Skip to main content
Log in

Current and Potential Roles of Ferroptosis in Bladder Cancer

  • Review Article
  • Published:
Current Medical Science Aims and scope Submit manuscript

Abstract

Ferroptosis, a type of regulated cell death driven by iron-dependent lipid peroxidation, is mainly initiated by extramitochondrial lipid peroxidation due to the accumulation of iron-dependent reactive oxygen species. Ferroptosis is a prevalent and primitive form of cell death. Numerous cellular metabolic processes regulate ferroptosis, including redox homeostasis, iron regulation, mitochondrial activity, amino acid metabolism, lipid metabolism, and various disease-related signaling pathways. Ferroptosis plays a pivotal role in cancer therapy, particularly in the eradication of aggressive malignancies resistant to conventional treatments. Multiple studies have explored the connection between ferroptosis and bladder cancer, focusing on its incidence and treatment outcomes. Several biomolecules and tumor-associated signaling pathways, such as p53, heat shock protein 1, nuclear receptor coactivator 4, RAS-RAF-MEK, phosphatidylinositol 3-kinase-AKT-mammalian target of rapamycin, and the Hippo-tafazzin signaling system, exert a moderating influence on ferroptosis in bladder cancer. Ferroptosis inducers, including erastin, artemisinin, conjugated polymer nanoparticles, and quinazolinyl-arylurea derivatives, hold promise for enhancing the effectiveness of conventional anticancer medications in bladder cancer treatment. Combining conventional therapeutic drugs and treatment methods related to ferroptosis offers a promising approach for the treatment of bladder cancer. In this review, we analyze the research on ferroptosis to augment the efficacy of bladder cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Richters A, Aben K, Kiemeney L. The global burden of urinary bladder cancer: an update. World J Urol, 2020,38(8):1895–1904

    Article  PubMed  Google Scholar 

  2. Xia QD, Sun JX, Liu CQ, et al. Ferroptosis Patterns and Tumor Microenvironment Infiltration Characterization in Bladder Cancer. Front Cell Dev Biol, 2022,10:832892

    Article  PubMed  PubMed Central  Google Scholar 

  3. Siegel RL, Miller KD, Wagle NS, et al. Cancer statistics, 2023. CA Cancer J Clin, 2023,73(1):17–48

    Article  PubMed  Google Scholar 

  4. Sylvester RJ, Rodríguez O, Hernández V, et al. European Association of Urology (EAU) Prognostic Factor Risk Groups for Non-muscle-invasive Bladder Cancer (NMIBC) Incorporating the WHO 2004/2016 and WHO 1973 Classification Systems for Grade: An Update from the EAU NMIBC Guidelines Panel. Eur Urol, 2021,79(4):480–488

    Article  PubMed  Google Scholar 

  5. Lenis AT, Lec PM, Chamie K, et al. Bladder Cancer: A Review. JAMA, 2020,324(19):1980–1991

    Article  CAS  PubMed  Google Scholar 

  6. Witjes JA, Bruins HM, Cathomas R, et al. European Association of Urology Guidelines on Muscle-invasive and Metastatic Bladder Cancer: Summary of the 2020 Guidelines. Eur Urol, 2021,79(1):82–104

    Article  CAS  PubMed  Google Scholar 

  7. Hanna N, Trinh QD, Seisen T, et al. Effectiveness of Neoadjuvant Chemotherapy for Muscle-invasive Bladder Cancer in the Current Real World Setting in the USA. Eur Urol Oncol, 2018,1(1):83–90

    Article  PubMed  Google Scholar 

  8. Xia L, Oyang L, Lin J, et al. The cancer metabolic reprogramming and immune response. Mol Cancer, 2021,20(1):28

    Article  PubMed  PubMed Central  Google Scholar 

  9. Faubert B, Solmonson A, DeBerardinis RJ. Metabolic reprogramming and cancer progression. Science, 2020,368(6487):eaaw5473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shen L, Zhang J, Zheng Z, et al. PHGDH Inhibits Ferroptosis and Promotes Malignant Progression by Upregulating SLC7A11 in Bladder Cancer. Int J Biol Sci, 2022,18(14):5459–5474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mou Y, Wang J, Wu J, et al. Ferroptosis, a new form of cell death: opportunities and challenges in cancer. J Hematol Oncol, 2019,12(1):34

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zaffaroni N, Beretta GL. Ferroptosis Inducers for Prostate Cancer Therapy. Curr Med Chem, 2022,29(24):4185–4201

    Article  CAS  PubMed  Google Scholar 

  13. Tang D, Chen X, Kang R, et al. Ferroptosis: molecular mechanisms and health implications. Cell Res, 2021,31(2):107–125

    Article  CAS  PubMed  Google Scholar 

  14. Dolma S, Lessnick SL, Hahn WC, et al. Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell, 2003,3(3):285–296

    Article  CAS  PubMed  Google Scholar 

  15. Yagoda N, von Rechenberg M, Zaganjor E, et al. RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature, 2007,447(7146):864–868

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  16. Yang WS, Stockwell BR. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem Biol, 2008,15(3):234–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhao S, Li P, Wu W, et al. Roles of ferroptosis in urologic malignancies. Cancer Cell Int, 2021,21(1):676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Doll S, Conrad M. Iron and ferroptosis: A still ill-defined liaison. IUBMB Life, 2017,69(6):423–434

    Article  CAS  PubMed  Google Scholar 

  19. Chen Y, Fan Z, Hu S, et al. Ferroptosis: A New Strategy for Cancer Therapy. Front Oncol, 2022,12:830561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bai T, Lei P, Zhou H, et al. Sigma-1 receptor protects against ferroptosis in hepatocellular carcinoma cells. J Cell Mol Med, 2019,23(11):7349–7359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Linkermann A, Skouta R, Himmerkus N, et al. Synchronized renal tubular cell death involves ferroptosis. Proc Natl Acad Sci USA, 2014,111(47):16836–16841

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gammella E, Recalcati S, Rybinska I, et al. Iron-induced damage in cardiomyopathy: oxidative-dependent and independent mechanisms. Oxid Med Cell Longev, 2015,2015:230182

    Article  PubMed  PubMed Central  Google Scholar 

  23. Liang C, Zhang X, Yang M, et al. Recent Progress in Ferroptosis Inducers for Cancer Therapy. Adv Mater, 2019,31(51):e1904197

    Article  PubMed  Google Scholar 

  24. Kindrat I, Tryndyak V, de Conti A, et al. MicroRNA-152-mediated dysregulation of hepatic transferrin receptor 1 in liver carcinogenesis. Oncotarget, 2016,7(2):1276–1287

    Article  PubMed  Google Scholar 

  25. Stockwell BR, Friedmann Angeli JP, Bayir H, et al. Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease. Cell, 2017,171(2):273–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yan HF, Zou T, Tuo QZ, et al. Ferroptosis: mechanisms and links with diseases. Signal Transduct Target Ther, 2021,6(1):49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sun X, Ou Z, Xie M, et al. HSPB1 as a novel regulator of ferroptotic cancer cell death. Oncogene, 2015,34(45):5617–5625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hassannia B, Vandenabeele P, Vanden Berghe T. Targeting Ferroptosis to Iron Out Cancer. Cancer Cell, 2019,35(6):830–849

    Article  CAS  PubMed  Google Scholar 

  29. Wang H, Lin D, Yu Q, et al. A Promising Future of Ferroptosis in Tumor Therapy. Front Cell Dev Biol, 2021,9:629150

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zhang JJ, Du J, Kong N, et al. Mechanisms and pharmacological applications of ferroptosis: a narrative review. Ann Transl Med, 2021,9(19):1503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. D’Herde K, Krysko DV. Ferroptosis: Oxidized PEs trigger death. Nat Chem Biol, 2017,13(1):4–5

    Article  PubMed  Google Scholar 

  32. Gaschler MM, Stockwell BR. Lipid peroxidation in cell death. Biochem Biophys Res Commun, 2017,482(3):419–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Feng H, Stockwell BR. Unsolved mysteries: How does lipid peroxidation cause ferroptosis. PLoS Biol, 2018,16(5):e2006203

    Article  PubMed  PubMed Central  Google Scholar 

  34. Takashi Y, Tomita K, Kuwahara Y, et al. Mitochondrial dysfunction promotes aquaporin expression that controls hydrogen peroxide permeability and ferroptosis. Free Radic Biol Med, 2020,161:60–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kuhn H, Humeniuk L, Kozlov N, et al. The evolutionary hypothesis of reaction specificity of mammalian ALOX15 orthologs. Prog Lipid Res, 2018,72:55–74

    Article  CAS  PubMed  Google Scholar 

  36. Dar HH, Tyurina YY, Mikulska-Ruminska K, et al. Pseudomonas aeruginosa utilizes host polyunsaturated phosphatidylethanolamines to trigger theft-ferroptosis in bronchial epithelium. J Clin Invest, 2018,128(10):4639–4653

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zeng F, Lan Y, Wang N, et al. Ferroptosis: A new therapeutic target for bladder cancer. Front Pharmacol, 2022,13:1043283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yang WS, Kim KJ, Gaschler MM, et al. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc Natl Acad Sci USA, 2016,113(34):E4966–E4975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ou Y, Wang SJ, Li D, et al. Activation of SAT1 engages polyamine metabolism with p53-mediated ferroptotic responses. Proc Natl Acad Sci USA, 2016,113(44):E6806–E6812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chen X, Kang R, Kroemer G, et al. Broadening horizons: the role of ferroptosis in cancer. Nat Rev Clin Oncol, 2021,18(5):280–296

    Article  CAS  PubMed  Google Scholar 

  41. Angeli J, Shah R, Pratt DA, et al. Ferroptosis Inhibition: Mechanisms and Opportunities. Trends Pharmacol Sci, 2017,38(5):489–498

    Article  CAS  PubMed  Google Scholar 

  42. Jennis M, Kung CP, Basu S, et al. An African-specific polymorphism in the TP53 gene impairs p53 tumor suppressor function in a mouse model. Genes Dev, 2016,30(8):918–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang Y, Ma Y, Jiang K. The role of ferroptosis in prostate cancer: a novel therapeutic strategy. Prostate Cancer Prostatic Dis, 2023,26(1):25–29

    Article  CAS  PubMed  Google Scholar 

  44. Song X, Zhu S, Chen P, et al. AMPK-Mediated BECN1 Phosphorylation Promotes Ferroptosis by Directly Blocking System Xc- Activity. Curr Biol, 2018,28(15):2388–2399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cao JY, Poddar A, Magtanong L, et al. A Genome-wide Haploid Genetic Screen Identifies Regulators of Glutathione Abundance and Ferroptosis Sensitivity. Cell Rep, 2019,26(6):1544–1556.e8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Xie Y, Zhu S, Song X, et al. The Tumor Suppressor p53 Limits Ferroptosis by Blocking DPP4 Activity. Cell Rep, 2017,20(7):1692–1704

    Article  CAS  PubMed  Google Scholar 

  47. Zhang Y, Shi J, Liu X, et al. BAP1 links metabolic regulation of ferroptosis to tumour suppression. Nat Cell Biol, 2018,20(10):1181–1192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Martin-Sanchez D, Fontecha-Barriuso M, Sanchez-Nino MD, et al. Cell death-based approaches in treatment of the urinary tract-associated diseases: a fight for survival in the killing fields. Cell Death Dis, 2018,9(2):118

    Article  PubMed  PubMed Central  Google Scholar 

  49. Mazdak H, Yazdekhasti F, Movahedian A, et al. The comparative study of serum iron, copper, and zinc levels between bladder cancer patients and a control group. Int Urol Nephrol, 2010,42(1):89–93

    Article  CAS  PubMed  Google Scholar 

  50. Guo P, Wang L, Shang W, et al. Intravesical In Situ Immunostimulatory Gel for Triple Therapy of Bladder Cancer. ACS Appl Mater Interfaces, 2020,12(49):54367–54377

    Article  CAS  PubMed  Google Scholar 

  51. Qi A, Wang C, Ni S, et al. Intravesical Mucoadhesive Hydrogel Induces Chemoresistant Bladder Cancer Ferroptosis through Delivering Iron Oxide Nanoparticles in a Three-Tier Strategy. ACS Appl Mater Interfaces, 2021,13(44):52374–52384

    Article  CAS  PubMed  Google Scholar 

  52. Jasim KA, Gesquiere AJ. Ultrastable and Bio-functionalizable Conjugated Polymer Nanoparticles with Encapsulated Iron for Ferroptosis Assisted Chemodynamic Therapy. Mol Pharm, 2019,16(12):4852–4866

    Article  CAS  PubMed  Google Scholar 

  53. Kong N, Chen X, Feng J, et al. Baicalin induces ferroptosis in bladder cancer cells by downregulating FTH1. Acta Pharm Sin B, 2021,11(12):4045–4054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hao X, Fan H, Yang J, et al. Network Pharmacology Research and Dual-omic Analyses Reveal the Molecular Mechanism of Natural Product Nodosin Inhibiting Muscle-Invasive Bladder Cancer in Vitro and in Vivo. J Nat Prod, 2022,85(8):2006–2017

    Article  CAS  PubMed  Google Scholar 

  55. Goldstein JT, Berger AC, Shih J, et al. Genomic Activation of PPARG Reveals a Candidate Therapeutic Axis in Bladder Cancer. Cancer Res, 2017,77(24):6987–6998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cao R, Wang G, Qian K, et al. TM4SF1 regulates apoptosis, cell cycle and ROS metabolism via the PPARγ-SIRTl feedback loop in human bladder cancer cells. Cancer Lett, 2018,414:278–293

    Article  CAS  PubMed  Google Scholar 

  57. Rochel N, Krucker C, Coutos-Thévenot L, et al. Recurrent activating mutations of PPARγ associated with luminal bladder tumors. Nat Commun, 2019,10(1):253

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  58. Galbraith L, Mui E, Nixon C, et al. PPAR-gamma induced AKT3 expression increases levels of mitochondrial biogenesis driving prostate cancer. Oncogene, 2021,40(13):2355–2366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Liu S, Shi J, Wang L, et al. Loss of EMP1 promotes the metastasis of human bladder cancer cells by promoting migration and conferring resistance to ferroptosis through activation of PPAR gamma signaling. Free Radic Biol Med, 2022,189:42–57

    Article  PubMed  Google Scholar 

  60. Hao J, Zhang W, Huang Z. Bupivacaine modulates the apoptosis and ferroptosis in bladder cancer via phosphatidylinositol 3-kinase (PI3K)/AKT pathway. Bioengineered, 2022,13(3):6794–6806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Xiang Y, Chen X, Wang W, et al. Natural Product Erianin Inhibits Bladder Cancer Cell Growth by Inducing Ferroptosis via NRF2 Inactivation. Front Pharmacol, 2021,12:775506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Luo W, Wang J, Xu W, et al. LncRNA RP11-89 facilitates tumorigenesis and ferroptosis resistance through PROM2-activated iron export by sponging miR-129-5p in bladder cancer. Cell Death Dis, 2021,12(11):1043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Liu T, Jiang L, Tavana O, et al. The Deubiquitylase OTUB1 Mediates Ferroptosis via Stabilization of SLC7A11. Cancer Res, 2019,79(8):1913–1924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Shimada K, Skouta R, Kaplan A, et al. Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis. Nat Chem Biol, 2016,12(7):497–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Locasale JW. Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat Rev Cancer, 2013,13(8):572–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Saxton RA, Sabatini DM. mTOR Signaling in Growth, Metabolism, and Disease. Cell, 2017,168(6):960–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Liu ST, Hui G, Mathis C, et al. The Current Status and Future Role of the Phosphoinositide 3 Kinase/AKT Signaling Pathway in Urothelial Cancer: An Old Pathway in the New Immunotherapy Era. Clin Genitourin Cancer, 2018,16(2):e269–e276

    Article  PubMed  Google Scholar 

  68. Sun Y, Berleth N, Wu W, et al. Fin56-induced ferroptosis is supported by autophagy-mediated GPX4 degradation and functions synergistically with mTOR inhibition to kill bladder cancer cells. Cell Death Dis, 2021,12(11):1028

    Article  PubMed  PubMed Central  Google Scholar 

  69. Chen JN, Li T, Cheng L, et al. Synthesis and in vitro anti-bladder cancer activity evaluation of quinazolinyl-arylurea derivatives. Eur J Med Chem, 2020,205:112661

    Article  ADS  CAS  PubMed  Google Scholar 

  70. Nie Z, Chen M, Gao Y, et al. Regulated Cell Death in Urinary Malignancies. Front Cell Dev Biol, 2021,9:789004

    Article  PubMed  PubMed Central  Google Scholar 

  71. Zhao Y, Ren P, Yang Z, et al. Inhibition of SND1 overcomes chemoresistance in bladder cancer cells by promoting ferroptosis. Oncol Rep, 2023,49(1):16

    Article  CAS  PubMed  Google Scholar 

  72. Chen JJ, Galluzzi L. Fighting Resilient Cancers with Iron. Trends Cell Biol, 2018,28(2):77–78

    Article  CAS  PubMed  Google Scholar 

  73. Zhao F, Vakhrusheva O, Markowitsch SD, et al. Artesunate Impairs Growth in Cisplatin-Resistant Bladder Cancer Cells by Cell Cycle Arrest, Apoptosis and Autophagy Induction. Cells, 2020,9(12):2643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Guo J, Xu B, Han Q, et al. Ferroptosis: A Novel Anti-tumor Action for Cisplatin. Cancer Res Treat, 2018,50(2):445–460

    Article  CAS  PubMed  Google Scholar 

  75. Wang Y, Zhang S, Bai Y, et al. Development and Validation of Ferroptosis-Related LncRNA Biomarker in Bladder Carcinoma. Front Cell Dev Biol, 2022,10:809747

    Article  PubMed  PubMed Central  Google Scholar 

  76. Xiao K, Zhang N, Li F, et al. Pro-oxidant response and accelerated ferroptosis caused by synergetic Au(I) release in hypercarbon-centered gold(I) cluster prodrugs. Nat Commun, 2022,13(1):4669

    Article  ADS  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  77. Yu H, Guo P, Xie X, et al. Ferroptosis, a new form of cell death, and its relationships with tumourous diseases. J Cell Mol Med, 2017,21(4):648–657

    Article  CAS  PubMed  Google Scholar 

  78. Flaig TW, Spiess PE, Agarwal N, et al. Bladder Cancer, Version 3.2020, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw, 2020,18(3):329–354

    Article  PubMed  Google Scholar 

  79. Doroud D, Hozouri H. Role of Intravesical BCG as a Therapeutic Vaccine for Treatment of Bladder Carcinoma. Iran Biomed J, 2022,26(5):340–349

    Article  PubMed  PubMed Central  Google Scholar 

  80. Ma C, Wu X, Zhang X, et al. Heme oxygenase-1 modulates ferroptosis by fine-tuning levels of intracellular iron and reactive oxygen species of macrophages in response to Bacillus Calmette-Guerin infection. Front Cell Infect Microbiol, 2022,12:1004148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Du Y, Miao W, Jiang X, et al. The Epithelial to Mesenchymal Transition Related Gene Calumenin Is an Adverse Prognostic Factor of Bladder Cancer Correlated With Tumor Microenvironment Remodeling, Gene Mutation, and Ferroptosis. Front Oncol, 2021,11:683951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Cheng X, Wang Y, Li Y, et al. Quantification of ferroptosis pattern in bladder carcinoma and its significance on immunotherapy. Sci Rep, 2022,12(1):9066

    Article  ADS  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  83. Cao R, Yuan L, Ma B, et al. Tumour microenvironment (TME) characterization identified prognosis and immunotherapy response in muscle-invasive bladder cancer (MIBC). Cancer Immunol Immunother, 2021,70(1):1–18

    Article  CAS  PubMed  Google Scholar 

  84. Wan C, Sun Y, Tian Y, et al. Irradiated tumor cell-derived microparticles mediate tumor eradication via cell killing and immune reprogramming. Sci Adv, 2020,6(13):eaay9789

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lang X, Green MD, Wang W, et al. Radiotherapy and Immunotherapy Promote Tumoral Lipid Oxidation and Ferroptosis via Synergistic Repression of SLC7A11. Cancer Discov, 2019,9(12):1673–1685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lei G, Zhang Y, Koppula P, et al. The role of ferroptosis in ionizing radiation-induced cell death and tumor suppression. Cell Res, 2020,30(2):146–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wang W, Green M, Choi JE, et al. CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy. Nature, 2019,569(7755):270–274

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  88. Garg AD, Agostinis P. Cell death and immunity in cancer: From danger signals to mimicry of pathogen defense responses. Immunol Rev, 2017,280(1):126–148

    Article  CAS  PubMed  Google Scholar 

  89. Kim SE, Zhang L, Ma K, et al. Ultrasmall nanoparticles induce ferroptosis in nutrient-deprived cancer cells and suppress tumour growth. Nat Nanotechnol, 2016,11(11):977–985

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  90. Taber A, Christensen E, Lamy P, et al. Molecular correlates of cisplatin-based chemotherapy response in muscle invasive bladder cancer by integrated multi-omics analysis. Nat Commun, 2020,11(1):4858

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  91. Mirzaei S, Paskeh M, Hashemi F, et al. Long non-coding RNAs as new players in bladder cancer: Lessons from pre-clinical and clinical studies. Life Sci, 2022,288:119948

    Article  CAS  PubMed  Google Scholar 

  92. Wang M, Mao C, Ouyang L, et al. Long noncoding RNA LINC00336 inhibits ferroptosis in lung cancer by functioning as a competing endogenous RNA. Cell Death Differ, 2019,26(11):2329–2343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Luo WJ, Tian X, Xu WH, et al. Construction of an immune-related LncRNA signature with prognostic significance for bladder cancer. J Cell Mol Med, 2021,25(9):4326–4339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Wang L, Wu S, He H, et al. CircRNA-ST6GALNAC6 increases the sensitivity of bladder cancer cells to erastin-induced ferroptosis by regulating the HSPB1/P38 axis. Lab Invest, 2022,102(12):1323–1334

    Article  CAS  PubMed  Google Scholar 

  95. Skouta R, Dixon SJ, Wang J, et al. Ferrostatins inhibit oxidative lipid damage and cell death in diverse disease models. J Am Chem Soc, 2014,136(12):4551–4556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Yan Y, Cai J, Huang Z, et al. A Novel Ferroptosis-Related Prognostic Signature Reveals Macrophage Infiltration and EMT Status in Bladder Cancer. Front Cell Dev Biol, 2021,9:712230

    Article  PubMed  PubMed Central  Google Scholar 

  97. Yi K, Liu J, Rong Y, et al. Biological Functions and Prognostic Value of Ferroptosis-Related Genes in Bladder Cancer. Front Mol Biosci, 2021,8:631152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Jiang P, Ning J, Yu W, et al. FLRT2 suppresses bladder cancer progression through inducing ferroptosis. J Cell Mol Med, 2023. doi:https://doi.org/10.1111/jcmm.17855

  99. Hu CY, Wu HT, Shan YS, et al. Evodiamine Exhibits Anti-Bladder Cancer Activity by Suppression of Glutathione Peroxidase 4 and Induction of Ferroptosis. Int J Mol Sci, 2023,24(7):6021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Xu Y, Tong Y, Lei Z, et al. Abietic acid induces ferroptosis via the activation of the HO-1 pathway in bladder cancer cells. Biomed Pharmacother, 2023,158:114154

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wan-hai Xu or Yan Cui.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

This study was supported by the Postdoctoral Scientific Research Developmental Fund of Heilongjiang (No. LBH-Q21130) and the Beijing Medical Award Foundation (No. YXJL-2020-1207-0811).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, Wx., Gupta, R., Zhai, K. et al. Current and Potential Roles of Ferroptosis in Bladder Cancer. CURR MED SCI 44, 51–63 (2024). https://doi.org/10.1007/s11596-023-2814-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-023-2814-6

Key words

Navigation