Skip to main content
Log in

Oxygen consumption and ammonia-N excretion ofMeretrix meretrix in different temperature and salinity

  • Biology
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Effects of temperatures and salinities on oxygen consumption and ammonia-N excretion rate of clamMeretrix meretrix were studied in laboratory from Oct. 2003 to Jan. 2004. Two schemes were designed in incremented temperature at 10, 15, 20, 25°C at 31.5 salinity and in incremented salinity at 16.0, 21.0, 26.0, 31.5, 36.0, and 41.0 at 20°C, all for 8–10 days. From 10 to 25°C, both respiration and excretion rate were increased. One-way ANOVA analysis demonstrated significant difference (P<0.01) in physiological parameters in this temperature range except between 15 and 20°C. The highestQ 10 thermal coefficient value (12.27) was acquired between 10 and 15°C, and about 1 between 15 and 20°C, indicatingM. meretrix could well acclimate to temperature changes in this range. Salinity also had significant effects on respiration and excretion rate (P<0.05). The highest values of respiration and excretion rate ofM. meretrix were recorded at 16.0 salinity (20°C). These two physiological parameters decreased as salinity increased until reached the minimumQ 10 value at 31.5 (20°C), then again, these parameters increased with increasing salinity from 31.5 to 41.0.M. meretrix can catabolize body protein to cope with osmotic pressure stress when environmental salinity is away from its optimal range. No significant difference was observed between 26.0 and 36.0 in salinity (P>0.05), suggesting that a best metabolic salinity range for this species is between 26.0 and 36.0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bayne, B. L. and R. C. Newell, 1983. Physiological energetics of marine mollusks.The Mollusca 4(1): 407–515.

    Google Scholar 

  • Beiras, R., P. Camacho and M. Albentosa, 1995. Short-term and long-term alterations in the energy budget of young oysterOstrea edulis L. in response to temperature change.J. Exp. Mar. Biol. Ecol. 186: 221–236.

    Article  Google Scholar 

  • Carfoot, T. H., 1987. Animal Energetics. Academic Press, New York, p. 89–172.

    Google Scholar 

  • Davenport, J., 1979. IsMytilus edulis a short term osmo-regulator.Comp. Biochem. Physiol. 64A: 91–95.

    Article  Google Scholar 

  • Diehl, W. J., 1986. Osmoregulation in echinoderms.Comp. Biochem. Physiol. 84A: 199–205.

    Article  Google Scholar 

  • Farmer, L. and M. R. Reeve, 1978. Role of the amino acid pool of the copepodAcartia tonsa in adjustment to salinity change.Mar. Biol. 48: 311–316.

    Article  Google Scholar 

  • Feng, S. Z. and F. Q. Wang, 1999. Introduction to Marine Science, Science Press, Beijing.

    Google Scholar 

  • Gaudy, R., G. Cervetto and M. Pagano, 2000. Comparison of the metabolism ofAcartia clausi andA. tonsa: influence of temperature and salinity.J. Exp. Mar. Biol. Ecol. 247: 51–65.

    Article  Google Scholar 

  • Glover, T. and K. Mitchell, 2001. An Introduction to Biostatistics (reprinted). McGraw-Hill Book Company. New York.

    Google Scholar 

  • Good, D. W., M. A. Knepper and M. B. Burg, 1984. Ammonia and bicarbonate transport by thick ascending limb of rat kidney.Am. J. Physiol. 247: F35-F44.

    Google Scholar 

  • Hutchinson, S. and L. E. Hawkins, 1992. Quantification of the physiological responses of the European flat oysterostrea edulis L. to temperature and salinity.J. Moll. Stud. 58: 215–226.

    Article  Google Scholar 

  • Kinne, O., 1964. Salinity and temperature combinations. Oceanogr.Mar. Biol. Annu. Rev. 2: 281–339.

    Google Scholar 

  • Navarro, J. M. and C. M. Gonzalez, 1998. Physiological response of the Chilean scallopArgopecten purpuratus to decreasing salinities.Aquaculture 167: 315–327.

    Article  Google Scholar 

  • Navarro, J. M., 1988. The effects of salinity on the physiological ecology ofChoromytilus chorus (Molian, 1782).J. Exp. Mar. Biol. Ecol. 122: 19–33.

    Article  Google Scholar 

  • Newell, R. C. and G. M. Branch, 1980. The influence of temperature on the maintenance of metabolic energy balance in marine invertebrates.Adv. Mar. Biol. 17: 329–396.

    Article  Google Scholar 

  • Newell, R. C., L. G. Johnson and L. H. Kofoed, 1977. Adjustment of the components of energy balance in response to temperature change inOstrea edulis.Oecologia 30: 97–110.

    Article  Google Scholar 

  • Petro, E. S., O. Lucīa and M. Mario, 2004. Effect of temperatrue on oxygen consumption and ammonia excretion in the Calafia mother-of-pearl oyster,Pinctada mazatlanica (Hanley, 1856).Aquaculture 229: 377–387.

    Article  Google Scholar 

  • Shumway, S. E., 1982. Oxygen consumption in oysters: an overview.Mar. Biol. Lett. 3: 1–23.

    Google Scholar 

  • Silvia, G. J., U. R. Abel Antonio, V. O. Francisco et al., 2004. Ammonia efflux rates and free amino acid levels inLitopenaeus vannamei postlarvae during sudden salinity changes.Aquaculture 233: 573–581.

    Article  Google Scholar 

  • Solorzano, L., 1969. Determination of ammonia in natural waters by the phenolhypochlorite method.Limnol. Oceanogr. 14: 799–801.

    Article  Google Scholar 

  • Stickland, J. D. H. and T. R. Parsons, 1968. A practical handbook of seawater analysis.Fish. Res. Board Can. Bull. 167: 1–11.

    Google Scholar 

  • Stickle, W. B. and B. L. Bayne, 1982. Effects of temperature and salinity on oxygen consumption and nitrogen excretion inThais (Nucella) lapillus (L.).J. Exp. Mar. Biol. Ecol. 58: 1–17.

    Article  Google Scholar 

  • Stickle, W. B. and T. D. Sabourin, 1979. Effects of salinity on the respiration and heart rate of the common mussel,Mytilus edulis L., and the black chiton,Katherina tunicata (Wood).J. Exp. Mar. Biol. Ecol. 41: 257–268.

    Article  Google Scholar 

  • Tiffany, D. T. and M. L. John, 2002. The effect of salinity on respiration, excretion, regeneration and production inOphiophragmus filograneus.J. Exp. Mar. Biol. Ecol. 275: 1–14.

    Article  Google Scholar 

  • Towle, K. W. and T. Holleland, 1987. Ammonium ion substitute for K+ in ATP-dependent Na+ transport by basolateral membrane vesicles.Am. J. Physiol. 252: R479-R489.

    Google Scholar 

  • Vernberg, W. B. and F. J. Vernberg, 1972. Environmental Physiological of Marine Animals. Springer, New York.

    Google Scholar 

  • Wang, J., Z. H. Jiang and Q. S. Tang, 2002. Oxygen consumption and ammonia-N excretion rates ofChlamys farreri.Chin. J. Appl. Ecol. 13(9): 1 157–1 160. (in Chinese with English abstract)

    Google Scholar 

  • Widdows, J. and B. L. Bayne, 1971. Temperature acclimation ofMytilus edulis with reference to its energy budget.J. Mar. Biol. Assoc. UK 51: 109–124.

    Google Scholar 

  • Widdows, J., 1973a. Effect of temperature and food on the heart beat, ventilation rate and oxygen uptake ofMytilus edulis.Mar. Biol. 20: 276–296.

    Article  Google Scholar 

  • Widdows, J., 1973b. The effects of temperature on the metabolism and activity ofMytilus edulis.Neth. J. Sea. Res. 7: 387–398.

    Article  Google Scholar 

  • Wouter, Z. and D. Z. Albertus, 1981. The role of amino acids in anaerobiosis and osmoregulation in bivalves.J. Exp. Zool. 215: 315–325.

    Article  Google Scholar 

  • Wright, P. A., 1995. Nitrogen excretion: three end products, many physiological roles.J. Exp. Biol. 198: 273–281.

    Google Scholar 

  • Yancy, P. H., M. C. Clark, S. C. Hand et al., 1982. Living with water stress: evolution of osmolyte systems.Science 217: 1 214–1 222.

    Google Scholar 

  • Yang, H. S., P. Wang, T. Zhang et al., 1998. Effects of temperature on respiration and excretion ofArgopecten irradians concentricus.Acta. Oceanol. Sin. 20(2): 91–95. (in Chinese with English abstract)

    Google Scholar 

  • Yukihira, H., J. S. Lucas and D. W. Klumpp, 2000. Comparative effects of temperature on suspension feeding and energy budgets of the pearl oystersPinctada margaritifera andP. maxima.Mar. Ecol. Prog. Ser. 195: 179–188.

    Article  Google Scholar 

  • Zurburg, W. and A. Dezwaan, 1981. The role of amino acids in anaerobiosis and osmoregulation in bivalves.J. Exp. Zool. 215: 315–325.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu Baozhong.

Additional information

This work is supported by National High-Tech R & D Program of China. (863 Program) (2002AA603014).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baojun, T., Baozhong, L., Hongsheng, Y. et al. Oxygen consumption and ammonia-N excretion ofMeretrix meretrix in different temperature and salinity. Chin. J. Ocean. Limnol. 23, 469–474 (2005). https://doi.org/10.1007/BF02842693

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02842693

Key words

Navigation