Skip to main content
Log in

Lime-enhanced hydrogen reduction of molybdenite

  • Published:
Metallurgical Transactions B Aims and scope Submit manuscript

Abstract

Kinetics of the direct hydrogen reduction of a high-grade (59 pct Mo) molybdenite (MoS2) concentrate was investigated in the presence of lime as a function of the quantity of lime in the charge, hydrogen flow rate, temperature, and time of reduction. Lime was found to enhance tremendously the reduction rate of MoS2 and drastically reduce H2S emission into the off gas to negligible levels. Successful application of the lime-hydrogen reduction technique was found to depend on the employment of low hydrogen flow rate and moderate temperatures of reduction. In these laboratory studies, best results were obtained with a lime addition ≥ three times the theoretical requirement and at 1173 K in 3.6 ks employing a hydrogen flow rate of 3.33 cm3s-1. The results were tested for the treatment of a low-grade (41 pct Mo) molybdenite concentrate. In this latter case, the procedure consisted of upgrading the concentrate by acid leaching (with dil HC1+HF) followed by lime-hydrogen reduction. The influence of quantity of acids, temperature, and time of leaching were investigated to optimize the conditions required for upgrading the MoS2 concentrate. The molybdenum powders obtained from the highgrade as well as upgraded molybdenite concentrates had 96 to 97 pct purity and could be further refined to 99.9 pct by electron-beam melting. Based on this lime-enhanced hydrogen reduction concept, a new ‘Leach-Reduction-Melting’ approach has been suggested as an alternative to the traditional methods of molybdenum extraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.N. Zelikman, O.E. Krein, and G.V. Samsonov:Metallurgy of Rare Metals, Israel Program for Scientific Translations, Jerusalem, 1966, pp. 60–98.

  2. W. G. Scholz, D. V. Doane, and G. A. Timmons:Trans. TMS-AIME, 1961, vol. 221, pp. 356–64.

    Google Scholar 

  3. Y. Maru, K. Ito, and Y. Kondo:Proc. Int. Conf. Thermal Analysis, R.E. Schwenker, Jr., and P.D. Gam, eds., Academic Press, New York, NY, 1969, pp. 1291–313.

    Google Scholar 

  4. D.O. Buker: U.S. Patent no. 3,966,459, June 29, 1976.

  5. J. S. Nachtman and H. G. Poole: U. S. Patent nos. 3,020,151, February 6, 1962, and 3,090,686, May 21, 1963.

  6. C. Krey, H.G. Poole, andS.U. Shelton: NASA Document No. 6,318,058, 1963.

  7. R. A. Foos and M. A. Hobin: U. S. Patent nos. 3,053,614, September 11, 1962, and 3,146,093, August 25, 1964.

  8. O.K. Mehra, C. K. Gupta, and P. K. Jena:Trans. Indian Inst. Metals, 1968, vol. 21, no. 1, pp. 45–48.

    CAS  Google Scholar 

  9. R. Venkataramani, D. K. Bose, and P. K. Jena:Trans. Indian Inst. Metals, 1970, vol. 20, no. 1, pp. 13–16.

    Google Scholar 

  10. T.K. Mukherjee and C.K. Gupta:Metall. Trans., 1974, vol. 5, pp. 707–13.

    Article  CAS  Google Scholar 

  11. A. K. Suri and C. K. Gupta:Trans. Indian Inst. Metals, 1973, vol. 26, no. 6, pp. 19–23.

    Google Scholar 

  12. A.K. Suri and C.K. Gupta:Metall. Trans. B, 1975, vol. 6B, pp. 453–56.

    Article  CAS  Google Scholar 

  13. K. U. Nair, D. K. Bose, and C. K. Gupta:Min. Engg., 1978, vol. 30, pp. 291–96.

    CAS  Google Scholar 

  14. F. Habashi and R. Dugdale:Metall. Trans., 1973, vol. 4, pp. 1865–71.

    CAS  Google Scholar 

  15. F. Habashi and B. I. Yostos:J. Metals, 1977, vol. 29, no. 7, pp. 11–16.

    CAS  Google Scholar 

  16. T. R. Mankhand: Ph.D. Thesis, Banaras Hindu University, Varanasi, India, 1979.

    Google Scholar 

  17. I.D. Shah and P.L. Ruzzi:Metall. Trans. B, 1978, vol. 9B, pp. 247–53.

    CAS  Google Scholar 

  18. A. E. Torma and O. T. Inal:J. Less Common Metals, 1979, vol. 64, pp. 107–14.

    Article  CAS  Google Scholar 

  19. P. M. Prasad and T. R. Mankhand:Trans. Indian Inst. Metals, 1979, vol. 32, pp. 253–85.

    CAS  Google Scholar 

  20. I. Barin and O. Knacke:Thermochemical Properties of Inorganic Substances, Springer-Verlag, New York, NY, 1973, pp. 174, 295, 316, and 325.

    Google Scholar 

  21. I. Barin, O. Knacke, and O. Kubaschewski:Supplement to Thermo-chemical Properties of Inorganic Substances, Springer-Verlag, New York, NY, 1977, pp. 104, 415, and 419.

    Google Scholar 

  22. H. Kay:High Temperature Refractory Metals, AIME Met. Soc. Conf., February 1965, W. A. Krivsky, ed., Gordon and Breach, New York, NY, 1968, pp. 33–44.

    Google Scholar 

  23. T. R. Mankhand and P. M. Prasad:Trans. Indian Inst. Metals, 1979, vol. 32, pp. 348–52.

    CAS  Google Scholar 

  24. R. S. Young:Chemical Analysis in Extractive Metallurgy, Charles Griffin and Co. Ltd., London, 1971, p. 318.

    Google Scholar 

  25. A.A. Gavrilova and V. S. Altschuler:Gazov. Protessy, Poluch. Energ. Technol. Gazov. Akad. Nauk. SSSR, Inst. Goryuch Iskop, 1967, pp. 91–99 (Chem. Abs., 1968, vol. 68, no. 81162h).

  26. F. Habashi and S.A. Mikhail:Thermochimica Acta, 1977, vol. 18, pp. 319–22.

    Article  CAS  Google Scholar 

  27. J.D. Ford and M. A. Fahim:Metall. Trans. B, 1975, vol. 6B, pp. 461–64.

    CAS  Google Scholar 

  28. T. R. Mankhand, G. Singh, and P. M. Prasad:Trans. Indian Inst. Metals, 1978, vol. 31, pp. 194–200.

    CAS  Google Scholar 

  29. Y. K. Tang: Ph.D. Thesis, The Ohio State University, Columbus, OH, 1976.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mankhand, T.R., Prasad, P.M. Lime-enhanced hydrogen reduction of molybdenite. Metall Trans B 13, 275–282 (1982). https://doi.org/10.1007/BF02664585

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02664585

Keywords

Navigation