Skip to main content
Log in

Anx7 Is Required for Nutritional Control of Gene Expression in Mouse Pancreatic Islets of Langerhans

  • Original Articles
  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

Background

Gene expression in islets of Langerhans is profoundly sensitive to glucose and other nutrients. Islets of Langerhans in the Anx7(+/−) knockout mouse exhibit a profound reduction in ITPR3 protein expression, defective intracellular calcium signaling, and defective insulin secretion. Additional data presented here also show that mRNA for ITPR3 is virtually undetectable in isolated Anx7(+/−) islets. IP3Receptor type 3 (ITPR3) expression in islets of Langerhans is closely regulated by secretory stimuli, and it has been suggested that the level of the ITPR3 expression controls the ability of the islets to respond to nutritional signals. We report that although control islets respond to glucose in vitro by a transient increment in ITPR3 mRNA, the islets from the Anx7(+/−) mouse remain low. We therefore hypothesized that the Anx7/IP3 Receptor(3)/Ca2+ signaling pathway plays a role in β cell responses to glucose, and that in the absence of the Anx7/ITPR3 signaling system, the islets would be unable to discriminate between fed or fasted states in vivo.

Materials and Methods

To test this hypothesis, we subjected Anx7(+/−) and control mice to either food and water ad libidum or to an overnight fast with access to water only. We then isolated the respective islets and compared nutrient-dependent changes in global gene expression under the four conditions using genome-based microarray technology.

Results

Anx7 protein expression in these islets is only about 50% of control levels in normal littermate controls, and IPTR3 message and protein are virtually zero. cDNA microarray analyses show that in control animals gene expression is significantly affected by the fasting state. Many of the affected genes have historical relevance to development and differentiation of islets. These include preproglucagon, APOJ, cadherin2, phosphoglucoisomerase, oncostatin M, PAX6, HGF, and cytokeratin 18. However, there are also many other nutritionally sensitive genes in control islets that are principally associated with cell division and DNA repair. The latter genes have not specifically been associated with islet physiology in the past. By contrast, Anx7(+/−) mouse islets exhibit a greatly reduced ability to discriminate genomically between fed and fasted states for all classes of identified genes. Many of the validated genes are specific to islets in comparison to liver tissue examined. Real-time quantitative RT-PCR analysis of islets from Anx7 heterozygous mice and littermate controls revealed remarkable down-regulation in PTEN, Glut-2, PDX-1, IGF-1, and Neuro D1 expression, but not in liver.

Conclusions

We conclude that reduced gene dosage in the Anx7(+/−) islet, with concomitant loss of ITPR3 expression and consequent defects in Ca2+ signaling, may substantially contribute to the mechanism of the loss of genomic discrimination, in vivo, between the fed and fasted states. We believe that the requirement for complete Anx7 gene dosage and IPTR3 expression in islets of Langerhans will prove to be of fundamental importance for understanding the mechanism of nutritional sensing in health and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Malaisse WJ. (1983) Insulin release: the fuel concept. Diabetes Metab. 4: 313–320.

    Google Scholar 

  2. O’Rahilly SO, Hosker JP, Rudenski AS, et al. (1988) The glucose stimulus-response curve of the beta-cell in physically trained humans, assessed by hyperglycemic clamps. Metabolism 10: 919–923.

    Article  Google Scholar 

  3. Lang DA, Matthews DR, Peto J, Turner RC. (1979) Cyclic oscillations of basal plasma glucose and insulin concentrations in human beings. N. Engl. J. Med. 301: 1023–1027.

    Article  CAS  PubMed  Google Scholar 

  4. Pratley RE, Weyer C. (2001) Insulin resistance and insulin secretory dysfunction are independent predictors of worsening of glucose tolerance during each stage of type 2 diabetes development. Diabetic Care 1: 89–94.

    Google Scholar 

  5. Mears D, Atwater I. (2002) Electrophysiology of the pancreatic β-cell. In Leroith D, Taylor SI, Olefsky JM (eds). Philadelphia, PA (Lippincott Williams & Wilkins) Diabetes Mellitus. pp 47–61.

    Google Scholar 

  6. Ashcroft FM, Proks P, Smith PA, et al. (1994) Stimulus-secretion coupling in pancreatic beta cells. J. Cell Biochem. 55: 54–65.

    Article  CAS  PubMed  Google Scholar 

  7. Prentki M, Glennon MC, Geschwind JF, et al. (1987) Cyclic AMP raises cytosolic Ca2+ and promotes Ca2+ influx in a clonal pancreatic beta-cell line (HIT T-15). FEBS Lett. 220: 103–107.

    Article  CAS  PubMed  Google Scholar 

  8. Laybutt DR, Kaneto H, Hasnkamp W, et al. (2002) Increased expression of antioxidant and antiapoptotic genes in islets that may contribute to beta-cell survival during chronic hyperglycemia. Diabetes. 51: 413–423.

    Article  CAS  PubMed  Google Scholar 

  9. Herrera PL. (2002) Defining the cell lineages of the islets of Langerhans using transgenic mice. Int. J. Dev. Biol. 46: 97–103.

    PubMed  Google Scholar 

  10. Hirschi KD, Kreps JA, Hirschi KK. (2001) Molecular approaches to studying nutrient metabolism and function: an array of possibilities. J. Nutr. 131: 1605S–1609S.

    Article  CAS  PubMed  Google Scholar 

  11. Cao SX, Dhahbi JM, Mote PL, Spindler SR. (2001) Genomic profiling of short- and long-term caloric restriction effects in the liver of aging mice. Proc. Natl. Acad. Sci. U.S.A. 98: 10630–10635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kita Y, Shiozawa M, Weihoong J, et al. (2002) Implications of circadian gene expression in kidney, liver and the effects of fasting on pharmacogenomic studies. Pharmacogenetics 12: 55–65.

    Article  CAS  PubMed  Google Scholar 

  13. Srivastava M, Eidelman O, Pollard HB. (1999) Pharmacogenomics of the cystic fibrosis transmembrane conductance regulator (CFTR), and of the cystic fibrosis drug CPX using genome microarray analysis. Mol. Med. 5: 753–767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Eidelman O, Srivastava M, Zhang J, et al. (2001) Genes from the TNFaR/NFkB pathway control the pro-inflammatory state in cystic fibrosis epithelial cells. Mol. Med. 7: 523–534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gilon P, Shepherd RM, Henquin JC. (1993) Oscillations of secretion driven by oscillations of cytoplasmic Ca2+ as evidences in single pancreatic islets. J. Biol. Chem. 268: 22265–22268.

    PubMed  CAS  Google Scholar 

  16. Lawrence MC, Bhatt HS, Watterson JM, Easom RA. (2001) Regulation of insulin gene transcription by a Ca(2+)-responsive pathway involving calcineurin and nuclear factor of activated T cells. Mol. Endocrinol. 10: 1758–1767.

    Article  Google Scholar 

  17. Lee B, Gai W, Laychock SG. (2001) Proteosomal activation mediates down-regulation of inositiol trisphosphate receptor and calcium mobilization in rat pancreatic islets. Endocrinology 142: 1744–1751.

    Article  CAS  PubMed  Google Scholar 

  18. Lee B, Jonas JC, Weir GC, Laychock SG. (1999) Glucose regulates expression of inositol 1,4,5,-trisphosphate receptor isoforms in isolated rat pancreatic islets. Endocrinology 140: 2173–2182.

    Article  CAS  PubMed  Google Scholar 

  19. Lee B, Laychock SG. (2000) Regulation of inositiol trisphosphate receptor isoform expression in glucose-desensitized rat pancreatic islets: role of cyclic adenosine 3′, 5′-monophosphate and calcium. Endocrinology 141: 1394–1402.

    Article  CAS  PubMed  Google Scholar 

  20. Srivastava M, Atwater I, Glasman M, et al. (1999) Defects in IP3 receptors expression, Ca2+-signaling and insulin secretion in the anx7 (+/−) knockout mouse. Proc. Natl. Acad. Sci. U.S.A. 96: 13783–13788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Goping G, Leapman R, Pollard HB, Srivastava M. (2002) Mapping protein expression in mouse pancreatic islets by immunolabeling and electron spectroscopic imaging. Microscopy Research and Techniques (In Press)

  22. Boschero AC, Malaisse WJ. (1979) Stimulus-secretion coupling of glucose-induced insulin release. XXIX. Regulation of 86Rb+efflux from perfused islets. Am. J. Physiol. 236: E139–E146.

    Article  CAS  PubMed  Google Scholar 

  23. Butler M, McKay RA, Popoff IJ, et al. (2002) Specific inhibition of PTEN expression reverses hyperglycemia in diabetic mice. Diabetes 51: 1028–1034

    Article  CAS  PubMed  Google Scholar 

  24. Srivastava M, Kumar P, Leighton X, et al. (2002) Influence of the Anx7 (+/−) knockout mutation and fasting stress on the genomics of the mouse adrenal gland. Ann. N. Y. Acad. Sci. 971: 53–70.

    Article  CAS  PubMed  Google Scholar 

  25. Bonner-Weir S, Baxter LA, Schuppin GT, Smith FE. (1993) A second pathway for regeneration of adult exocrine and endocrine pancreas. A possible recapitulation of embryonic development. Diabetes 42: 1715–1720.

    Article  CAS  PubMed  Google Scholar 

  26. Boj S, Parrizas M, Maestro MA, Ferrer J. (2001) A transcription factor regulatory circuit in differentiated pancreatic cells. Proc. Natl. Acad. Sci. U.S.A. 98: 14481–14486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bouwens L, Wang RN, De Blay E, et al. (1994) Cytokeratins as markers of ductal cell differentiation and islet neogenesis in the neonatal rat pancreas. Diabetes 43: 1279–1283.

    Article  CAS  PubMed  Google Scholar 

  28. Steinert PM, Roop DR. (1988) Molecular and cellular biology of intermediate filaments. Annu. Rev. Biochem. 57: 593–625.

    Article  CAS  PubMed  Google Scholar 

  29. Kulesh DA, Oshima RG. (1988) Cloning of the human keratin 18 gene and its expression in nonepithelial mouse cells. Mol. Cell Biol. 8: 1540–1550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kobayashi T, Nakanishi K, Kajio H, et al. (1990) Pancreatic cytokeratin: an antigen of pancreatic exocrine cell autoantibodies in type 1 (insulin-dependent) diabetes mellitus. Diabetologia 33: 363–370.

    Article  CAS  PubMed  Google Scholar 

  31. Gradwohl G, Dierich A, LeMeur M, Guillemot F. (2000) Neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc. Natl. Acad. Sci. U.S.A. 97: 1607–1611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yamaoka T, Itakura M. (1999) Development of pancreatic islets. Int. J. Mol. Med. 3: 247–261.

    PubMed  CAS  Google Scholar 

  33. Beimar F, Argenton F, Schmidtke R, et al. (2001) Pancreas development in the zebrafish: early dispersed appearance of endocrine hormone expressing cells and their convergence to form the definitive islet. Dev. Biol. 230: 189–203.

    Article  CAS  Google Scholar 

  34. Sander M, Neubuser A, Kalamaras J, et al. (1997) Genetic analysis reveals that PAX6 is required for normal transcription of pancreatic hormone genes and islet development. Genes Devel. 11: 1662–1673.

    Article  CAS  PubMed  Google Scholar 

  35. Hill ME, Asa SL, Drucker DJ. (1999) Essential requirement for Pax6 in control of enteroendocrine proglucagon gene transcription. Mol. Endocrinol. 13: 1474–1486.

    Article  CAS  PubMed  Google Scholar 

  36. St. Onge L, Sosa-Pineda B, Chowdhury K, et al. (1997) Pax6 is required for differentiation of glucagon-producing alpha cells in mouse pancreas. Nature 387: 406–409.

    Article  CAS  PubMed  Google Scholar 

  37. Yamaoka T, Yano M, Yamada T, et al. (2000) Diabetes and pancreatic tumours in transgenic mice expressing Pax6. Diabetologia 43: 332–339.

    Article  CAS  PubMed  Google Scholar 

  38. Shibata H, Kanzaki M, Takeuchi T, et al. (1996) Two distinct signaling pathways activated by activin A in glucose-responsive pancreatic beta-cell lines. J. Mol. Endocrinol. 16: 249–258.

    Article  CAS  PubMed  Google Scholar 

  39. Kojima I. (1997) Effect of activin A on the formation of pancreatic endocrine cells. In Aono T, Sugino H, Vale W (eds). Inhibin, Activin and Follistatin. Springer-Verlag, Berlin, Heidelberg, Vienna, and Milan; pp. 189–203.

    Chapter  Google Scholar 

  40. Lefebvre VH, Otonkoski T, Ustinov J, et al. (1998) Culture of adult human islet preparations with hepatocyte growth factor and 804G matrix is mitogenic for duct cells but not for beta-cells. Diabetes 47: 134–137.

    Article  CAS  PubMed  Google Scholar 

  41. Garcia-Oceana A, Takane KK, Syed MA, et al. (2000) Hepatocyte growth factor overexpression in the islet of transgenic mice increases beta cell proliferation, enhances islet mass, and induces mild hypoglycemia. J. Biol. Chem. 275: 1226–1232.

    Article  Google Scholar 

  42. Christofori G, Naik P, Hanahan D. (1995) Vascular endothelial growth factor and its receptors Flt-1 and flk-1 are expressed in normal pancreatic islets and throughout islet call tumorigenesis. Mol. Endocrinol. 9: 1760–1770.

    PubMed  CAS  Google Scholar 

  43. Gorden DL, Mandriota SJ, Montesano R, et al. (1997) Vascular endothelial growth factor is increased in devascularized rat islets of Langerhans in vitro. Transplantation 63: 436–443.

    Article  CAS  PubMed  Google Scholar 

  44. Kuroda M, Oka T, Oka Y, et al. (1995) Colocalization of vascular endothelial growth factor (vascular permeability factor) and insulin in pancreatic islet cells. J. Clin. Endocrinol. Metab. 80: 3196–3200.

    PubMed  CAS  Google Scholar 

  45. Oberg-Welsh C, Sandler S, Andersson A, Welsh M. (1997) Effects of vascular endothelial growth factor on pancreatic duct cell replication and the insulin production of fetal islet-like cell clusters in vitro. Mol. Cell Endocrinol. 126: 125–132.

    Article  CAS  PubMed  Google Scholar 

  46. Rooman I, Schuit F, Bouwens L. (1997) Effect of vascular endothelial growth factor on growth and differentiation of pancreatic ductal epithelium. Lab. Invest. 76: 225–232.

    PubMed  CAS  Google Scholar 

  47. Adams RH, Diella F, Hennig S, et al. (2001) The cytoplasmic domain of the ligand ephrin B2 is required for vascular morphogenesis but not cranial neural crest migration. Cell 104: 57–69.

    Article  CAS  PubMed  Google Scholar 

  48. Hattori K, Dias S, Heissig B, et al. (2001) Vascular endothelial growth factor and angiopoietin-1 stimulate postnatal hematopoiesis by recruitment of vasculogenic and hematopoietic stem cells. J. Exp. Med. 193: 1005–1014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Papapetropoulos A, Fulton D, Mahboubi K, et al. (2000) Angiopoietin-1 inhibits endothelial cell apoptosis via the Akt/survivin pathway. J. Biol. Chem. 275: 9102–9105.

    Article  CAS  PubMed  Google Scholar 

  50. Esni F, Taljedal IB, Perl AK, et al. (1999) Neural cell adhesion molecule (N-CAM) is required for cell type segregation and normal ultrastructure in pancreatic islets. J. Cell Biol. 144: 325–337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Moller CJ, Christgau S, Williamson MR, et al. (1992) Differential expression of neural cell adhesion molecule and cadherins in pancreatic islets, glucagonomas and insulinomas. Mol. Endocrinol. 6: 1332–1342.

    PubMed  CAS  Google Scholar 

  52. Larue L, Antos C, Butz S, et al. (1996) A role for cadherins in tissue formation. Development 122: 3185–3194.

    PubMed  CAS  Google Scholar 

  53. Dahl U, Sjodin A, Semb H. (1996) Cadherins regulate aggregation of pancreatic beta cells in vivo. Development 122: 2895–2902.

    PubMed  CAS  Google Scholar 

  54. Gaidar YA, Lepekhin EA, Sheichetova GA, Witt M. (1998) Distribution of N-cadherin and NCAM in neurons and endocrine cells of the human embryonic and fetal gastroenteropancreatic system. Acta Histochem. 100: 83–97.

    Article  CAS  PubMed  Google Scholar 

  55. Ortolan TG, Tongaonkar P, Lambertson D, et al. (2000) The DNA repair protein rad23 is a negative regulator of multiubiquitin chain assembly. Nat. Cell Biol. 2: 601–608.

    Article  CAS  PubMed  Google Scholar 

  56. McKay MJ, Troelstra C, van der Spek P, et al. (1996) Sequence conservation of the rad 21 Schizosacchararomyces pombe DNA double strand break repair gene in human and mouse. Genomics 36: 305–315.

    Article  CAS  PubMed  Google Scholar 

  57. Huang RP, Adamson ED. (1995) A role for Egr-1 in cell survival following ultraviolet irradiation. Oncogene 10: 467–475.

    PubMed  CAS  Google Scholar 

  58. Lim CP, Jain N, Cao X. (1998) Stress-induced immediate early gene egr-1 involves activation of p38/JNK1. Oncogene 16: 2915–2926.

    Article  CAS  PubMed  Google Scholar 

  59. Blais S, Boudreau F, Beaulieu JF, Asselin C. (1995) CCAAT/enhancer binding protein isoforms expression in colon of neonatal mice. Dev. Dyn. 204: 66–76.

    Article  CAS  PubMed  Google Scholar 

  60. Seufert J, Weir GC, Habener JF. (1998) Differential expression of the insulin gene transcriptional repressor CCAAT/enhancer-binding protein beta and transactivator islet/duodenum homeobox-1 in rat pancreatic beta cells during the development of diabetes mellitus. J. Clin. Inv. 101: 2528–2539.

    Article  CAS  Google Scholar 

  61. Zador IZ, Hsieh CC, Papaconstantinou J. (1998) Renal CCAAT/enhancer bonding proteins in experimental diabetes mellitus. Nephron 79: 312–316.

    Article  CAS  PubMed  Google Scholar 

  62. Hatada I, Nabetani A, Arai Y, et al. (1997) Aberrant methylation of an imprinted gene U2af1-rs1 (SP2) caused by its own transgene. J. Biol. Chem. 272: 9120–9122.

    Article  CAS  PubMed  Google Scholar 

  63. O’Bryan JP, Songyang Z, Cantley L, et al. (1996) A mammalian adapter protein with conserved src homology 2 and phosphotyrosine binding domains is related to Shc, and is specifically expressed in the brain. Proc. Natl. Acad. Sci. U.S.A. 93: 2729–2734.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Srivastava M, Bubendorf L, Nolan L, et al. (2001) ANX7, a candidate tumor-suppressor gene for prostate cancer. Proc. Natl. Acad. Sci. U.S.A. 98: 4575–4580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meera Srivastava.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srivastava, M., Eidelman, O., Leighton, X. et al. Anx7 Is Required for Nutritional Control of Gene Expression in Mouse Pancreatic Islets of Langerhans. Mol Med 8, 781–797 (2002). https://doi.org/10.1007/BF03402083

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03402083

Keywords

Navigation