunol. 2001;166:5567–77. https://doi.org/10.4049/jimmunol.166.9.5567.

    Article  CAS  PubMed  Google Scholar 

  35. Chappel MS, Hough MR, Mittel A, Takei F, Kay R, Humphries RK. Cross-linking the murine heat-stable antigen induces apoptosis in B cell precursors and suppresses the anti-CD40-induced proliferation of mature resting B lymphocytes. J Exp Med. 1996;184:1639–49. https://doi.org/10.1084/jem.184.5.1639.

    Article  CAS  PubMed  Google Scholar 

  36. Wu H, Su Z, Barnie PA. The role of B regulatory (B10) cells in inflammatory disorders and their potential as therapeutic targets. Int Immunopharmacol. 2020;78:106111. https://doi.org/10.1016/j.intimp.2019.106111.

    Article  CAS  PubMed  Google Scholar 

  37. Gao X, Chen Z, Li A, Zhang X, Cai X. MiR-129 regulates growth and invasion by targeting MAL2 in papillary thyroid carcinoma. Biomed Pharmacother. 2018;105:1072–8. https://doi.org/10.1016/j.biopha.2018.06.050.

    Article  CAS  PubMed  Google Scholar 

  38. Lopez-Coral A, Del Vecchio GJ, Chahine JJ, Kallakury BV, Tuma PL. MAL2-induced actin-based protrusion formation is anti-oncogenic in hepatocellular carcinoma. Cancers (Basel). 2020. https://doi.org/10.3390/cancers12020422.

    Article  PubMed  Google Scholar 

  39. Zhang B, Xiao J, Cheng X, Liu T. MAL2 interacts with IQGAP1 to promote pancreatic cancer progression by increasing ERK1/2 phosphorylation. Biochem Biophys Res Commun. 2021;554:63–70. https://doi.org/10.1016/j.bbrc.2021.02.146.

    Article  CAS  PubMed  Google Scholar 

  40. An L, Gong H, Yu X, Zhang W, Liu X, Yang X, Shu L, Liu J, Yang L. Downregulation of MAL2 inhibits breast cancer progression through regulating beta-catenin/c-Myc axis. Cancer Cell Int. 2023;23:144. https://doi.org/10.1186/s12935-023-02993-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fang Y, Wang L, Wan C, Sun Y, Van der Jeught K, Zhou Z, Dong T, So KM, Yu T, Li Y, et al. MAL2 drives immune evasion in breast cancer by suppressing tumor antigen presentation. J Clin Invest. 2021. https://doi.org/10.1172/JCI140837.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Li H, Xie P, Li P, Du Y, Zhu J, Yuan Y, Wu C, Shi Y, Huang Z, Wang X, et al. CD73/NT5E is a potential biomarker for cancer prognosis and immunotherapy for multiple types of cancers. Adv Biol (Weinh). 2023;7:e2200263. https://doi.org/10.1002/adbi.202200263.

    Article  CAS  PubMed  Google Scholar 

  43. Cerutti A, Puga I, Cols M. Innate control of B cell responses. Trends Immunol. 2011;32:202–11. https://doi.org/10.1016/j.it.2011.02.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dersh D, Holly J, Yewdell JW. Author correction: a few good peptides: MHC class I-based cancer immunosurveillance and immunoevasion. Nat Rev Immunol. 2020;20:644. https://doi.org/10.1038/s41577-020-00445-3.

    Article  CAS  PubMed  Google Scholar 

  45. Philip M, Schietinger A. CD8(+) T cell differentiation and dysfunction in cancer. Nat Rev Immunol. 2022;22:209–23. https://doi.org/10.1038/s41577-021-00574-3.

    Article  CAS  PubMed  Google Scholar 

  46. Golubovskaya V, Wu L. Different subsets of T cells, memory, effector functions, and CAR-T immunotherapy. Cancers (Basel). 2016. https://doi.org/10.3390/cancers8030036.

    Article  PubMed  Google Scholar 

  47. Kunzli M, Masopust D. CD4(+) T cell memory. Nat Immunol. 2023;24:903–14. https://doi.org/10.1038/s41590-023-01510-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Deng J, Yin H. Gamma delta (gammadelta) T cells in cancer immunotherapy; where it comes from, where it will go? Eur J Pharmacol. 2022;919:174803. https://doi.org/10.1016/j.ejphar.2022.174803.

    Article  CAS  PubMed  Google Scholar 

  49. Zhu GQ, Tang Z, Huang R, Qu WF, Fang Y, Yang R, Tao CY, Gao J, Wu XL, Sun HX, et al. CD36(+) cancer-associated fibroblasts provide immunosuppressive microenvironment for hepatocellular carcinoma via secretion of macrophage migration inhibitory factor. Cell Discov. 2023;9:25. https://doi.org/10.1038/s41421-023-00529-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang H, Ye YL, Li MX, Ye SB, Huang WR, Cai TT, He J, Peng JY, Duan TH, Cui J, et al. CXCL2/MIF-CXCR2 signaling promotes the recruitment of myeloid-derived suppressor cells and is correlated with prognosis in bladder cancer. Oncogene. 2017;36:2095–104. https://doi.org/10.1038/onc.2016.367.

    Article  CAS  PubMed  Google Scholar 

  51. Bacher M, Metz CN, Calandra T, Mayer K, Chesney J, Lohoff M, Gemsa D, Donnelly T, Bucala R. An essential regulatory role for macrophage migration inhibitory factor in T-cell activation. Proc Natl Acad Sci U S A. 1996;93:7849–54. https://doi.org/10.1073/pnas.93.15.7849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Frisullo G, Nociti V, Iorio R, Plantone D, Patanella AK, Tonali PA, Batocchi AP. CD8(+)Foxp3(+) T cells in peripheral blood of relapsing-remitting multiple sclerosis patients. Hum Immunol. 2010;71:437–41. https://doi.org/10.1016/j.humimm.2010.01.024.

    Article  CAS  PubMed  Google Scholar 

  53. Zheng C, Zheng L, Yoo JK, Guo H, Zhang Y, Guo X, Kang B, Hu R, Huang JY, Zhang Q, et al. Landscape of infiltrating T cells in liver cancer revealed by single-cell sequencing. Cell. 2017;169:1342–56. https://doi.org/10.1016/j.cell.2017.05.035.

    Article  CAS  PubMed  Google Scholar 

  54. de Visser KE, Joyce JA. The evolving tumor microenvironment: from cancer initiation to metastatic outgrowth. Cancer Cell. 2023;41:374–403. https://doi.org/10.1016/j.ccell.2023.02.016.

    Article  CAS  PubMed  Google Scholar 

  55. Groth C, Hu X, Weber R, Fleming V, Altevogt P, Utikal J, Umansky V. Immunosuppression mediated by myeloid-derived suppressor cells (MDSCs) during tumour progression. Br J Cancer. 2019;120:16–25. https://doi.org/10.1038/s41416-018-0333-1.

    Article  CAS  PubMed  Google Scholar 

  56. Zhang B, Sun J, Wang Y, Ji D, Yuan Y, Li S, Sun Y, Hou Y, Li P, Zhao L, et al. Site-specific PEGylation of interleukin-2 enhances immunosuppression via the sustained activation of regulatory T cells. Nat Biomed Eng. 2021;5:1288–305. https://doi.org/10.1038/s41551-021-00797-8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Gene Expression Omnibus (GEO), The Cancer Genome Atlas (TCGA) Database and TISCH for sharing a large amount of data. Test-tube images used in Fig. 1 was obtained from Scidraw.io. Free vector woman figure with breast cancer and laboratory instruments images used in Fig. 1 were obtained from Freepik.com. We also thank TissueGnostics asia Pacific limited (Beijing, Chia) for their technical support in the analysis of multi-immunofluorescence staining images.

Funding

This study was funded by the National Natural Science Foundation of China (grant number 82003802 to TLZ), the Natural Science Foundation of Hunan Province (grant number 2019JJ50542 and 2023JJ50156 to TLZ, 2024JJ7455 to XFX), the Science and Technology Program of Hunan Health Commission (grant number 20201978 to TLZ), the China Scholarship Council (grant number 201808430085 to TLZ) and Clinical Research 4310 Program of the First Affiliated Hospital of the University of South China (grant number 20224310NHYCG04 to TLZ), Science and technology innovation Program of Hengyang City (grant number 202250045223 to TLZ).

Author information

Authors and Affiliations

Authors

Contributions

TLZ, HHH and HXZ conceived and designed the study. HHH, HXZ and WDZ drafted the manuscript. HHH, HXZ, WDZ, BH, TY, SYW and JDZ conducted data analysis. TLZ, HHH and XFX strictly revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Taolan Zhang.

Ethics declarations

Conflict of interests

All authors declare no conflict of interest.

Ethical approval and consent to participate

The relevant content of this study has been approved by the Medical Ethics Committee of the First Affiliated Hospital of the University of South China (No.2023ll0103003).

Consent for publication

Not applicable.

Additional information

Responsible Editor: John Di Battista.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 231 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, H., Zhu, H., Zhan, W. et al. Integration of multiomics analyses reveals unique insights into CD24-mediated immunosuppressive tumor microenvironment of breast cancer. Inflamm. Res. 73, 1047–1068 (2024). https://doi.org/10.1007/s00011-024-01882-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-024-01882-9

Keywords

Navigation