Skip to main content
Log in

Effect of Temperature and Composition on NiAl Precipitation and Morphology in Fe-Ni-Al Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

NiAl-strengthened ferritic alloys have been of particular interest because of their possibilities as a high-temperature material for power-generation purposes. In the present work, the effect of temperature and composition on the precipitation of the NiAl (β′) phase was studied using a diffusion couple made of alloys Fe0.50Ni0.25Al0.25 and Fe0.80Ni0.08Al0.12. The composition gradient was obtained with a diffusion annealing treatment at 1373 K (1100°C), and the precipitation was promoted by aging at 1123 K, 1173 K and 1223 K (850 °C, 900 °C and 950 °C) for 5 hours. The formation of a supersaturated solid solution and the precipitation of the β′ phase were obtained after the diffusion annealing and aging treatments, respectively. A gradual increase in the size and volumetric fraction of the precipitates was evident in compositions with higher NiAl. This promoted changes in the precipitate morphology that followed the sequence: rounded cuboids → plates → irregular (maze-like). Compositions with a low β′ volumetric fraction followed the predicted size distributions of the Lifshitz-Slyozov-Wagner (LSW) theory. Finally, it was observed that the hardness tends to increase inversely to the Fe content and decreases only because of precipitate coarsening. The achieved results provide new information regarding the dependency of the morphology of β′ precipitates with composition and temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Z. Sun, C.H. Liebscher, S. Huang, Z. Teng, G. Song, G. Wang, M. Asta, M. Rawlings, M.E. Fine and P.K. Liaw: Scripta Mater., 2013, vol. 68, pp. 384–388.

    Article  Google Scholar 

  2. R. Viswanathan, J.F. Henry, J. Tanzosh, G. Stanko, J. Shingledecker, B. Vitalis and R. Purgert: J. Mater. Eng. Perform., 2005, vol. 14, pp. 281–292.

    Article  Google Scholar 

  3. R. Viswanathan, K. Coleman and U. Rao: Int. J. Press. Vessel. Pip., 2006, vol. 83, pp. 778–783.

    Article  Google Scholar 

  4. RD. Noebe, RR. Bowman and MV. Nathal: Int. Mater. Rev., 1993, Vol. 38 No.4, 193–232

    Article  Google Scholar 

  5. A. Taylor and N. J. Doyle: J. Appl. Crystallogr., 1972, vol. 5, pp. 201–209.

    Article  Google Scholar 

  6. C. T. Liu and K. S. Kumar: JOM, 1993, vol. 45, pp. 38–44.

    Article  Google Scholar 

  7. D.F. Lahrman, R.D. Field and R. Darolia, in High Temperature Ordered Intermetallic Alloys IV (edited by L. Johnson, J.O. Stiegler and D.P. Pope), MRS Proc., 1991, vol. 213, pp. 603.

  8. A. J. Duncan, M. J. Kaufman, C. T. Liu and M. K. Miller: App. Surf. Sci., 1994, vol. 76/77, pp. 155–159.

    Article  Google Scholar 

  9. R. Kainuma, K. Ishida and T. Nishizawa: Metall. Trans. A, 1992, vol. 23A, pp. 1147-1153.

    Article  Google Scholar 

  10. N. V. Nathal: Metall. Trans. A, 1987, vol. 18A, pp. 1961-1970.

    Article  Google Scholar 

  11. M. E. Krug and D. C. Dunand: Acta Mater., 2011, vol. 59, pp. 5125–5134.

    Article  Google Scholar 

  12. D. A. Grose and G. S. Ansell: Metall. Trans. A, 1981, vol. 12, pp. 1631-1645.

    Article  Google Scholar 

  13. Z. Guo and W. Sha: Intermet., 2002, vol. 10, pp. 945-950.

    Article  Google Scholar 

  14. Z. K. Teng, C. T. Liu, G. Ghosh, P. K. Liaw and M. E. Fine: Intermet., 2010, vol. 18, pp. 1437-1443.

    Article  Google Scholar 

  15. A. J. Bradley, J. Iron Steel Inst., 1951, vol. 168(3), pp. 233–244.

    Google Scholar 

  16. C. Stallybrass, A. Schneider and G. Sauthoff: Intermet., 2005, vol. 13, pp. 1263–1268.

    Article  Google Scholar 

  17. S.M. Zhu, S.C. Tjong, and J.K.L. Lai: Acta Mater., 1998, vol. 46 (9), pp. 2969–2976.

    Article  Google Scholar 

  18. E. Contreras-Piedras, H. J. Dorantes-Rosales, V. M. López-Hirata,F. Hernández-Santiago, J. L. González-Velázquez and F. I. López-Monrroy: Mat. Sci. Eng. A, 2012, vol. 558, pp. 366–370.

    Article  Google Scholar 

  19. P. R. Munroe, M. George, I. Beker and F. E. Kennedy: Mat. Sci. Eng. A, 2002, vol. 325, pp. 1-8.

    Article  Google Scholar 

  20. M.A. Muñoz-Morris and D.G. Morris: Mat. Sci. Eng. A, 2007, vol. 444, pp. 236–241.

    Article  Google Scholar 

  21. M.A. Muñoz-Morris, I. Gutierrez-Urrutia and D.G. Morris: Int. J. Plast., 2009, vol. 25, pp. 1011–1023.

    Article  Google Scholar 

  22. H.A. Calderon, G. Kostorz. Y.Y. Qu, H.J. Dorantes, J.J. Cruz and J.G. Cabanas-Moreno: Mater. Sci. Eng. A, 1997 vol. 238, pp. 13–22.

    Article  Google Scholar 

  23. R. K. W. Marceau, C. Qiu, S. P. Ringer and C. R. Hutchinson: Mater. Sci. Eng. A, 2012, vol. 546, pp. 153-161.

    Article  Google Scholar 

  24. A.A. Kodentsov, G. F. Bastin and F. J.J. van Loo, in Methods for Phase Diagram Determination (edited by Ji-Cheng Zhao), Elsevier Science, 2007, 1st Edition, pp. 222–245

  25. Q. Zhang, Z. Chen, W. Zhong and J.C. Zhao: Scr. Mater., 2017, vol. 128, pp. 32–35.

    Article  Google Scholar 

  26. Q. Zhang and J.C. Zhao: J. Alloys Compd., 2014, vol. 604, pp. 142–150.

    Article  Google Scholar 

  27. T. Miyazaki, S. Kobayashi and T. Koyama: Metall. Mater. Trans. A, 1999, vol. 30, pp. 2783–2789.

    Article  Google Scholar 

  28. T. Miyazaki, T. Koyama and S. Kobayashi: Metall. Mater. Trans. A, 1996, vol. 27, pp. 945–949.

    Article  Google Scholar 

  29. T. Miyazaki: Prog. Mater. Sci., 2012, vol. 57, pp. 1010–1060.

    Article  Google Scholar 

  30. S. Kobayashi, Y. Tsukamoto, T. Takasugi, H. Chinen, T. Omori, K. Ishida and S. Zaefferer: Intermet., 2009, vol. 17, pp. 1085–1089.

    Article  Google Scholar 

  31. C.P. Heijwegen and G.D. Rieck: Metall. Trans., 1973, vol. 4, pp. 2159–2167.

    Article  Google Scholar 

  32. F.J.J. van Loo and G.D. Rieck: Acta Metall., 1973, vol. 21 (1), pp. 61–71.

    Article  Google Scholar 

  33. D. A. Porter, K. E. Easterling and M. Y. Sherif: Phase transformations in metals and alloys, 3rd edition, CRC Press, Boca Raton, FL, 2009, pp. 87–95.

    Google Scholar 

  34. J.A. Nesbitt and R. W. Heckel: Metall. Trans. A., 1987, vol. 18A, pp. 2061–2073.

    Article  Google Scholar 

  35. D. L. Anton and A. F. Giamei: Mater. Sci. Eng., 1985, vol. 76, pp. 173–180.

    Article  Google Scholar 

  36. R. Taillard, A. Pineau, and B.J. Thomas: Mater. Sci. Eng., 1982, vol. 54, pp. 209–219

    Article  Google Scholar 

  37. J. E. Morral: Metall. Mater. Trans. A, 2012, vol. 43, pp. 3462–3470.

    Article  Google Scholar 

  38. A. J. Ardell and R. B. Nicholson: J. Phys. Chem. Solids, 1966, vol. 27, pp. 1793–1804.

    Article  Google Scholar 

  39. P. Fratzl and O. Paris: Phase Transit., 1999, vol. 67, pp. 707–724.

    Article  Google Scholar 

  40. Y. H. Sohn, A. Puccio and M. A. Dayananda: Metall. Mater. Trans. A, 2005, vol. 36, pp. 2361–2370.

    Article  Google Scholar 

  41. M. Fahrmann, P. Fratzl, O. Paris, E. Fahrmann and W. C. Johnson: Acta Metall. Mater., 1995, vol. 43, pp. 1007–1022.

    Article  Google Scholar 

  42. .V. Goerler, I. Lopez-Galilea, L. Mujica Roncery, O. Shchyglo, W. Theisen and I. Steinbach: Acta Mater., 2017, vol. 124, pp. 151–158.

    Article  Google Scholar 

  43. P. Caron, C. Ramusat and F. Diologent: Superalloys 2008 Proceedings, 2008, TMS, pp. 159–67.

  44. I. M. Lifshitz and V. V. Slyozov: Zh. eksp. Fiz., 1958, vol. 35, pp. 479.

    Google Scholar 

  45. I. M. Lifshitz and V. V. Slyozov: J. Phys. Chem. Solids, 1961, vol. 19, pp. 35-50.

    Article  Google Scholar 

  46. C. Wagner: Z. Electrochem., 1961, vol. 65, pp. 581–591.

    Google Scholar 

  47. R. A. MacKay and M. V. Nathal: Acta Metall. Mater., 1990, Vol. 38 (6), pp. 993-1005.

    Article  Google Scholar 

  48. H. Li, L. Zuo, X. Song, Y. Wang and G. Chen: Rare Metals, 2009, vol. 28 (2), pp. 197-201.

    Article  Google Scholar 

  49. V. Vaithyanathan and L.Q. Chen: Acta Mater., 2002, vol. 50, pp. 4061-4073.

    Article  Google Scholar 

  50. L. Ratke and P. W. Voorhees: Growth and Coarsening, Springer-Verlag Berlin Heidelberg, New York, USA, 2002, p. 145.

    Book  Google Scholar 

  51. K. Thornton, N. Akaiwa and P. W. Vorhees: Acta Mater., 2004, vol. 52, pp. 1365-1378.

    Article  Google Scholar 

  52. Z.K. Teng, C.T. Liu, G. Ghosh, P.K. Liaw and M.E. Fine: Intermet., 2010, vol. 18 pp. 1437-1443

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank CONACYT (Project CB-2013 No. 222459), GAID and IPN-SIP-PIFI for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Ferreira-Palma.

Additional information

Manuscript submitted March 30, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira-Palma, C., Contreras-Piedras, E., Cayetano-Castro, N. et al. Effect of Temperature and Composition on NiAl Precipitation and Morphology in Fe-Ni-Al Alloys. Metall Mater Trans A 48, 5285–5293 (2017). https://doi.org/10.1007/s11661-017-4309-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4309-1

Navigation