Skip to main content

Advertisement

Log in

Inhibition of endoplasmic reticulum stress by 4-phenylbutyrate alleviates retinal inflammation and the apoptosis of retinal ganglion cells after ocular alkali burn in mice

  • Original Research Article
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

Retinal ganglion cell (RGC) apoptosis is one of the most severe complications that causes permanent visual impairment following ocular alkali burn (OAB). Currently, very few treatment options exist for this condition. This study was conducted to determine the effect of 4-phenylbutyric acid (4-PBA) on endoplasmic reticulum (ER) stress after OAB using a well-established OAB mouse model.

Methods

Ocular alkali burn was induced in C57BL/6 mouse corneas using 1 M NaOH. 4-PBA (10 mg/kg; 250 μL per injection) or saline (250 μL per injection) was injected intraperitoneally once per day for 3 days before the establishment of the OAB model. The apoptosis of retinal ganglion cells (RGCs) was assessed by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay, and the histological damage was examined by hematoxylin and eosin and immunofluorescence assay on retinal flat mounts. The key inflammatory response and the expression of ER stress-related markers in the retinal tissues were assessed by real-time PCR, western blotting and histologic analyses.

Results

4-PBA significantly alleviated the apoptosis of RGCs and prevented the structural damage of the retina, as determined by the evaluation of RGC density and retinal thickness. Inhibition of ER stress by 4-PBA decreased the expression of vital proinflammatory cytokines, tumor necrosis factor alpha, and interleukin-1 beta; and suppressed the activation of retinal microglial cells and nuclear factor-kappa B (NF-κB). 4-PBA reduced the expression of the ER stress molecules, glucose-regulated protein 78, activated transcription factor 6, inositol-requiring enzyme-1 (IRE1), X-box-binding protein 1 splicing, and CCAAT/enhancer-binding protein homologous protein, in the retinal tissues and RGCs of OAB mice.

Conclusions

The present study demonstrated that the inhibition of ER stress by 4-PBA alleviates the inflammatory response via the IRE1/NF-κB signaling pathway and protects the retina and RGCs from injury in an OAB mouse model. Such findings further suggest that 4-PBA might have potential therapeutic implications for OAB treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

RGCs:

Retinal ganglion cells

OAB:

Ocular alkali burn

4-PBA:

4-Phenylbutyric acid

ER stress:

Endoplasmic reticulum stress

References

  1. Hughes WF Jr. Alkali burns of the eye; review of the literature and summary of present knowledge. Arch Ophthal. 1946;35:423–49.

    Article  PubMed  Google Scholar 

  2. Paschalis EI, et al. The role of microglia and peripheral monocytes in retinal damage after corneal chemical injury. Am J Pathol. 2018;188(7):1580–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cade F, et al. Glaucoma in eyes with severe chemical burn, before and after keratoprosthesis. Cornea. 2011;30(12):1322–7.

    Article  PubMed  Google Scholar 

  4. Paschalis EI, et al. Mechanisms of retinal damage after ocular alkali burns. Am J Pathol. 2017;187(6):1327–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cade F, et al. Alkali burn to the eye: protection using TNF-alpha inhibition. Cornea. 2014;33(4):382–9.

    Article  PubMed  Google Scholar 

  6. Zhou C, et al. Sustained subconjunctival delivery of infliximab protects the cornea and retina following alkali burn to the eye. Invest Ophthalmol Vis Sci. 2017;58(1):96–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol. 2007;8(7):519–29.

    Article  CAS  PubMed  Google Scholar 

  8. Lee AS. The ER chaperone and signaling regulator GRP78/BiP as a monitor of endoplasmic reticulum stress. Methods. 2005;35(4):373–81.

    Article  CAS  PubMed  Google Scholar 

  9. Marciniak SJ, et al. CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes Dev. 2004;18(24):3066–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Han J, Kaufman RJ. Physiological/pathological ramifications of transcription factors in the unfolded protein response. Genes Dev. 2017;31(14):1417–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Awai M, et al. NMDA-induced retinal injury is mediated by an endoplasmic reticulum stress-related protein, CHOP/GADD153. J Neurochem. 2006;96(1):43–52.

    Article  CAS  PubMed  Google Scholar 

  12. Scimone C, et al. Expression of pro-angiogenic markers is enhanced by blue light in human RPE cells. Antioxidants (Basel). 2020;9(11):1154.

    Article  CAS  Google Scholar 

  13. Li R, et al. G-protein-coupled estrogen receptor protects retinal ganglion cells via inhibiting endoplasmic reticulum stress under hyperoxia. J Cell Physiol. 2021;236(5):3780–8.

    Article  CAS  PubMed  Google Scholar 

  14. Aoyama Y, et al. Involvement of endoplasmic reticulum stress in rotenone-induced leber hereditary optic neuropathy model and the discovery of new therapeutic agents. J Pharmacol Sci. 2021;147(2):200–7.

    Article  CAS  PubMed  Google Scholar 

  15. Hetzer SM, et al. Traumatic optic neuropathy is associated with visual impairment, neurodegeneration, and endoplasmic reticulum stress in adolescent mice. Cells. 2021;10(5):996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li J, et al. Endoplasmic reticulum stress is implicated in retinal inflammation and diabetic retinopathy. FEBS Lett. 2009;583(9):1521–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Huang H, et al. Neuroprotection by eIF2alpha-CHOP inhibition and XBP-1 activation in EAE/optic neuritiss. Cell Death Dis. 2017;8(7):e2936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zode GS, et al. Ocular-specific ER stress reduction rescues glaucoma in murine glucocorticoid-induced glaucoma. J Clin Invest. 2014;124(5):1956–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yang L, et al. Rescue of glaucomatous neurodegeneration by differentially modulating neuronal endoplasmic reticulum stress molecules. J Neurosci. 2016;36(21):5891–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Doh SH, et al. Retinal ganglion cell death induced by endoplasmic reticulum stress in a chronic glaucoma model. Brain Res. 2010;1308:158–66.

    Article  CAS  PubMed  Google Scholar 

  21. Shruthi K, Reddy SS, Reddy GB. Ubiquitin-proteasome system and ER stress in the retina of diabetic rats. Arch Biochem Biophys. 2017;627:10–20.

    Article  CAS  PubMed  Google Scholar 

  22. Jeng YY, et al. Retinal ischemic injury rescued by sodium 4-phenylbutyrate in a rat model. Exp Eye Res. 2007;84(3):486–92.

    Article  CAS  PubMed  Google Scholar 

  23. Kumar V, et al. Increased ER stress after experimental ischemic optic neuropathy and improved RGC and oligodendrocyte survival after treatment with chemical chaperon. Invest Ophthalmol Vis Sci. 2019;60(6):1953–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zode GS, et al. Topical ocular sodium 4-phenylbutyrate rescues glaucoma in a myocilin mouse model of primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 2012;53(3):1557–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zode GS, et al. Reduction of ER stress via a chemical chaperone prevents disease phenotypes in a mouse model of primary open angle glaucoma. J Clin Invest. 2011;121(9):3542–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang K, Kaufman RJ. From endoplasmic-reticulum stress to the inflammatory response. Nature. 2008;454(7203):455–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hu P, et al. Autocrine tumor necrosis factor alpha links endoplasmic reticulum stress to the membrane death receptor pathway through IRE1alpha-mediated NF-kappaB activation and down-regulation of TRAF2 expression. Mol Cell Biol. 2006;26(8):3071–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sun S, et al. Endosulfan induces endothelial inflammation and dysfunction via IRE1alpha/NF-kappaB signaling pathway. Environ Sci Pollut Res Int. 2020;27(21):26163–71.

    Article  CAS  PubMed  Google Scholar 

  29. Dohlman CH, et al. Chemical burns of the eye: the role of retinal injury and new therapeutic possibilities. Cornea. 2018;37(2):248–51.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Miyamoto F, et al. Retinal cytokine response in mouse alkali-burned eye. Ophthalmic Res. 1998;30(3):168–71.

    Article  CAS  PubMed  Google Scholar 

  31. Cheng Z, et al. Inhibition of Notch1 signaling alleviates endotoxin-induced inflammation through modulating retinal microglia polarization. Front Immunol. 2019;10:389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rojas B, et al. Microglia in mouse retina contralateral to experimental glaucoma exhibit multiple signs of activation in all retinal layers. J Neuroinflammation. 2014;11:133.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Walter L, Neumann H. Role of microglia in neuronal degeneration and regeneration. Semin Immunopathol. 2009;31(4):513–25.

    Article  PubMed  Google Scholar 

  34. Kyuhou S, Kato N, Gemba H. Emergence of endoplasmic reticulum stress and activated microglia in Purkinje cell degeneration mice. Neurosci Lett. 2006;396(2):91–6.

    Article  CAS  PubMed  Google Scholar 

  35. Cui R, et al. Methane-rich saline alleviates CA/CPR brain injury by inhibiting oxidative stress, microglial activation-induced inflammatory responses, and ER stress-mediated apoptosis. Oxid Med Cell Longev. 2020;2020:8829328.

    PubMed  PubMed Central  Google Scholar 

  36. Harvey LD, et al. Administration of DHA reduces endoplasmic reticulum stress-associated inflammation and alters microglial or macrophage activation in traumatic brain injury. ASN Neuro. 2015;7(6):1759091415618969. https://doi.org/10.1177/1759091415618969.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hu Y, et al. Differential effects of unfolded protein response pathways on axon injury-induced death of retinal ganglion cells. Neuron. 2012;73(3):445–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kaneko M, Niinuma Y, Nomura Y. Activation signal of nuclear factor-kappa B in response to endoplasmic reticulum stress is transduced via IRE1 and tumor necrosis factor receptor-associated factor 2. Biol Pharm Bull. 2003;26(7):931–5.

    Article  CAS  PubMed  Google Scholar 

  39. Sprenkle NT, et al. Endoplasmic reticulum stress and inflammation in the central nervous system. Mol Neurodegener. 2017;12(1):42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Lindquist SL, Kelly JW. Chemical and biological approaches for adapting proteostasis to ameliorate protein misfolding and aggregation diseases: progress and prognosis. Cold Spring Harb Perspect Biol. 2011;3(12):a004507.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Collins AF, et al. Oral sodium phenylbutyrate therapy in homozygous beta thalassemia: a clinical trial. Blood. 1995;85(1):43–9.

    Article  CAS  PubMed  Google Scholar 

  42. Maestri NE, et al. Long-term treatment of girls with ornithine transcarbamylase deficiency. N Engl J Med. 1996;335(12):855–9.

    Article  CAS  PubMed  Google Scholar 

  43. Dover GJ, Brusilow S, Charache S. Induction of fetal hemoglobin production in subjects with sickle cell anemia by oral sodium phenylbutyrate. Blood. 1994;84(1):339–43.

    Article  CAS  PubMed  Google Scholar 

  44. Zode GS, et al. Reduction of ER stress via a chemical chaperone prevents disease phenotypes in a mouse model of primary open angle glaucoma. J Clin Invest. 2015;125(8):3303.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Yoshikawa A, et al. Deletion of Atf6alpha impairs astroglial activation and enhances neuronal death following brain ischemia in mice. J Neurochem. 2015;132(3):342–53.

    Article  CAS  PubMed  Google Scholar 

  46. Dasgupta S, et al. Sodium phenylacetate inhibits adoptive transfer of experimental allergic encephalomyelitis in SJL/J mice at multiple steps. J Immunol. 2003;170(7):3874–82.

    Article  CAS  PubMed  Google Scholar 

  47. Wang Z, et al. Endoplasmic reticulum stress-induced neuronal inflammatory response and apoptosis likely plays a key role in the development of diabetic encephalopathy. Oncotarget. 2016;7(48):78455–72.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Guzman Mendoza NA, et al. Neuroprotective effect of 4-phenylbutyric acid against photo-stress in the retina. Antioxidants (Basel). 2021;10(7):1147.

    Article  CAS  Google Scholar 

  49. Li H, et al. 4-Phenylbutyric acid protects against ethanol-induced damage in the developing mouse brain. Alcohol Clin Exp Res. 2019;43(1):69–78.

    CAS  PubMed  Google Scholar 

  50. Salminen A, et al. ER stress in Alzheimer’s disease: a novel neuronal trigger for inflammation and Alzheimer’s pathology. J Neuroinflammation. 2009;6:41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Kim I, Xu W, Reed JC. Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nat Rev Drug Discov. 2008;7(12):1013–30.

    Article  CAS  PubMed  Google Scholar 

  52. Hasnain SZ, et al. The interplay between endoplasmic reticulum stress and inflammation. Immunol Cell Biol. 2012;90(3):260–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (81974135, 81900851) and the Fundamental Research Funds of the State Key Laboratory of Ophthalmology (30306020240020130, 3030902113030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofeng Lin.

Ethics declarations

Ethical approval

All experiments followed the US National Institutes of Health (NIH) Guide for the Care and Use of Laboratory Animals developed by the US National Academy of Sciences and were approved by the Administration Committee of Experimental Animals, Guangdong Province, China.

Additional information

Responsible Editor: John Di Battista.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2641 KB)

11_2022_1565_MOESM2_ESM.jpg

Supplementary file2 Effect of three different concentrations of 4-PBA on RGC apoptosis in the retinal tissues of OAB mice. A Representative retinal cryosection images stained with TUNEL (red fluorescence) and DAPI (blue) in the saline treatment group, 10 mg/kg/d 4-PBA treatment group, 40 mg/kg/d 4-PBA treatment group, and 80 mg/kg/d 4-PBA treatment group on day one after OAB. B Quantitative analysis of the TUNEL+ cells in the different groups in the central retina, mid-peripheral retina, and peripheral retina. Data are expressed as mean ± SEM (*P<0.05, **P<0.01, ***P<0.001). Scale bar = 20 μm. OAB, ocular alkali burn; 4-PBA, 4-phenylbutyric acid; GCL, ganglion cell layer; INL, inner nuclear layer; ONL, outer nuclear layer (JPG 11530 KB)

11_2022_1565_MOESM3_ESM.jpg

Supplementary file3 The mRNA transcription and protein levels of the ER stress markers and inflammatory factors within 24 hours after OAB. The expression levels of the ER stress-related molecules, GRP78 (A) and CHOP (B), and inflammatory cytokines, TNF-α (C) and IL-1β (D), in the OAB retinal tissues at 6, 12, and 24 hours after OAB were analyzed by RT-PCR. Representative gel images and quantification graphs for GRP78 (E) and CHOP (F). The optical density of each band was normalized by the relative β-tubulin level. Data are expressed as mean ± SEM (*P < 0.05, **P < 0.01). Ctrl, control; OAB, ocular alkali burn (JPG 3199 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Yuan, M., Duan, F. et al. Inhibition of endoplasmic reticulum stress by 4-phenylbutyrate alleviates retinal inflammation and the apoptosis of retinal ganglion cells after ocular alkali burn in mice. Inflamm. Res. 71, 577–590 (2022). https://doi.org/10.1007/s00011-022-01565-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-022-01565-3

Keywords

Navigation