Skip to main content

Advertisement

Log in

The potential role of N6-methyladenosine modification of LncRNAs in contributing to the pathogenesis of chronic glomerulonephritis

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Background

Increasing evidence indicates that N6-methyladenosine (m6A) modification of mRNAs has been shown to play a critical role in the occurrence and development of many diseases, while little is known about m6A modification in long non-coding RNAs (LncRNAs). Our study aims to investigate the potential functions of LncRNA m6A modifications in lipopolysaccharide (LPS)-induced mouse mesangial cells (MMCs), providing us with a new perspective on the molecular mechanisms of chronic glomerulonephritis (CGN) pathogenesis.

Methods

Differentially methylated LncRNAs were identified by Methylated RNA immunoprecipitation sequencing (MeRIP-seq). LncRNA–mRNA and LncRNA-associated LncRNA–miRNA–mRNA (CeRNA) networks were constructed by bioinformatics analysis. Furthermore, we utilized gene ontology (GO) and pathway enrichment analyses (KEGG) to explore target genes from co-expression networks. In addition, the total level of m6A RNA methylation and expression of methyltransferase and pro-inflammatory cytokines were detected by the colorimetric quantification method and western blot, respectively. Cell viability and cell cycle stage were detected by cell counting kit-8 (CCK-8) and flow cytometry.

Results

In total, 1141 differentially m6A-methylated LncRNAs, including 529 hypermethylated LncRNAs and 612 hypomethylated LncRNAs, were determined by MeRIP-seq. The results of GO and KEGG analysis revealed that the target mRNAs were mainly enriched in signal pathways, such as the NF-kappa B signaling pathway, MAPK signaling pathway, Toll-like receptor signaling pathway, and apoptosis signaling pathway. In addition, higher METTL3 expression was found in CGN kidney tissues using the GEO database. METTL3 knockdown in MMC cells drastically reduced the levels of m6A RNA methylation, pro-inflammatory cytokines IL6 and TNF-α, and inhibited cell proliferation and cycle progression.

Conclusions

Our findings provide a basis and novel insight for further investigations of m6A modifications in LncRNAs for the pathogenesis of CGN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data used and analyzed to support the findings of this study are available from the corresponding author upon request.

References

  1. Gupta RA, Shah N, Wang KC, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature. 2010;464(7291):1071–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ariel F, Lucero L, Christ A, et al. R-loop mediated trans action of the APOLO long noncoding RNA. Mol Cell. 2020;77(5):1055-1065.e4.

    Article  CAS  PubMed  Google Scholar 

  3. Zhang Y, Pitchiaya S, Cieślik M, et al. Analysis of the androgen receptor-regulated LncRNA landscape identifies a role for ARLNC1 in prostate cancer progression. Nat Genet. 2018;50(6):814–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhang K, Han X, Zhang Z, et al. The liver-enriched lnc-LFAR1 promotes liver fibrosis by activating TGFβ and Notch pathways. Nat Commun. 2017;8(1):144.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Li T, Hu PS, Zuo Z, et al. METTL3 facilitates tumor progression via an m6A-IGF2BP2-dependent mechanism in colorectal carcinoma. Mol Cancer. 2019;18(1):112.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Xu CL, Sang B, Liu GZ, et al. SENEBLOC, a long non-coding RNA suppresses senescence via p53-dependent and independent mechanisms. Nucleic Acids Res. 2020;48(6):3089–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Keihani S, Kluever V, Mandad S, et al. The long noncoding RNA neuroLNC regulates presynaptic activity by interacting with the neurodegeneration-associated protein TDP-43. Sci Adv. 2019;5(12):eaay2670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sun X, Haider Ali MSS, Moran M. The role of interactions of long non-coding RNAs and heterogeneous nuclear ribonucleoproteins in regulating cellular functions. Biochem J. 2017;474(17):2925–35.

    Article  CAS  PubMed  Google Scholar 

  9. Rogoyski OM, Pueyo JI, Couso JP, Newbury SF. Functions of long non-coding RNAs in human disease and their conservation in drosophila development. Biochem Soc Trans. 2017;45(4):895–904.

    Article  CAS  PubMed  Google Scholar 

  10. Desrosiers R, Friderici K, Rottman F. Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc Natl Acad Sci U S A. 1974;71(10):3971–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fustin JM, Doi M, Yamaguchi Y, et al. RNA-methylation-dependent RNA processing controls the speed of the circadian clock. Cell. 2013;155(4):793–806.

    Article  CAS  PubMed  Google Scholar 

  12. Lin S, Choe J, Du P, Triboulet R, Gregory RI. The m(6)A methyltransferase METTL3 promotes translation in human cancer cells. Mol Cell. 2016;62(3):335–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang X, Zhao BS, Roundtree IA, et al. N(6)-methyladenosine modulates messenger rna translation efficiency. Cell. 2015;161(6):1388–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen T, Hao YJ, Zhang Y, et al. m(6)A RNA methylation is regulated by microRNAs and promotes reprogramming to pluripotency. Cell Stem Cell. 2015;16(3):289–301.

    Article  CAS  PubMed  Google Scholar 

  15. Lan Q, Liu PY, Haase J, Bell JL, Hüttelmaier S, Liu T. The critical role of RNA m6A methylation in cancer. Cancer Res. 2019;79(7):1285–92.

    Article  CAS  PubMed  Google Scholar 

  16. Liu N, Zhou KI, Parisien M, Dai Q, Diatchenko L, Pan T. N6-methyladenosine alters RNA structure to regulate binding of a low-complexity protein. Nucleic Acids Res. 2017;45(10):6051–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Patil DP, Chen CK, Pickering BF, et al. m(6)A RNA methylation promotes XIST-mediated transcriptional repression. Nature. 2016;537(7620):369–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wu Y, Yang X, Chen Z, et al. m6A-induced LncRNA RP11 triggers the dissemination of colorectal cancer cells via upregulation of Zeb1. Mol Cancer. 2019;18(1):87.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ni W, Yao S, Zhou Y, et al. Long noncoding RNA GAS5 inhibits progression of colorectal cancer by interacting with and triggering YAP phosphorylation and degradation and is negatively regulated by the m6A reader YTHDF3. Mol Cancer. 2019;18(1):143.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Sethi S, Fervenza FC. Standardized classification and reporting of glomerulonephritis. Nephrol Dial Transplant. 2019;34(2):193–9.

    Article  PubMed  Google Scholar 

  21. Chao S, Xu Q, Dong S, Guo M, Liu X, Cheng X. Polygala fallax Hemsl combined with compound Sanqi granules relieves glomerulonephritis by regulating proliferation and apoptosis of glomerular mesangial cells. J Int Med Res. 2020;48(1):300060519894124.

    Article  CAS  PubMed  Google Scholar 

  22. Shen J, Wu Q, Liang T, et al. TRIM40 inhibits IgA1-induced proliferation of glomerular mesangial cells by inactivating NLRP3 inflammasome through ubiquitination. Mol Immunol. 2021;140:225–32.

    Article  CAS  PubMed  Google Scholar 

  23. Wang Y, Mao J, Wang X, et al. Genome-wide screening of altered m6A-tagged transcript profiles in the hippocampus after traumatic brain injury in mice. Epigenomics. 2019;11(7):805–19.

    Article  CAS  PubMed  Google Scholar 

  24. Li J, Ma W, Zeng P, et al. LncTar: a tool for predicting the RNA targets of long noncoding RNAs. Brief Bioinform. 2015;16(5):806–12.

    Article  CAS  PubMed  Google Scholar 

  25. Qi X, Zhang DH, Wu N, Xiao JH, Wang X, Ma W. ceRNA in cancer: possible functions and clinical implications. J Med Genet. 2015;52(10):710–8.

    Article  PubMed  Google Scholar 

  26. Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, Benner C, Chanda SK. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun. 2019;10(1):1523.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ashburner M, Ball CA, Blake JA, et al. Gene ontology: tool for the unification of biology. The Gene Ontol Consortium Nat Genet. 2000;25(1):25–9.

    CAS  Google Scholar 

  28. Dominissini D, Moshitch-Moshkovitz S, Schwartz S, et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature. 2012;485(7397):201–6.

    Article  CAS  PubMed  Google Scholar 

  29. Qin XJ, Gao JR, Xu XJ, Jiang H, Wei LB, Jiang NN. LncRNAs expression in adriamycin-induced rats reveals the potential role of LncRNAs contributing to chronic glomerulonephritis pathogenesis. Gene. 2019;687:90–8.

    Article  CAS  PubMed  Google Scholar 

  30. Liu T, Zhuang XX, Qin XJ, Wei LB, Gao JR. Alteration of N6-methyladenosine epitranscriptome profile in lipopolysaccharide-induced mouse mesangial cells. Naunyn Schmiedebergs Arch Pharmacol. 2022;395(4):445–58.

    Article  CAS  PubMed  Google Scholar 

  31. Shushakova N, Tkachuk N, Dangers M, et al. Urokinase-induced activation of the gp130/Tyk2/Stat3 pathway mediates a pro-inflammatory effect in human mesangial cells via expression of the anaphylatoxin C5a receptor. J Cell Sci. 2005;118(Pt 12):2743–53.

    Article  CAS  PubMed  Google Scholar 

  32. Gao J, Wei L, Song J, et al. In vitro and in vivo study of the expression of the Syk/Ras/c-Fos pathway in chronic glomerulonephritis. Mol Med Rep. 2018;18(4):3683–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang Y, Li Y, Toth JI, Petroski MD, Zhang Z, Zhao JC. N6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells. Nat Cell Biol. 2014;16(2):191–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lawrence T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol. 2009;1(6):a001651.

    Article  PubMed  PubMed Central  Google Scholar 

  35. White S, Lin L, Hu K. NF-κB and tPA signaling in kidney and other diseases. Cells. 2020;9(6):1348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang J, Yang S, Chen F, Li H, Chen B. Ginkgetin aglycone ameliorates LPS-induced acute kidney injury by activating SIRT1 via inhibiting the NF-κB signaling pathway. Cell Biosci. 2017;7:44.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Yong HY, Koh MS, Moon A. The p38 MAPK inhibitors for the treatment of inflammatory diseases and cancer. Expert Opin Investig Drugs. 2009;18(12):1893–905.

    Article  CAS  PubMed  Google Scholar 

  38. Dong Q, Jie Y, Ma J, Li C, Xin T, Yang D. Renal tubular cell death and inflammation response are regulated by the MAPK-ERK-CREB signaling pathway under hypoxia-reoxygenation injury. J Recept Signal Transduct Res. 2019;39(5–6):383–91.

    Article  CAS  PubMed  Google Scholar 

  39. Kurtzeborn K, Kwon HN, Kuure S. MAPK/ERK signaling in regulation of renal differentiation. Int J Mol Sci. 2019;20(7):1779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Garibotto G, Carta A, Picciotto D, Viazzi F, Verzola D. Toll-like receptor-4 signaling mediates inflammation and tissue injury in diabetic nephropathy. J Nephrol. 2017;30(6):719–27.

    Article  CAS  PubMed  Google Scholar 

  41. Campbell MT, Hile KL, Zhang H, et al. Toll-like receptor 4: a novel signaling pathway during renal fibrogenesis. J Surg Res. 2011;168(1):e61–9.

    Article  CAS  PubMed  Google Scholar 

  42. Ramnath D, Powell EE, Scholz GM, Sweet MJ. The toll-like receptor 3 pathway in homeostasis, responses to injury and wound repair. Semin Cell Dev Biol. 2017;61:22–30.

    Article  CAS  PubMed  Google Scholar 

  43. Zhao SY, Liao LX, Tu PF, Li WW, Zeng KW. Icariin inhibits AGE-induced injury in PC12 cells by directly targeting apoptosis regulator bax. Oxid Med Cell Longev. 2019;2019:7940808.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Guan X, Lu J, Sun F, Li Q, Pang Y. The molecular evolution and functional divergence of lamprey programmed cell death genes. Front Immunol. 2019;10:1382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hughes J, Savill JS. Apoptosis in glomerulonephritis. Curr Opin Nephrol Hypertens. 2005;14(4):389–95.

    Article  PubMed  Google Scholar 

  46. Shimizu A, Masuda Y, Kitamura H, Ishizaki M, Sugisaki Y, Yamanaka N. Apoptosis in progressive crescentic glomerulonephritis. Lab Invest. 1996;74(5):941–51.

    CAS  PubMed  Google Scholar 

  47. Du Y, Hou G, Zhang H, et al. SUMOylation of the m6A-RNA methyltransferase METTL3 modulates its function. Nucleic Acids Res. 2018;46(10):5195–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Śledź P, Jinek M. Structural insights into the molecular mechanism of the m(6)A writer complex. Elife. 2016;5:e18434.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Wang P, Doxtader KA, Nam Y. Structural Basis for Cooperative Function of Mettl3 and Mettl14 Methyltransferases. Mol Cell. 2016;63(2):306–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang X, Feng J, Xue Y, et al. Structural basis of N(6)-adenosine methylation by the METTL3-METTL14 complex. Nature. 2016;534(7608):575–8.

    Article  CAS  PubMed  Google Scholar 

  51. Ramalingam H, Kashyap S, Cobo-Stark P, et al. A methionine-Mettl3-N6-methyladenosine axis promotes polycystic kidney disease. Cell Metab. 2021;33(6):1234-1247.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang JN, Wang F, Ke J, et al. Inhibition of METTL3 attenuates renal injury and inflammation by alleviating TAB3 m6A modifications via IGF2BP2-dependent mechanisms. Sci Transl Med. 2022;14(640):eabk2709.

    Article  CAS  PubMed  Google Scholar 

  53. Jiang L, Liu X, Hu X, et al. METTL3-mediated m6A modification of TIMP2 mRNA promotes podocyte injury in diabetic nephropathy. Mol Ther. 2022;30(4):1721–40.

    Article  CAS  PubMed  Google Scholar 

  54. Wan W, Ao X, Chen Q, et al. METTL3/IGF2BP3 axis inhibits tumor immune surveillance by upregulating N6-methyladenosine modification of PD-L1 mRNA in breast cancer. Mol Cancer. 2022;21(1):60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Huang H, Camats-Perna J, Medeiros R, Anggono V, Widagdo J. Altered expression of the m6A methyltransferase METTL3 in Alzheimer’s disease. eNeuro. 2020. https://doi.org/10.1523/ENEURO.0125-20.2020.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Gao JR, Shi MM, Jiang H, Zhu XL, Wei LB, Qin XJ. MicroRNA-339-5p inhibits lipopolysaccharide-induced rat mesangial cells by regulating the Syk/Ras/c-Fos pathway. Naunyn Schmiedebergs Arch Pharmacol. 2022;395(9):1075–85.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was financially supported by the National Natural Science Foundation of China (No.81973546), the Key Scientific Research Projects of Natural Science in Colleges and Universities in Anhui Province (No.2022AH050747), and the Key Scientific Research Projects of Natural Science in Colleges and Universities in Anhui Province (No.2022AH050455).

Author information

Authors and Affiliations

Authors

Contributions

JRG conceived and designed the study. TL and XXZ wrote the paper. JRG, XJQ, and BLW reviewed and edited the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Jia Rong Gao.

Ethics declarations

Conflict of interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Responsible Editor: John Di Battista.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, T., Zhuang, X.X., Qin, X.J. et al. The potential role of N6-methyladenosine modification of LncRNAs in contributing to the pathogenesis of chronic glomerulonephritis. Inflamm. Res. 72, 623–638 (2023). https://doi.org/10.1007/s00011-023-01695-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-023-01695-2

Keywords

Navigation