Skip to main content

Advertisement

Log in

Could different aqueous humor and plasma cytokine profiles help differentiate between ocular sarcoidosis and ocular tuberculosis?

  • Original Research Article
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective and design

A cross-sectional single-center study was conducted to assess cytokine levels in aqueous humor (AH) and plasma of three different uveitis entities: definite ocular sarcoidosis (OS), definite OS associated with QuantiFERON®-TB Gold test positivity (Q + OS) and presumed tubercular uveitis (TBU).

Subjects

Thirty-two patients (15 OS, 5 Q + OS, 12 TBU) were included.

Methods

Quantification of selected cytokines was performed on blood and AH samples collected before starting any treatment. Statistical analysis was conducted using the Kruskal–Wallis test, the Mann–Whitney or Fisher test and the Principal Component Analysis (PCA).

Results

IL-6, IL-8 and IP-10 levels were higher in AH samples than in peripheral blood. In AH samples, BLC, IL-8 and IP-10 were significantly higher in definite OS than in presumptive TBU. There were no statistically significant differences in terms of cytokine levels between Q + OS and presumptive TBU. PCA showed a similar cytokine pattern in the latter two groups (IFNγ, IL-15, IL-2, IP-10, MIG), while the prevalent expression of BLC, IL-10 and MIP-3 α was seen in definite OS.

Conclusions

The different AH and plasma cytokine profiles observed in OS compared to Q + OS and TBU may help to differentiate OS from TBU in overlapping clinical phenotypes of granulomatous uveitis (Q + OS).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. World Health Organization (2020) Global tuberculosis report 2020.

  2. Kee AR, et al. Anti-tubercular therapy for intraocular tuberculosis: a systematic review and meta-analysis. Surv Ophthalmol. 2016;61(5):628–53. https://doi.org/10.1016/j.survophthal.2016.03.001.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Alvarez S, McCabe WR. Extrapulmonary tuberculosis revisited: a review of experience at Boston City and other hospitals. Med (Baltim). 1984;63(1):25–55.

    Article  CAS  Google Scholar 

  4. Ishihara M, Ohno S. Ocular tuberculosis. Nihon Rinsho. 1998;56(12):3157–61.

    CAS  PubMed  Google Scholar 

  5. Gupta V, Gupta A, Rao NA. Intraocular tuberculosis—an update. Surv Ophthalmol. 2007;52(6):561–87. https://doi.org/10.1016/j.survophthal.2007.08.015.

    Article  PubMed  Google Scholar 

  6. Cutrufello NJ, Karakousis PC, Fishler J, Albini TA. Intraocular tuberculosis. Ocul Immunol Inflamm. 2010;18(4):281–91. https://doi.org/10.3109/09273948.2010.489729.

    Article  CAS  PubMed  Google Scholar 

  7. Ang M, Chee SP. Controversies in ocular tuberculosis. Br J Ophthalmol. 2017;101(1):6–9. https://doi.org/10.1136/bjophthalmol-2016-309531.

    Article  PubMed  Google Scholar 

  8. Cimino L, et al. Changes in patterns of uveitis at a tertiary referral center in Northern Italy: analysis of 990 consecutive cases. Int Ophthalmol. 2018;38(1):133–42. https://doi.org/10.1007/s10792-016-0434-x.

    Article  Google Scholar 

  9. Agrawal R, et al. Standardization of nomenclature for ocular tuberculosis-results of collaborative ocular tuberculosis study (cots) workshop. Ocul Immunol Inflamm. 2019. https://doi.org/10.1080/09273948.2019.1653933.

    Article  PubMed  Google Scholar 

  10. Newman LS, Rose CS, Maier LA. Sarcoidosis. N Engl J Med. 1997;336(17):1224–34. https://doi.org/10.1056/NEJM199704243361706.

    Article  CAS  PubMed  Google Scholar 

  11. Rybicki BA, Major M, Popovich J, Maliank MJ, Lannuzzi MC. Racial differences in sarcoidosis incidence: a 5-year study in a health maintenance organization. Am J Epidemiol. 1997;145(3):234–41. https://doi.org/10.1093/oxfordjournals.aje.a009096.

    Article  CAS  PubMed  Google Scholar 

  12. Acharya NR, Browne EN, Rao N, Mochizuki M. Distinguishing features of ocular sarcoidosis in an international cohort of uveitis patients. Ophthalmology. 2018;125(1):119–26. https://doi.org/10.1016/j.ophtha.2017.07.006.

    Article  PubMed  Google Scholar 

  13. Rothova A, Alberts C, Glasius E, Kijlstra A, Buitenhuis HJ, Breebaart AC. Risk factors for ocular sarcoidosis. Doc Ophthalmol. 1989;72(3–4):287–96. https://doi.org/10.1007/BF00153496.

    Article  CAS  PubMed  Google Scholar 

  14. Jabs DA, Johns CJ. Ocular involvement in chronic sarcoidosis. Am J Ophthalmol. 1986;102(3):297–301. https://doi.org/10.1016/0002-9394(86)90001-2.

    Article  CAS  PubMed  Google Scholar 

  15. Herbort CP, Rao NA, Mochizuki M. International criteria for the diagnosis of ocular sarcoidosis: results of the first international workshop on ocular sarcoidosis (IWOS). Ocul Immunol Inflamm. 2009;17(3):160–9. https://doi.org/10.1080/09273940902818861.

    Article  CAS  PubMed  Google Scholar 

  16. Mochizuki M, Smith JR, Takase H, Kaburaki T, Acharya NR, Rao NA. Revised criteria of international workshop on ocular sarcoidosis (IWOS) for the diagnosis of ocular sarcoidosis. Br J Ophthalmol. 2019;103(10):1418–22. https://doi.org/10.1136/bjophthalmol-2018-313356.

    Article  PubMed  Google Scholar 

  17. Perez RL, Rivera-Marrero CA, Roman J. Pulmonary granulomatous inflammation: from sarcoidosis to tuberculosis. Semin Respir Infect. 2003;18(1):26–32. https://doi.org/10.1053/srin.2003.50005.

    Article  Google Scholar 

  18. Drake WP, Newman LS. Mycobacterial antigens may be important in sarcoidosis pathogenesis. Curr Opin Pulm Med. 2006;12(5):359–63. https://doi.org/10.1097/01.mcp.0000239554.01068.94.

    Article  PubMed  Google Scholar 

  19. Oswald-Richter K, Drake W. The etiologic role of infectious antigens in sarcoidosis pathogenesis. Semin Respir Crit Care Med. 2010;31(04):375–9. https://doi.org/10.1055/s-0030-1262205.

    Article  PubMed  Google Scholar 

  20. Gupta D, Agarwal R, Aggarwal AN, Jindal SK. Sarcoidosis and tuberculosis: the same disease with different manifestations or similar manifestations of different disorders. Curr Opin Pulm Med. 2012;18(5):506–16. https://doi.org/10.1097/MCP.0b013e3283560809.

    Article  PubMed  Google Scholar 

  21. Agrawal R, et al. Tuberculosis or sarcoidosis: opposite ends of the same disease spectrum? Tuberculosis. 2016;98(January):21–6. https://doi.org/10.1016/j.tube.2016.01.003.

    Article  PubMed  Google Scholar 

  22. Ang M, et al. Aqueous cytokine and chemokine analysis in uveitis associated with tuberculosis. Mol Vis. 2012;18:565–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Abu El-Asrar AM, et al. Cytokine and CXC chemokine expression patterns in aqueous humor of patients with presumed tuberculous uveitis. Cytokine. 2012;59(2):377–81. https://doi.org/10.1016/j.cyto.2012.04.030.

    Article  CAS  PubMed  Google Scholar 

  24. Abu El-Asrar AM, et al. The cytokine interleukin-6 and the chemokines CCL20 and CXCL13 are novel biomarkers of specific endogenous uveitic entities. Investig Ophthalmol Vis Sci. 2016;57(11):4606–13. https://doi.org/10.1167/iovs.16-19758.

    Article  CAS  Google Scholar 

  25. Bolletta E, et al. Clinical relevance of subcentimetric lymph node biopsy in the diagnosis of ocular sarcoidosis. Ocul Immunol Inflamm. 2020;00(00):1–4. https://doi.org/10.1080/09273948.2020.1817503.

    Article  Google Scholar 

  26. Govender P, Berman JS. The diagnosis of sarcoidosis. Clin Chest Med. 2015;36(4):585–602. https://doi.org/10.1016/j.ccm.2015.08.003.

    Article  PubMed  Google Scholar 

  27. Delgado BJ, Bajaj T. Ghon Complex. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022

    Google Scholar 

  28. Gupta D, Agarwal R, Aggarwal AN, Jindal SK. Molecular evidence for the role of mycobacteria in sarcoidosis: a meta-analysis. Eur Respir J. 2007;30(3):508–16. https://doi.org/10.1183/09031936.00002607.

    Article  CAS  PubMed  Google Scholar 

  29. Cimino L, et al. Searching for viral antibodies and genome in intraocular fluids of patients with Fuchs uveitis and non-infectious uveitis. Graefe’s Arch Clin Exp Ophthalmol. 2013;251(6):1607–12. https://doi.org/10.1007/s00417-013-2287-6.

    Article  CAS  Google Scholar 

  30. Bonacini M, et al. Cytokine profiling in aqueous humor samples from patients with non-infectious uveitis associated with systemic inflammatory diseases. Front Immunol. 2020;11:1–12. https://doi.org/10.3389/fimmu.2020.00358.

    Article  CAS  Google Scholar 

  31. Balamurugan S, et al. Interleukins and cytokine biomarkers in uveitis. Indian J Ophthalmol. 2020;68(9):1750. https://doi.org/10.4103/ijo.IJO_564_20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. El-Asrar AMA, et al. Cytokine profiles in aqueous humor of patients with different clinical entities of endogenous uveitis. Clin Immunol. 2011;139(2):177–84. https://doi.org/10.1016/j.clim.2011.01.014.

    Article  CAS  PubMed  Google Scholar 

  33. Agrawal R, Iyer J, Connolly J, Iwata D, Teoh S. Cytokines and biologics in non-infectious autoimmune uveitis: bench to bedside. Indian J Ophthalmol. 2014;62(1):74–81. https://doi.org/10.4103/0301-4738.126187.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kim TW, Chung H, Yu HG. Chemokine expression of intraocular lymphocytes in patients with behçet uveitis. Ophthalmic Res. 2011;45(1):5–14. https://doi.org/10.1159/000313546.

    Article  CAS  PubMed  Google Scholar 

  35. Simsek M, et al. Aqueous humor IL-8, IL-10, and VEGF levels in Fuchs’ uveitis syndrome and Behçet’s uveitis. Int Ophthalmol. 2019;39(11):2629–36. https://doi.org/10.1007/s10792-019-01112-w.

    Article  PubMed  Google Scholar 

  36. Bae JH, Lee SC. Effect of intravitreal methotrexate and aqueous humor cytokine levels in refractory retinal vasculitis in Behcet disease. Retina. 2012;32(7):1395–402. https://doi.org/10.1097/IAE.0b013e31823496a3.

    Article  CAS  PubMed  Google Scholar 

  37. Lacomba MS. Aqueous and serum interferon γ, interleukin (il) 2, il-4, and il-10 in patients with uveitis. Arch Ophthalmol. 2000;118(6):768. https://doi.org/10.1001/archopht.118.6.768.

    Article  CAS  PubMed  Google Scholar 

  38. Ahn JK, Yu HG, Chung H, Park YG. Intraocular cytokine environment in active Behçet uveitis. Am J Ophthalmol. 2006;142(3):429-434.e1. https://doi.org/10.1016/j.ajo.2006.04.016.

    Article  CAS  PubMed  Google Scholar 

  39. Curnow SJ, et al. Multiplex bead immunoassay analysis of aqueous humor reveals distinct cytokine profiles in uveitis. Investig Ophthalmol Vis Sci. 2005;46(11):4251–9. https://doi.org/10.1167/iovs.05-0444.

    Article  Google Scholar 

  40. El-Asrar AMA, et al. Differential CXC and CX3C chemokine expression profiles in aqueous humor of patients with specific endogenous uveitic entities. Investig Ophthalmol Vis Sci. 2018;59(6):2222–8. https://doi.org/10.1167/iovs.17-23225.

    Article  CAS  Google Scholar 

  41. Takase H, et al. Cytokine profile in aqueous humor and sera of patients with infectious or noninfectious uveitis. Investig Ophthalmol Vis Sci. 2006;47(4):1557–61. https://doi.org/10.1167/iovs.05-0836.

    Article  Google Scholar 

  42. Abu El-Asrar AM, et al. Expression of interleukin (IL)-10 family cytokines in aqueous humour of patients with specific endogenous uveitic entities: elevated levels of IL-19 in human leucocyte antigen-B27-associated uveitis. Acta Ophthalmol. 2019;97(5):e780–4. https://doi.org/10.1111/aos.14039.

    Article  CAS  PubMed  Google Scholar 

  43. Abu El-Asrar AM, et al. Local cytokine expression profiling in patients with specific autoimmune uveitic entities. Ocul Immunol Inflamm. 2020;28(3):453–62. https://doi.org/10.1080/09273948.2019.1604974.

    Article  CAS  PubMed  Google Scholar 

  44. Belkhou A, Younsi R, El Bouchti I, El Hassani S. Rituximab as a treatment alternative in sarcoidosis. Jt Bone Spine. 2008;75(4):511–2. https://doi.org/10.1016/j.jbspin.2008.01.025.

    Article  Google Scholar 

  45. Bomprezzi R, Pati S, Chansakul C, Vollmer T. A case of neurosarcoidosis successfully treated with rituximab. Neurology. 2010;75(6):568–70. https://doi.org/10.1212/WNL.0b013e3181ec7ff9.

    Article  PubMed  Google Scholar 

  46. Ramstein J, et al. IFN-γ–producing T-helper 17.1 cells are increased in sarcoidosis and are more prevalent than T-helper type 1 cells. Am J Respir Crit Care Med. 2016;193(11):1281–91. https://doi.org/10.1164/rccm.201507-1499OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Facco M, et al. Sarcoidosis is a Th1/Th17 multisystem disorder. Thorax. 2011;66(2):144–50. https://doi.org/10.1136/thx.2010.140319.

    Article  PubMed  Google Scholar 

  48. Dienz O, Rincon M. The effects of IL-6 on CD4 T cell responses. Clin Immunol. 2009;130(1):27–33. https://doi.org/10.1016/j.clim.2008.08.018.

    Article  CAS  PubMed  Google Scholar 

  49. Sharp M, Donnelly SC, Moller DR. Tocilizumab in sarcoidosis patients failing steroid sparing therapies and anti-TNF agents. Respir Med X. 2019;1: 100004. https://doi.org/10.1016/j.yrmex.2019.100004.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Saussine A, et al. Active chronic sarcoidosis is characterized by increased transitional blood B cells, increased IL-10-producing regulatory B cells and high BAFF levels. PLoS ONE. 2012;7(8): e43588. https://doi.org/10.1371/journal.pone.0043588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lee N-S, Barber L, Akula SM, Sigounas G, Kataria YP, Arce S. Disturbed homeostasis and multiple signaling defects in the peripheral blood B-Cell compartment of patients with severe chronic sarcoidosis. Clin Vaccin Immunol. 2011;18(8):1306–16. https://doi.org/10.1128/CVI.05118-11.

    Article  CAS  Google Scholar 

  52. Liu CH, Liu H, Ge B. Innate immunity in tuberculosis: host defense vs pathogen evasion. Cell Mol Immunol. 2017;14(12):963–75. https://doi.org/10.1038/cmi.2017.88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mitchell D, Rees RJ. A transmissible agent from sarcoid tissue. Lancet. 1969;294(7611):81–4. https://doi.org/10.1016/S0140-6736(69)92392-7.

    Article  Google Scholar 

  54. Kon OM, du Bois RM. Mycobacteria and sarcoidosis. Thorax. 1997;52:S47–51. https://doi.org/10.1136/thx.52.2008.S47.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Mitchell D. Transmissible agents from human sarcoid and Crohn’s disease tissues. Lancet. 1976;308(7989):761–5. https://doi.org/10.1016/S0140-6736(76)90599-7.

    Article  Google Scholar 

  56. Smith-Rohrberg D, Sharma SK. Tuberculin skin test among pulmonary sarcoidosis patients with and without tuberculosis: its utility for the screening of the two conditions in tuberculosis-endemic regions. Sarcoidosis, Vasc Diffus lung Dis Off J WASOG. 2006;23(2):130–4.

    Google Scholar 

  57. Dobler CC. Biologic agents and tuberculosis. Microbiol Spectr. 2016. https://doi.org/10.1128/microbiolspec.tnmi7-0026-2016.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Thanks to Jacqueline M. Costa for the English language editing.

Author information

Authors and Affiliations

Authors

Contributions

LDS, EB, FG, and LC recruited the patients. MB and SC performed cytokine and immune cell profiling. LDS, MB, VM, FG, EB, CA, SC and LC contributed to the writing of the protocol and researched data. RA performed the statistical analysis. LDS, MB, RA, FA, SC and LC drafted the manuscript. LDS, MB, RA, FA, FG, EB, AZ, LF, CS, SC and LC interpreted the data and critically revised the manuscript. LC is the guarantor of this work and, as such, had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Corresponding author

Correspondence to L. Cimino.

Additional information

Responsible Editor: John Di Battista.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

11_2022_1601_MOESM1_ESM.tif

Fig. Supplementary 1 FACS gating strategy. Gating strategy used to quantify lymphocytes, monocytes and neutrophils and CD4 + , CD8 + T cells, NK cells, NKT cells and B lymphocytes. (TIF 15113 KB)

11_2022_1601_MOESM2_ESM.tif

Fig. Supplementary 2 Leukocyte subsets in AH samples. A Leucocyte concentrations evaluated by manual counting with a Neubauer hemocytometer; B) Percentages of NK (CD56 + CD3neg), NKT (CD56 + CD3 +), B (CD19 + CD3neg), T (CD56negCD3 +), CD4T (CD56negCD3 + CD4 +) and CD8T (CD56negCD3 + CD8 +) cells; C) Ratio between the percentages of CD4 + and CD8 + T cells in AH samples from patients classified as OS (red dots), Q + OS (blue dots) and TBU (green dots). Horizontal lines show the median ± interquartile range (IQR). Data were analysed by Mann–Whitney test. (TIF 110 KB)

11_2022_1601_MOESM3_ESM.tif

Fig. Supplementary 3 Cytokine concentration in plasma samples. Heatmap of cytokine levels in plasma samples from each patient obtained with ClustVis software. B) Cytokine concentrations (pg/ml) detected in plasma samples from patients classified as OS (red dots), Q + OS (blue dots) and TBU (green dots). Plasma samples from control subjects (CTR) were used as reference. Horizontal lines show the median ± interquartile range (IQR). Data were analysed by Mann–Whitney test. No comparisons reached statistical significance, set ts p < 0.05. Dashed line shows the detection limit for each cytokine. (TIF 146 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Simone, L., Bonacini, M., Aldigeri, R. et al. Could different aqueous humor and plasma cytokine profiles help differentiate between ocular sarcoidosis and ocular tuberculosis?. Inflamm. Res. 71, 949–961 (2022). https://doi.org/10.1007/s00011-022-01601-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-022-01601-2

Keywords

Navigation