Skip to main content
Log in

Preparation of sodium molybdate from molybdenum concentrate by microwave roasting and alkali leaching

  • Research Article
  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

The preparation process of sodium molybdate has the disadvantages of high energy consumption, low thermal efficiency, and high raw material requirement of molybdenum trioxide, in order to realize the green and efficient development of molybdenum concentrate resources, this paper proposes a new process for efficient recovery of molybdenum from molybdenum concentrate and preparation of sodium molybdate by microwave-enhanced roasting and alkali leaching. Thermodynamic analysis indicated the feasibility of oxidation roasting of molybdenum concentrate. The effects of roasting temperature, holding time, and power-to-mass ratio on the oxidation product and leaching product sodium molybdate (Na2MoO4·2H2O) were investigated. Under the optimal process conditions: roasting temperature of 700°C, holding time of 110 min, and power-to-mass ratio of 110 W/g, the molybdenum state of existence was converted from MoS2 to MoO3. The process of preparing sodium molybdate by alkali leaching of molybdenum calcine was investigated, the optimal leaching conditions include a solution concentration of 2.5 mol/L, a liquid-to-solid ratio of 2 mL/g, a leaching temperature of 60°C, and leaching solution termination at pH 8. The optimum conditions result in a leaching rate of sodium molybdate of 96.24%. Meanwhile, the content of sodium molybdate reaches 94.08wt% after leaching and removing impurities. Iron and aluminum impurities can be effectively separated by adjusting the pH of the leaching solution with sodium carbonate solution. This research avoids the shortcomings of the traditional process and utilizes the advantages of microwave metallurgy to prepare high-quality sodium molybdate, which provides a new idea for the high-value utilization of molybdenum concentrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Q.S. Zhou, W.T. Yun, J.T. Xi, et al., Molybdenite–limestone oxidizing roasting followed by calcine leaching with ammonium carbonate solution, Trans. Nonferrous Met. Soc. China, 27(2017), No. 7, p. 1618.

    Article  CAS  Google Scholar 

  2. W. Yang, B.J. Deng, L.Q. Hou, et al., Sulfur-fixation strategy toward controllable synthesis of molybdenum-based/carbon nanosheets derived from petroleum asphalt, Chem. Eng. J., 380(2020), art. No. 122552.

  3. O.P. Parenago, G.N. Kuz’mina, and T.A. Zaimovskaya, Sulfurcontaining molybdenum compounds as high-performance lubricant additives (Review), Pet. Chem., 57(2017), No. 8, p. 631.

    Article  CAS  Google Scholar 

  4. S. Kapri and S. Bhattacharyya, Molybdenum sulfide-reduced graphene oxide p–n heterojunction nanosheets with anchored oxygen generating manganese dioxide nanoparticles for enhanced photodynamic therapy, Chem. Sci., 9(2018), No. 48, p. 8982.

    Article  CAS  Google Scholar 

  5. R.R. Mendel and F. Bittner, Cell biology of molybdenum, Biochim. Biophys. Acta, 1763(2006), No. 7, p. 621.

    Article  CAS  Google Scholar 

  6. B.N. Kaiser, K.L. Gridley, J. Ngaire Brady, T. Phillips, and S.D. Tyerman, The role of molybdenum in agricultural plant production, Ann. Bot., 96(2005), No. 5, p. 745.

    Article  CAS  Google Scholar 

  7. S.C. Wang and L.Z. Wang, Recent progress of tungsten- and molybdenum-based semiconductor materials for solar-hydrogen production, Tungsten, 1(2019), No. 1, p. 19.

    Article  Google Scholar 

  8. W.W. Zhang, C.Y. Li, W.J. Wang, et al., Laminarin and sodium molybdate as efficient sustainable inhibitor for Q235 steel in sodium chloride solution, Colloids Surf., A, 637(2022), art. No. 128199.

  9. D.Q. Wang, M. Wu, J. Ming, and J.J. Shi, Inhibitive effect of sodium molybdate on corrosion behaviour of AA6061 aluminium alloy in simulated concrete pore solutions, Constr. Build. Mater., 270(2021), art. No. 121463.

  10. Y. Zhou, Y. Zuo, and B. Lin, The compounded inhibition of sodium molybdate and benzotriazole on pitting corrosion of Q235 steel in NaCl+NaHCO3 solution, Mater. Chem. Phys., 192(2017), p. 86.

    Article  CAS  Google Scholar 

  11. O. Lopez-Garrity and G.S. Frankel, Corrosion inhibition of aluminum alloy 2024-T3 by sodium molybdate, J. Electrochem. Soc., 161(2013), No. 3, p. C95.

    Article  Google Scholar 

  12. M.M. Heravi and M. Zakeri, Use of sodium molybdate dihydrate as an efficient heterogeneous catalyst for the synthesis of benzopyranopyrimidine derivatives, Synth. React. Inorg. Met. Org. Nano Met. Chem., 43(2013), No. 2, p. 211.

    Article  CAS  Google Scholar 

  13. F. Torun, B. Hostins, P. De Schryver, N. Boon, and J. De Vrieze, Molybdate effectively controls sulphide production in a shrimp pond model, Environ. Res., 203(2022), art. No. 111797.

  14. J. Bolitschek, S. Luidold, and M. O’Sullivan, A study of the impact of reduction conditions on molybdenum morphology, Int. J. Refract. Met. Hard Mater., 71(2018), p. 325.

    Article  CAS  Google Scholar 

  15. L. Wang, G.H. Zhang, J.S. Wang, and K.C. Chou, Influences of different components on agglomeration behavior of MoS2 during oxidation roasting process in air, Metall. Mater. Trans. B, 47(2016), No. 4, p. 2421.

    Article  Google Scholar 

  16. J.D. Lessard, D.G. Gribbin, and L.N. Shekhter, Recovery of rhenium from molybdenum and copper concentrates during the Looping Sulfide Oxidation process, Int. J. Refract. Met. Hard Mater., 44(2014), p. 1.

    Article  CAS  Google Scholar 

  17. R. Jakhar, J.E. Yap, and R. Joshi, Microwave reduction of graphene oxide, Carbon, 170(2020), p. 277.

    Article  CAS  Google Scholar 

  18. J.P. Wang, T. Jiang, Y.J. Liu, and X.X. Xue, Influence of microwave treatment on grinding and dissociation characteristics of vanadium titano-magnetite, Int. J. Miner. Metall. Mater., 26(2019), No. 2, p. 160.

    Article  CAS  Google Scholar 

  19. Y. He, J. Liu, J.H. Liu, C.L. Chen, and C.L. Zhuang, Carbothermal reduction characteristics of oxidized Mn ore through conventional heating and microwave heating, Int. J. Miner. Metall. Mater., 28(2021), No. 2, p. 221.

    Article  CAS  Google Scholar 

  20. S. Das, A.K. Mukhopadhyay, S. Datta, and D. Basu, Prospects of microwave processing: An overview, Bull. Mater. Sci., 31(2008), No. 7, p. 943.

    Article  CAS  Google Scholar 

  21. R.M. Anklekar, D.K. Agrawal, and R. Roy, Microwave sintering and mechanical properties of PM copper steel, Powder Metall., 44(2001), No. 4, p. 355.

    Article  CAS  Google Scholar 

  22. J. Liu, C.H. Liu, Y. Hong, and L.B. Zhang, Basic study on microwave carbon-thermal reduction senarmontite (Sb2O3) to produce antimony: High-temperature dielectric properties and a microwave reduction mechanism, Powder Technol., 389(2021), p. 482.

    Article  CAS  Google Scholar 

  23. V.Kvapilová, Evaluation of microwave drying effects on historical brickwork and modern building materials, IOP Conf. Ser.: Mater. Sci. Eng., 867(2020), No. 1, art. No. 012026.

  24. M. Oghbaei and O. Mirzaee, Microwave versus conventional sintering: A review of fundamentals, advantages and applications, J. Alloys Compd., 494(2010), No. 1–2, p. 175.

    Article  CAS  Google Scholar 

  25. G.Y. Zhu, Z.W. Peng, L. Yang, H.M. Tang, X.L. Fang, and M.J. Rao, Facile preparation of thermal insulation materials by microwave sintering of ferronickel slag and fly ash cenosphere, Ceram. Int., 49(2023), No. 8, p. 11978.

    Article  CAS  Google Scholar 

  26. P. Parhi and P. Misra, Hydrometallurgical investigation routed through microwave (MW) assisted leaching and solvent extraction using ionic liquids for extraction and recovery of molybdenum from spent desulphurization catalyst, Inorg. Chem. Commun., 149(2023), p. 110394.

    Article  CAS  Google Scholar 

  27. P.K. Parhi and P.K. Misra, Environmental friendly approach for selective extraction and recovery of molybdenum (Mo) from a sulphate mediated spent Ni-Mo/Al2O3 catalyst baked leach liquor, J. Environ. Manage., 306(2022), art. No. 114474.

  28. S. Kan, K. Benzeşik, Ö.C. Odabaş, and O. Yücel, Investigation of molybdenite concentrate roasting in chamber and rotary furnaces, Min. Metall. Explor., 38(2021), No. 3, p. 1597.

    Google Scholar 

  29. Y.L. Jiang, B.G. Liu, P. Liu, J.H. Peng, L.B. Zhang, Dielectric characterization and microwave roasting of molybdenite concentrates at 915 MHz frequency, J. Harbin Inst. Technol. (New Series), 26(2019), No. 3, p. 58.

    Google Scholar 

  30. M. Pervaiz, A. Munawar, S. Hussain, et al., A green approach for extraction of ammonium molybdate from molybdenite using indigenous resources, Pol. J. Environ. Stud., 30(2021), No. 2, p. 1771.

    Article  CAS  Google Scholar 

  31. M.P. Zhang, C.H. Liu, X.J. Zhu, et al., Preparation of ammonium molybdate by oxidation roasting of molybdenum concentrate: A comparison of microwave roasting and conventional roasting, Chem. Eng. Process.: Process. Intensif., 167(2021), art. No. 108550.

  32. M.D. Lane, J.L. Bishop, M.D. Dyar, et al., Mid-infrared emission spectroscopy and visible/near-infrared reflectance spectroscopy of Fe-sulfate minerals, Am. Mineral., 100(2015), No. 1, p. 66.

    Article  Google Scholar 

  33. L. Wang, G.H. Zhang, J. Dang, and K.C. Chou, Oxidation roasting of molybdenite concentrate, Trans. Nonferrous Met. Soc. China, 25(2015), No. 12, p. 4167.

    Article  CAS  Google Scholar 

  34. H. Sun, G.H. Li, Q.Z. Bu, et al., Features and mechanisms of self-sintering of molybdenite during oxidative roasting, Trans. Nonferrous Met. Soc. China, 32(2022), No. 1, p. 307.

    Article  CAS  Google Scholar 

  35. C. Kansomket, P. Laokhen, T. Yingnakorn, T. Patcharawit, and S. Khumkoa, Extraction of molybdenum from a spent HDS catalyst using alkali leaching reagent, J. Met. Mater. Miner., 32(2022), No. 2, p. 88.

    Article  CAS  Google Scholar 

  36. C. Wang, Y.F. Guo, S. Wang, et al., Characteristics of the reduction behavior of zinc ferrite and ammonia leaching after roasting, Int. J. Miner. Metall. Mater., 27(2020), No. 1, p. 26.

    Article  Google Scholar 

  37. Y.I. Nam, S.Y. Seo, Y.C. Kang, M.J. Kim, G. Senanayake, and T. Tran, Purification of molybdenum trioxide calcine by selective leaching of copper with HCl-NH4Cl, Hydrometallurgy, 109(2011), No. 1–2, p. 9.

    Article  CAS  Google Scholar 

  38. H. Sun, J.J. Yu, G.H. Li, et al., Co-volatilizing-water leaching process for efficient utilization of rhenium-bearing molybdenite concentrate, Hydrometallurgy, 192(2020), art. No. 105284.

  39. J.H. Chen, D. Tang, S.P. Zhong, W. Zhong, and B.Z. Li, The influence of micro-cracks on copper extraction by bioleaching, Hydrometallurgy, 191(2020), art. No. 105243.

  40. L.P. Jia, Z.W. Zhao, X.H. Liu, and L.H. He, Recovery of valuable metals from molybdenum-removal sludge by reverse sulfurization leaching, Hydrometallurgy, 193(2020), art. No. 105323.

  41. Y.B. Li, Q.H. Xiao, Z.M. Li, and Gerson A, Enhanced leaching of Mo by mechanically co-grinding and activating MoS2 with NaClO3 as an oxidizing additive, Hydrometallurgy, 203(2021), art. No. 105625.

  42. S. Ali, Y. Iqbal, I. Khan, et al., Hydrometallurgical leaching and kinetic modeling of low-grade manganese ore with banana peel in sulfuric acid, Int. J. Miner. Metall. Mater., 28(2021), No. 2, p. 193.

    Article  CAS  Google Scholar 

  43. J. Liu, Z.F. Qiu, J. Yang, L.M. Cao, and W. Zhang, Recovery of Mo and Ni from spent acrylonitrile catalysts using an oxidation leaching-chemical precipitation technique, Hydrometallurgy, 164(2016), p. 64.

    Article  CAS  Google Scholar 

  44. Z.X. Liu, L. Sun, J. Hu, et al., Selective extraction of molybdenum from copper concentrate by air oxidation in alkaline solution, Hydrometallurgy, 169(2017), p. 9.

    Article  CAS  Google Scholar 

  45. P. Wang, Y.J. Pan, X. Sun, and Y.Q. Zhang, Leaching molybdenum from a low-grade roasted molybdenite concentrate, SN Appl. Sci., 1(2019), No. 4, art. No. 311.

  46. M. Vosough, G.R. Khayati, and S. Sharafi, Ammonia leaching of MoO3 concentrate: Finding the reaction mechanism and kinetics analysis, Chem. Pap., 76(2022), No. 5, p. 3227.

    Article  CAS  Google Scholar 

  47. Z.P. Zhao, M. Guo, and M. Zhang, Extraction of molybdenum and vanadium from the spent diesel exhaust catalyst by ammonia leaching method, J. Hazard. Mater., 286(2015), p. 402.

    Article  CAS  Google Scholar 

  48. Y. Liu, Y.F. Zhang, F.F. Chen, and Y. Zhang, The alkaline leaching of molybdenite flotation tailings associated with galena, Hydrometallurgy, 129–130(2012), p. 30.

    Article  Google Scholar 

  49. Y. Guo, H.Y. Li, Y.H. Yuan, et al., Microemulsion leaching of vanadium from sodium-roasted vanadium slag by fusion of leaching and extraction processes, Int. J. Miner. Metall. Mater., 28(2021), No. 6, p. 974.

    Article  CAS  Google Scholar 

  50. G.J. Olson and T.R. Clark, Bioleaching of molybdenite, Hydrometallurgy, 93(2008), No. 1–2, p. 10.

    Article  CAS  Google Scholar 

  51. Y.F. Fu, Q.G. Xiao, Y.Y. Gao, P.G. Ning, H.B. Xu, and Y. Zhang, Pressure aqueous oxidation of molybdenite concentrate with oxygen, Hydrometallurgy, 174(2017), p. 131.

    Article  CAS  Google Scholar 

  52. J.P. Wang, Y.M. Zhang, J. Huang, and T. Liu, Synergistic effect of microwave irradiation and CaF2 on vanadium leaching, Int. J. Miner. Metall. Mater., 24(2017), No. 2, p. 156.

    Article  CAS  Google Scholar 

  53. S.A. Kapole, B.A. Bhanvase, D.V. Pinjari, et al., Investigation of corrosion inhibition performance of ultrasonically prepared sodium zinc molybdate nanopigment in two-pack epoxy-polyamide coating, Compos. Interfaces, 21(2014), No. 9, p. 833.

    Article  CAS  Google Scholar 

  54. S. Nakagaki, A. Bail, V.C. dos Santos, et al., Use of anhydrous sodium molybdate as an efficient heterogeneous catalyst for soybean oil methanolysis, Appl. Catal. A, 351(2008), No. 2, p. 267.

    Article  CAS  Google Scholar 

  55. Y. Mochizuki, J. Bud, J.Q. Liu, M. Takahashi, and N. Tsubouchi, Adsorption of phosphate from aqueous using iron hydroxides prepared by various methods, J. Environ. Chem. Eng., 9(2021), No. 1, art. No. 104645.

  56. S.Q. Wang, J. Xie, J.D. Hu, H.Y. Qin, and Y.L. Cao, Fe-doped α-MoO3 nanoarrays: Facile solid-state synthesis and excellent xylene-sensing performance, Appl. Surf. Sci., 512(2020), art. No. 145722.

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51964046).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chenhui Liu or Srinivasakannan Chandrasekar.

Ethics declarations

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, F., Liu, C., Chandrasekar, S. et al. Preparation of sodium molybdate from molybdenum concentrate by microwave roasting and alkali leaching. Int J Miner Metall Mater 31, 91–105 (2024). https://doi.org/10.1007/s12613-023-2727-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-023-2727-1

Keywords

Navigation