Skip to main content
Log in

Elimination of precipitate free zones in an Fe−Nb creep-resistant alloy

  • Transformations
  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Precipitation of the Fe2Nb intermetallic compound has previously been found to cause substantial hardening during aging of Fe rich Fe-Nb alloys. However, the formation of a wide precipitate free zone adjacent to the grain boundaries caused a degradation of creep resistance. In an effort to decrease the precipitate free zone width, thereby improving the creep resistance, an extensive study was made of the precipitation behavior of an Fe-1.7 at. pct Nb(Cb) alloy quenched from the δ-phase field. The quenched alloy was found to decompose via a two step reaction during aging at temperatures below 550°C. The first step in the decomposition reaction is thought to occur by clustering of Nb atoms in the ferrite matrix, similar to the clustering of Mo atoms which is known to occur during aging of Fe-Mo alloys. The second step in the reaction is not well understood. The precipitate free zones were formed by solute depletion in the vicinity of the grain boundary and the subsequent difficulty of nucleation of the Fe2Nb precipitates in the regions of lowered solute concentration. Using two step aging treatments, an initial low temperature step to develop the Nb atom clusters followed by a higher temperature step to cause Fe2Nb precipitation, the precipitate free zones were eliminated from the aged alloys. The origin of this effect is thought to be the heterogeneous nucleation of Fe2Nb precipitates on the clusters developed during the initial aging step.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. G. Gemmill, H. Hughes, T. D. Murry, F. B. Pickering, and K. W. Andrews:J. Iron Steel Inst., 1956, vol. 184, p. 122.

    CAS  Google Scholar 

  2. A. P. Coldren, M. Semchyshen, and W. G. Scholz:Trans. TMS-AIME, 1964, vol. 230, p. 1236.

    CAS  Google Scholar 

  3. R. H. Jones, E. R. Parker, and V. F. Zackay:Electron Microscopy and Structure of Materials, G. Thomas and R. M. Fulrath, eds., p. 829, University of California, Berkeley, California, 1972.

    Google Scholar 

  4. R. H. Jones, E. R. Parker, and V. F. Zackay:Met. Trans., 1972, vol. 3, p. 2835.

    Article  CAS  Google Scholar 

  5. M. D. Bhandarkar, M. S. Bhat, V. F. Zackay, and E. R. Parker:Met. Trans. A, 1975, vol. 6A, p. 1281.

    Article  CAS  Google Scholar 

  6. E. Hornbogen:Precipitation from Iron-Base Alloys, G. R. Speich and J. B. Clark, eds., vol. 28, p. 36, AIME Met. Soc. Conf., Gordon and Breach Science Publishers, New York, 1965.

    Google Scholar 

  7. E. A. Fell, W. I. Mitchell, and D. W. Wakeman:Structural Processes in Creep, p. 136, I. S. I. Special Report 70, Iron and Steel Institute, London, 1961.

    Google Scholar 

  8. E. L. Raymond:Trans. TMS-AIME, 1967, vol. 239, p. 1415.

    CAS  Google Scholar 

  9. R. F. Decker:Steel Strengthening Mechanisms, p. 147, Climax Molybdenum Co., Greenwich, Connecticut, 1969.

    Google Scholar 

  10. J. D. Embury and R. B. Nicholson:Acta Met., 1965, vol. 13, p. 403.

    Article  CAS  Google Scholar 

  11. P. N. T. Unwin, G. W. Lorimer, and R. B. Nicholson:Acta Met., 1969, vol. 17, p. 1363.

    Article  CAS  Google Scholar 

  12. G. R. Speich:Trans. TMS-AIME, 1962, vol. 224, p. 850.

    CAS  Google Scholar 

  13. R. M. Forbes Jones and D. R. F. West:J. Iron Steel Inst., 1970, vol. 208, p. 270.

    Google Scholar 

  14. M. R. Krishnadev and A. Galibois:Grain Boundaries in Engineering Materials, J. L. Walter, J. H. Westbrook, and D. A. Woodford, eds., p. 17, Claitor's, Baton Rouge, 1975.

    Google Scholar 

  15. M. R. Krishnadev and A. Galibois:Microstructural Sci., 1976, vol. 5, p. 29.

    Google Scholar 

  16. R. D. Rawlings and C. W. A. Newey:Trans. TMS-AIME, 1968, vol. 242, p. 1001.

    CAS  Google Scholar 

  17. J. B. Clark:Acta Met., 1964, vol. 12, p. 1197.

    Article  CAS  Google Scholar 

  18. A. C. Damask and G. J. Dienes:Point Defects in Metals, p. 46, Gordon and Breach, NY, 1963.

    Google Scholar 

  19. Y. S. Touloukian and D. P. Dewitt:Thermophysical Properties of Matter; Thermal Radiative Properties Metallic Elements and Alloys., vol. 7, p. 307, Plenum, NY, 1970.

    Google Scholar 

  20. C. Kittel:Introduction to Solid State Physics, 4th ed., John Wiley and Sons, NY, 1971.

    Google Scholar 

  21. G. J. Cocks and D. W. Borland:Met. Sci., 1975, vol. 9, p. 384.

    Article  Google Scholar 

  22. G. E. Pellissier, M. F. Hawkes, W. A. Johnson, and F. R. Mehl:Trans. ASM, 1942, vol. 30, p. 1049.

    CAS  Google Scholar 

  23. H. B. Aaron, D. Fainstein, and G. R. Kotler:J. Appl. Phys., 1970, vol. 41, p. 4404.

    Article  Google Scholar 

  24. M. A. Krishtal:Diffusion Processes in Iron Alloys, U.S. Dept. of Commerce, Springfield, VA, 1970.

    Google Scholar 

  25. A. W. Bowen and G. M. Leak:Met. Trans., 1970, vol. 1, p. 1695.

    Article  CAS  Google Scholar 

  26. J. Higgens and P. Wilkes:Phil. Mag., 1972, vol. 25, p. 599.

    Article  Google Scholar 

  27. Y. I. Ustinovshchikov and V. A. Vlasov:Fiz. Met. Metalloved., 1976, vol. 42, p. 1182.

    CAS  Google Scholar 

  28. E. Hornbogen:J. Appl. Phys., 1961, vol. 32, p. 135.

    Article  CAS  Google Scholar 

  29. H. L. Marcus, M. E. Fine, and L. H. Schwartz:J. Appl. Phys., 1967, vol. 38, p. 4750.

    Article  CAS  Google Scholar 

  30. T. Ericsson, S. Mourikis, and J. B. Cohen:J. Mater. Sci., 1970, vol. 5, p. 901.

    Article  CAS  Google Scholar 

  31. T. Ericsson, and J. B. Cohen:Acta Crystallogr., 1971, vol. A27, p. 97.

    Article  CAS  Google Scholar 

  32. Crussard and F. Aubertin:Met. Rev., 1948, vol. 45, p. 402.

    CAS  Google Scholar 

  33. C. Wert:Thermodynamics in Physical Metallurgy, p. 178, ASM, Cleveland, OH, 1950.

    Google Scholar 

  34. F. Aubertin and C. Crussard:Metall. Ital., 1952, vol. 44, p. 548.

    CAS  Google Scholar 

  35. M. Idnurm and A. F. Brown:Acta Met., 1973, vol. 21, p. 1337.

    Article  CAS  Google Scholar 

  36. J. M. Pelletier, R. Borrelly, and E. Pernoux:Phys. Status Solidi (a), 1977, vol. 39, p. 525.

    Article  CAS  Google Scholar 

  37. J. M. Pelletier, R. Borrelly, and P. F. Gobin:Scri. Met., 1977, vol. 11, p. 553.

    Article  CAS  Google Scholar 

  38. J. M. Pelletier and R. Borrelly:C. R. Acad. Sci. Paris, 1977, vol. 284, p. 353.

    CAS  Google Scholar 

  39. J. M. Pelletier, J. Merlin and R. Borrelly:Mater. Sci. Eng., 1978, vol. 33, p. 95.

    Article  CAS  Google Scholar 

  40. G. Airoldi and M. Asdente:Phys. Status Solidi, 1969, vol. 32, p. 691.

    Article  CAS  Google Scholar 

  41. R. D. Barmard and A. J. M. Chivers:Met. Sci. J., 1973, vol. 7, p. 147.

    Article  Google Scholar 

  42. A. Chou, A. Datta, G. H. Meier, and W. A. Soffa:J. Mater. Sci., 1978, vol. 13, p. 541.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wert, J.A., Parker, E.R. & Zackay, V.F. Elimination of precipitate free zones in an Fe−Nb creep-resistant alloy. Metall Trans A 10, 1313–1322 (1979). https://doi.org/10.1007/BF02811987

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02811987

Keywords

Navigation