Skip to main content
Log in

Fractal dynamics of heart beat interval fluctuations in corticotropin-releasing factor receptor subtype 2 deficient mice

  • Papers
  • Published:
Integrative Physiological & Behavioral Science Aims and scope Submit manuscript

Abstract

Non-linear fractal analysis of cardiac interbeat time series was performed in corticotropin-releasing factor receptor subtype 2 (CRFR2) deficient mice. Heart rate dynamics in mice constitutes a self-similar, scale-invariant, random fractal process with persistent intrinsic long-range correlations and inverse power-law properties. We hypothesized that the sustained tachycardic response elicited by intraperitoneal (ip) injection of human/rat CRF (h/rCRF) is mediated by CRFR2. In wildtype control animals, heart rate was increased to about maximum levels (~ 750 bpm) while in CRFR2-deficient animals baseline values were retained (~ 580 bpm). The tachycardic response elicited by ip-application is mediated by CRFR2 and is interpreted to result from sympathetic stimulation. However, the functional integrity of CRFR2 would not present a prerequisite to maintaining the responsiveness and resiliency of cardiac control to external environmental perturbations experimentally induced by extrinsic ip-application of h/rCRF or under physiological conditions that may be associated with an increased peripheral release of CRF. Under stressful physiological conditions achieved by novelty exposure, CRFR2 is not involved in the cardiodynamic regulation to external short-term stress. While the hypothesis of involvement of CRFR2 in cardiac regulation upon pharmacological stimulation cannot be rejected, the present findings suggest that the mechanism of action is by sympathetic stimulation, but would not unambiguously allow to draw any conclusions as to the physiological role of CRFR2 in the control of cardiac dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abarbanel, H.D.I. (1995).Analysis of Observed Chaotic Data. New York: Springer.

    Google Scholar 

  • Bak, P., Creutz, M. (1994). Fractals and self-organized criticality. In: A. Bunde and S. Havlin (Eds.),Fractals in Science.pp. 27–47. New York: Springer.

    Google Scholar 

  • Bale, T.L., Contarino, A.B., Smith, G.W., Chan, R., Gold, L.H., Sawchenko, P.E., Koob, G.F., Vale, W.W., Lee, K.-F. (2000). Mice deficient for corticotropin-releasing hormone receptor-2 display anxiety-like behavior and are hypersensitive to stress.Nature Genet., 24: 410–414.

    Article  PubMed  Google Scholar 

  • Barenblatt, G.I. (1996).Scaling, Self-Similarity, and Intermediate Asymptotics. New York: Cambridge Univ. Press.

    Google Scholar 

  • Bassingthwaighte, J.B., Liebovitch, L.S., West, B.J. (1994).Fractal Physiology. New York: Oxford Univ. Press.

    Google Scholar 

  • Beran, J. (1994).Statistics of Long-Memory Processes. New York: Chapman & Hall.

    Google Scholar 

  • Brown, M. (1986). Corticotropin releasing factor: central nervous system sites of action.Brain Res., 399: 10–14.

    Article  PubMed  Google Scholar 

  • Brown, M.R., Fisher, L.A. (1983). Central nervous system effects of corticotropin-releasing factor in the dog.Brain Res., 280: 75–79.

    Article  PubMed  Google Scholar 

  • Brown, M.R., Fisher, L.A., Webb, V., Vale, W., Rivier, J.E. (1985). Corticotropin-releasing factor: a physiologic regulator of adrenal epinephrine secretion.Brain Res., 328: 355–357.

    Article  PubMed  Google Scholar 

  • Brown, M.R., Gray, T.S., Fisher, L.A. (1986). Corticotropin releasing factor receptor antagonist: effects on the autonomic nervous system and cardiovascular function.Regul. Pept., 16: 321–329.

    Article  PubMed  Google Scholar 

  • Chalmers, D.T., Lovenberg, T.W., De Souza, E.B. (1995). Localization of novel corticotropin-releasing factor receptor (CRF2) mRNA expression to specific subcortical nuclei in rat brain: comparison with CRF1 receptor mRNA expression.J. Neurosci., 15: 6340–6350.

    PubMed  Google Scholar 

  • Coste, S.C., Kesterson, R.A., Heldwein, K.A., Stevens, S.L., Heard, A.D., Hollis, J.H., Murray, S.E., Hill, J.K., Panteley, G.A., Hohimer, A.R., Halton, D.C., Phillips, T.J., Finn, D.A., Low, M.J., Rittenberg, M.B., Stenzel, P., Stenzel-Poore, M.-P. (2000). Abnormal adaptations to stress and impaired cardiovascular function in mice lacking corticotropin-releasing hormone receptor-2.Nature Genet., 24: 403–409.

    Article  PubMed  Google Scholar 

  • Dautzenberg, F.M., Hauger, R.L. (2002). The CRF peptide family and their receptors: yet more partners discovered.Trends Pharmacol. Sci., 23: 71–77.

    Article  PubMed  Google Scholar 

  • De Souza, E.B., Grigoriades, D.E. (2000). Multiple brain corticotropin-releasing factor receptors and binding protein. In: R. Quirion, A. Björklund and T. Hökfeld (Eds.),Handbook of Chemical Neuroanatomy, Vol. 16.—Peptide Receptors, Part I, pp. 477–508. Amsterdam: Elsevier Science.

    Google Scholar 

  • Elbert, T., Ray, W.J., Kowalik, Z.J., Skinner, J.E., Graf, K.E., Birnbaumer, N. (1994). Chaos and physiology. Deterministic chaos in excitable cell assemblies.Physiol. Rev., 74: 1–47.

    PubMed  Google Scholar 

  • Fisher, L.A., Jessen, G., Brown, M.R. (1983). Corticotropin-releasing factor (CRF): mechanism to elevate mean arterial pressure and heart rate.Regul. Pept., 5: 153–161.

    Article  PubMed  Google Scholar 

  • Fisher, L.A. (1989). Central autonomic modulation of cardiac baroreflex by corticotropin-releasing factor.Am. J. Physiol., 256: H949-H955.

    PubMed  Google Scholar 

  • Grassberger, P., Procaccia, I. (1983). Measuring the strangeness of strange attractors.Physica D, 9: 189–208.

    Article  Google Scholar 

  • Grigoriadis, D.E., Lovenberg, T.W., Chalmers, D.T., Liaw, C., De Souza, E.B. (1996). Characterization of corticotropin releasing factor receptor subtypes.Ann. N. Y. Acad. Sci., 780: 60–80.

    Article  PubMed  Google Scholar 

  • Grosskreutz, C.L., Brody, M.J. (1988). Regional hemodynamic responses to central administration of corticotropin-releasing factor (CRF).Brain Res., 442: 363–367.

    Article  PubMed  Google Scholar 

  • Hagendorff, A., Schumacher, B., Kirchhoff, S., Lüderitz, B., Willecke, K. (1999). Conduction disturbances and increased atrial vulnerability in connexin40-deficient mice analyzed by transesophageal stimulation.Circulation, 99: 1508–1515.

    PubMed  Google Scholar 

  • Huxley, J.S. (1932).Problems of Relative Growth. New York: The Dial Press.

    Google Scholar 

  • Janssen, B.J.A., Smits, J.F.M. (2002). Autonomic control of blood pressure in mice: basic physiology and effects of genetic modification.Am. J. Physiol. Regulatory Comp.Physiol., 282: R1545-R1564.

    Google Scholar 

  • Kantz, H., Schreiber, T. (1997).Nonlinear Time Series Analysis. New York: Cambridge Univ. Press.

    Google Scholar 

  • Kaplan, D.T., Glass, L. (1995).Understanding Nonlinear Dynamics. New York: Springer.

    Google Scholar 

  • Kishimoto, T., Pearse, R.V., Lin, C.R., Rosenfeld, M.G. (1995). A sauvagine/corticotropin-releasing factor receptor expressed in heart and skeletal muscle.Proc. Natl. Acad. Sci. USA, 92: 1108–1112.

    Article  PubMed  Google Scholar 

  • Kishimoto, T., Radulovic, J., Radulovic, M., Lin, C.R., Schrick, C., Hooshmand, F., Hermanson, O., Rosenfeld, M.G., Spiess, J. (2000). Deletion of Crhr2 reveals an anxiolytic role for corticotropin-releasing hormone receptor-2.Nature Genet., 24: 415–419.

    Article  PubMed  Google Scholar 

  • Koob, G.F., Heinrichs, S.C. (1999). A role for corticotropin releasing factor and urocortin in behavioral responses to stressors.Brain Res., 848: 141–152.

    Article  PubMed  Google Scholar 

  • Kurosawa, M., Sata, A., Swensen, R.S., Takahashi, Y. (1986). Sympatho-adrenal medullary functions in response to intracerebroventricularly injected corticotropin releasing factor in anesthetized rats.Brain Res., 367: 250–257.

    Article  PubMed  Google Scholar 

  • Lovenberg, T.W., Liaw, C.W., Grigoriadis, D.E., Clevenger, W., Chalmers, D.T., De Souza, E.B., Oltersdorf, T. (1995). Cloning and characterization of a functionally distinct corticotropin-releasing factor receptor subtype from rat brain.Proc. Natl. Acad. Sci. USA, 92: 836–840.

    Article  PubMed  Google Scholar 

  • Mandelbrot, B.B. (1999).Multifractals and l/f Noise. New York: Springer.

    Google Scholar 

  • Meyer, M., Rahmel, A., Marconi, C., Grassi, B., Skinner, J.E., Cerretelli, P. (1998). Is the heart preadapted to hypoxia? Evidence from fractal dynamics of heartbeat interval fluctuations at high altitude (5050m).Integrative Physiological and Behavioral Science, 33: 9–40.

    Article  PubMed  Google Scholar 

  • Mitchel, A.J. (1998). The role of corticotropin releasing factor in depressive illness: a critical review.Neuroscience and Biobehavioral Reviews, 22: 635–651.

    Article  Google Scholar 

  • Nijsen, M.J.M.A., Croiset, G., Stam, R., Bruijnzeel, A., Diamant, M., de Wied, D., Wiegand, V.M. (2000). The role of the CRH type 1 receptor in autonomic responses to corticotropin-releasing hormone in the rat.Neuropsychopharmacology, 22: 388–399.

    Article  PubMed  Google Scholar 

  • Overton, J.M., Gorman-Davis, G., Fisher, L.A. (1990). Central nervous effects of CRF and angiotensin II on cardiac output in conscious rats.J. Appl. Physiol., 69: 788–791.

    PubMed  Google Scholar 

  • Overton, J.M., Fisher, L.A. (1991). Differentiated hemodynamic responses to central versus peripheral administration of corticotropin-releasing factor in conscious rats.J. Auton. Nerv. Syst. 35: 43–51.

    Article  PubMed  Google Scholar 

  • Parkes, D.G., Weisinger, R.S., May, C.N. (2001). Cardiovascular actions of CRH and urocortin: an update.Peptides, 22: 821–827.

    Article  PubMed  Google Scholar 

  • Peng, C.-K., Mietus, J., Hausdorff, J.M., Havlin, S., Stanley, H.E., Goldberger, A.L. (1993). Long-range anticorrelations and non-Gaussian behavior of the heartbeat.Physical Review Letters, 70: 1343–1346.

    Article  Google Scholar 

  • Perrin, M., Donaldson, C., Chen, R., Blount, A., Berggren, T., Bilezikjian, L. Sawchenko, P., Vale, W. (1995). Identification of a second corticotropin-releasing factor receptor gene and characterization of a cDNA expressed in heart.Proc. Natl. Acad. Sci. USA, 92: 2969–2973.

    Article  PubMed  Google Scholar 

  • Potter, E., Sutton, S., Donaldson, C., Chen, R., Perrin, M., Lewis, K., Sawchenko, P.E., Vale, W. (1994). Distribution of corticotropin releasing factor receptor mRNA expression in the rat brain and pituitary.Proc. Natl. Acad. Sci. USA, 91: 8777–8781.

    Article  PubMed  Google Scholar 

  • Richter, R.M., Mulvany, M.J. (1995). Comparison of hCRF and oCRF effects on cardiovascular responses after central, peripheral, and in vitro application.Peptides, 16: 843–849.

    Article  PubMed  Google Scholar 

  • Rühmann, A., Bonk, I., Lin, C.R., Rosenfeld, M.G., Spiess, J. (1998). Structural requirements for peptidic antagonists of the corticotropin-releasing factor (CRFR): development of CRFR2β-selective antisauvagine-30.Proc. Natl. Acad. Sci. USA, 95: 15264–15269.

    Article  PubMed  Google Scholar 

  • Samorodnitsky, G., Taqqu, M.S. (1994).Stable Non-Gaussian Random Processes: Stochastic Models With Infinite Variance. New York: Chapman & Hall.

    Google Scholar 

  • Selye, H. (1936). A syndrome produced by diverse noxious agents.Nature Lond. 138: 32–37.

    Article  Google Scholar 

  • Selye, H. (1950).Stress.—The Physiology and Pathology of Exposure to Stress. Montreal: Acta

    Google Scholar 

  • Skinner, J.E., Pratt, C.M., Vybiral, T. (1993). A reduction in the correlation dimension of heartbeat intervals precedes imminent ventricular fibrillation in human subjects.Am. Heart J., 125: 731–743.

    Article  PubMed  Google Scholar 

  • Skinner, J.E., Molnar, M., Tomberg, C. (1994). The point correlation dimension: performance with nonstationary surrogate data and noise.Integrative Physiological and Behavioral Science, 29: 217–234.

    Article  PubMed  Google Scholar 

  • Skinner, J.E., Zebrowski, J.J., Kowalik, Z.J. (1998). New nonlinear algorithms for analysis of heart rate variability: low-dimensional chaos predicts lethal arrhythmias. In: H. Kantz, J. Kurths, G. Mayer-Kress, (Eds.),Nonlinear Analysis of Physiological Data.pp. 129–166. New York: Springer.

    Google Scholar 

  • Smith, G.W., Aubry, J.-M., Dellu, F., Contario, A., Bilezikjian, L.M., Gold, L.H., Chen, R., Marchuk, Y., Hauser, C., Bentley, C.A., Sawchenko, P.E., Koob, G.F., Vale, W., Lee, K.-F. (1998). Corticotropin releasing factor receptor 1-deficient mice display decreased anxiety, impaired stress response, and aberrant neuroendocrine development.Neuron, 20: 1093–1102.

    Article  PubMed  Google Scholar 

  • Stanley, H.E. (1971).Introduction to Phase Transitions and Critical Phenomena. New York: Oxford Univ. Press.

    Google Scholar 

  • Stenzel, P., Keterson, R., Yeung, W., Cone, R.D., Rittenberg, M.B., Stenzel Poore, M.P. (1995). Identification of a novel murine receptor for corticotropin-releasing hormone expressed in the heart.Mol. Endocrinol., 9: 637–645.

    Article  PubMed  Google Scholar 

  • Stiedl, O., Spiess, J. (1997). Effect of tone-dependent fear conditioning on heart rate and behavior of C57BL/6N mice.Behav. Neurosci., 111: 703–711.

    Article  PubMed  Google Scholar 

  • Stiedl, O., Radulovic, J., Lohmann, R., Birkenfeld, K., Palve, M., Kammermeier, J., Sananbenesi, F., Spiess, J. (1999). Strain and substrain differences in context-and tone-dependent fear conditioning of inbred mice.Behav. Brain Res., 104: 1–12.

    Article  PubMed  Google Scholar 

  • Theiler, J., Eubank, S., Longtin, A., Galdrikian, B., Farmer, J.D. (1992). Testing for nonlinearity in time series: the method of surrogate data.Physika D, 58: 77–94.

    Article  Google Scholar 

  • Timpl, P., Spanagel, R., Sillober, I., Kresse, A., Reul, J., Stalla, G.K., Blanquet, V., Steckler, T., Holsboer, F., Wurst, W. (1998). Impaired stress response and reduced anxiety in mice lacking a functional corticotropin-releasing hormone receptor 1.Nature Genet., 19: 162–166.

    Article  PubMed  Google Scholar 

  • Torpy, D.J., Webster, E.L., Zachman, E.K., Aguilera, G., Chrousos, G.P. (1999). Urocortin and inflammation: confounding effects of hypotension on measures of inflammation.Neuroimmunomodulation, 6: 182–186.

    Article  PubMed  Google Scholar 

  • Vale, W., Vaughan, J., Perrin, M. (1997). Corticotropin-releasing factor (CRF) family of ligands and their receptors.The Endocrinologist, 7: 3S-9S.

    Article  Google Scholar 

  • Wand, M.P., Jones, M.C. (1995).Kernel Smoothing. London: Chapman and Hall.

    Google Scholar 

  • West, B.J. (1990). Physiology in fractal dimensions: error tolerance.Annals of Biomedical Engineering, 18: 135–149.

    Article  PubMed  Google Scholar 

  • West, B.J. (1999).Physiology, Promiscuity and Prophecy at the Millennium: A Tale of Trails. Singapore: Word Scientific.

    Google Scholar 

  • Wilson, K. (1993). The renormalization group and critical phenomena. In:Nobel Lecture Physics 1981–1990. New Yersey: World Scientific.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Meyer MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stiedl, O., Meyer, M. Fractal dynamics of heart beat interval fluctuations in corticotropin-releasing factor receptor subtype 2 deficient mice. Integrative Physiological & Behavioral Science 37, 311–345 (2002). https://doi.org/10.1007/BF02734251

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02734251

Keywords

Navigation