Skip to main content
Log in

Quantal currents and potential in the three-dimensional anisotropic bidomain model of smooth muscle

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The potential generated in the smooth muscle of the vas deferens on release of a quantum of transmitter from a varicosity was analyzed using a three-dimensional bidomain continuum model. Current was injected at the origin of the bidomain; this current had the temporal characteristics of the junctional current. The membrane potential, intracellular potential, and extracellular potential, as well as the extracellular current, were then calculated throughout the bidomain at different times. Calculations were performed to show the effect of changing the anisotropy ratios of the intracellular and extracellular conductivities on the spread of current and potential in each of the three dimensions. These results provide a theoretical framework for ascertaining the time course of transmitter interaction at a varicosity following the secretion of a quantum of transmitter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amedee, T., C. Mironneau and J. Mironneau. 1987. The calcium channel current of pregnant rat single myometrial cells in short-term primary culture.J. Physiol. 392, 253–272.

    Google Scholar 

  • Bennett, M. R. 1972.Automatic Neuromuscular Transmission. Monographs of the Physiological Society. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Bennett, M. R. 1973. Structure and electrical properties of the autonomic neuromuscular junction.Phil. Trans. R. Soc. Lond B265, 25–34.

    Google Scholar 

  • Bennett, M. R., L. Farnell, W. G. Gibson and N. A. Lavidis. 1997. Synaptic transmission at visualized sympathetic boutons: stochastic interaction between acetylcholine and its receptors.Biophys. J. (in press).

  • Bennett, M. R., L. Farnell, W. G. Gibson and S. Karunanithi. 1995. Quantal transmission at purinergic junctions: stochastic interaction between ATP and its receptors.Biophys. J. 68, 925–935.

    Google Scholar 

  • Bennett, M. R. and W. G. Gibson. 1995. On the contribution of quantal secretion from close-contact and loose-contact varicosities to the synaptic potentials in the vas deferens.Phil. Trans. R. Soc. Lond. 347, 187–204.

    Google Scholar 

  • Bennett, M. R., W. G. Gibson and R. R. Poznanski. 1993. Extracellular current flow and potential during quantal transmission from varicosities in a smooth muscle syncytium.Phil. Trans. R. Soc. Lond. B 342, 89–99.

    Google Scholar 

  • Beyer, E. C., D. L. Paul and D. A. Goodenough. 1987. Connexin-43: a protein from rat heart homologous to a gap junction protein from liver.J. Cell Biol. 105, 2621–2629.

    Article  Google Scholar 

  • Beyer, E. C., J. Kistler, D. L. Paul and D. A. Goodenough. 1989. Antisera directed against connexin-43 peptides react with a 43-kD protein localized to gap junctions in myocardium and other tissues.J. Cell Biol. 108, 595–605.

    Article  Google Scholar 

  • Beyer, E. C., D. L. Paul and D. A. Goodenough. 1990. Connexin family of gap junction proteins.J. Membr. Biol. 116, 187–194.

    Article  Google Scholar 

  • Blennerhassett, M. G., M. S. Kannan and R. E. Garfield. 1987. Functional characterisation of cell-to-cell coupling in cultured rat aortic smooth muscle.Am. J. Physiol. 252, C555-C569.

    Google Scholar 

  • Bolton, T. B., R. J. Lang, T. Takewaki and C. D. Benhan. 1985. Patch and whole-cell voltage clamp of single mammalian visceral and vascular smooth muscle cells.Experientia 41, 887–894.

    Article  Google Scholar 

  • Bozler, E. 1938a. Electric stimulation and conduction of excitation in smooth muscle.Am. J. Physiol. 122, 614–623.

    Google Scholar 

  • Bozler, E. 1938b. The action potentials of visceral, smooth muscle.Am. J. Physiol. 124, 502–510.

    Google Scholar 

  • Bozler, E. 1948. Conduction, automaticity and tonus of visceral muscles.Experientia 4, 213–218.

    Article  Google Scholar 

  • Brock, J. and T. Cunnane. 1987. Characteristics features of transmitter release from sympathetic nerve terminals.Blood Vessels 24, 253–260.

    Google Scholar 

  • Bukauskas, F. F., R. P. Veteikis and A. M. Gutman. 1975. Model of a passive 3-dimensional anisotropic syncytium as a continuous medium.Biofizika 20, 1083–1086.

    Google Scholar 

  • Bukauskas, F., A. Bytautas, A. Gutman and R. Veteikis. 1991. Simulation of passive electric properties in two- and three-dimensional anisotropic syncytial media. InIntracellular Communication F. Bukauskas (Ed.). Manchester, NY: Manchester University Press.

    Google Scholar 

  • Bulbring, E. 1955. Correlation between membrane potentials spike discharge, and tension in smooth muscle.J. Physiol. 128, 200–221.

    Google Scholar 

  • Bulbring, E., G. Burnstock and M. E. Holman. 1958. Excitation and conduction in the smooth mussel of the isolated taenia coli of the guinea pig.J. Physiol. 142, 420–437.

    Google Scholar 

  • Burnstock, G. and M. E. Holman. 1962. Spontaneous potentials at sympathetic nerve endings in smooth muscle.J. Physiol. 160, 446–460.

    Google Scholar 

  • Bywater, R. A. R. and G. S. Taylor. 1980. The passive membrane properties and excitatory junction potentials of the guinea-pig vas deferens.J. Physiol. 300, 303–316.

    Google Scholar 

  • Carrier, G. F., M. Krook and C. E. Pearson. 1966.Functions of a Complex Variable: Theory and Technique. New York: McGraw-Hill.

    MATH  Google Scholar 

  • Clerc, L. 1976. Directional differences in impulse speed in trabecular muscle from mammalian heart.J. Physiol. Lond. 255, 335–346.

    Google Scholar 

  • Daniel, E., Y. Sakai, J. E. Fox and V. Posey-Daniel. 1984. Structural basis for function of circular muscle of canine corpus.Can. J. Physiol. Pharmacol. 62, 1304–1314.

    Google Scholar 

  • Davies, L., Jr. and R. Lorente de Nó. 1947. Contribution to the mathematical theory of the electrotonus.Stud. Rockefeller Inst. Med. Res. 131, 442–496.

    Google Scholar 

  • Eccles, J. C. and J. W. Magladery. 1937. The excitation and response of smooth muscle.J. Physiol. 90, 31–67.

    Google Scholar 

  • Eisenberg, R. S., V. Barcilon and R. T. Mathias. 1979. Electrical properties of spherical syncytia.Biophys. J. 25, 151–180.

    Google Scholar 

  • Engelmann, T. W. 1869. Zur Physiologie des Ureter.Pflugers Arch. 2, 243–293.

    Article  Google Scholar 

  • Gabella, G. and D. Blundell. 1981. Gap junctions of the muscles of the small and large intestine.Cell Tissue Res. 219, 469–488.

    Article  Google Scholar 

  • Geselowitz, D. B. and W. T. Miller. 1983. A bidomain model for anisotropic cardiac muscle.Ann. Biomed. Eng. 11, 191–206.

    Article  Google Scholar 

  • Henriquez, C. S. 1993. Simulating the electrical behaviour of cardiac tissue using the bidomain model.Crit. Rev. Biomed. Eng. 21, 1–77.

    Google Scholar 

  • Henriquez, C. S. and R. Plonsey. 1990. Simulation of propagation along a cylindrical bundle of cardiac tissue-II: results of simulation.IEEE Trans. Biomed. Eng. 37, 861–875.

    Article  Google Scholar 

  • Hirst, G. D. S. and T. O. Neild. 1978. An analysis of excitatory junction potentials recorded from arterioles.J. Physiol. 280, 87–109.

    Google Scholar 

  • Hoyt, R., M. Cohen and J. Saffitz. 1989. Distribution and three-dimensional structure of intercellular junctions in canine myocardium.Circ. Res. 64, 563–574.

    Google Scholar 

  • Huizinga, J. and E. Chow, 1988. Electronic current spread in colonic smooth muscle.Am. J. Physiol. 254, G702-G710.

    Google Scholar 

  • Jack, J. J. B., D. Noble and R. W. Tsien. 1975.Electric Current Flow in Excitable Cells. Oxford: Oxford University Press.

    Google Scholar 

  • Larson, D., R. Gilbert and E. Beyer. 1992. Two dimensional coupling by gap junctions in cultured gastric smooth muscle monolayers.Am. J. Physiol. 263, G261-G268.

    Google Scholar 

  • Lavidis, N. A. and M. R. Bennett. 1992. Probabilistic secretion of quanta from visualized sympathetic nerve varicosities in mouse vas deferens.J. Physiol. 454, 9–26.

    Google Scholar 

  • Muler, A. L. and V. S. Markin. 1977a. Electrical properties of anisotropic neuromuscular syncytia. I. Distribution of electronic potential.Biofizika 22, 307–312.

    Google Scholar 

  • Muler, A. L. and V. S. Markin. 1977b. Electrical properties of anisotropic neuromuscular syncytia. II. Distribution of a flat front of excitation.Biofizika 22, 518–522.

    Google Scholar 

  • Muler, A. L. and V. S. Markin. 1977c. Electrical properties of anisotropic neuromuscular syncytia. III. Steady state of front of excitation.Biofizika 22, 671–675.

    Google Scholar 

  • Myint-U, T. and L. Debnath. 1987.Partial Differential Equations for Scientists, and Engineers. New York: North Holland.

    MATH  Google Scholar 

  • Nakazawa, K., N. Matsuki, K. Shigenobu and Y. Kasuya. 1987. Contractile response and electrophysiological properties in enzymatically dispersed smooty muscle cells of rat vas deferens.Pflugers Arch. Eur. J. Physiol. 408, 112–119.

    Article  Google Scholar 

  • Neunlist, M. and L. Tung. 1995. Spatial distribution of cardiac potentials around an extracellular electrode: dependence on fiber orientation.Biophys. J. 68, 2310–2322.

    Google Scholar 

  • Peskoff, A. 1979. Electric potential in three-dimensional electrically syncytial tissues.Bull. Math. Biol. 41, 163–181.

    MATH  Google Scholar 

  • Plonsey, R. 1989. The use of a bidomain model for the study of excitable media.Lectures Math. Life Sci. 21, 123–148.

    MATH  MathSciNet  Google Scholar 

  • Plonsey, R., C. S. Henriquez and N. Trayanova. 1988. Extracellular (volume conductor) effect on adjoining cardiac muscle electrophysiology.Med. Biol. Eng. Comput.,26, 126–129.

    Article  Google Scholar 

  • Pollard, A. E., N. Hooke and C. S. Henriquez. 1992. Cardiac propagation simulation.Crit. Rev. Biomed. Eng. 20, 171–210.

    Google Scholar 

  • Prosser, C. L., C. E. Smith and C. E. Melton. 1955. Conduction of action potentials in the ureter of the rat.Am. J. Physiol. 181, 651–660.

    Google Scholar 

  • Prosser, C. L. and N. Sperelakis. 1956. Transmission in ganglion free circular muscle from the cat intestine.Am. J. Physiol. 187, 536–545.

    Google Scholar 

  • Purves, R. 1976. Current flow and potential in a three-dimensional syncytium.J. Theoret. Biol. 60, 147–162.

    Article  Google Scholar 

  • Roberts, D., L. Hersh, and A. Scher. 1979. Influence of cardiac fiber orientation on wavefront voltage, conduction velocity and resistivity in the dog.Circ. Res. 44, 701–712.

    Google Scholar 

  • Roberts, K. V. and N. O. Weiss, 1965. Convective difference schemes.Math. Comp. 20, 272–299.

    Article  MathSciNet  Google Scholar 

  • Rosenbleuth, A. and D. M. Rioch. 1993. Temporal and spatial summation in autonomic systems.Am. J. Physiol. 106, 365–380.

    Google Scholar 

  • Rosenbleuth, A. 1936. Neuromuscular transmission in somatic and autonomic systems.Cold Spring Harb. Symp. Quant. Biol. 4, 132–142.

    Google Scholar 

  • Roth, B. J. 1992. How the anisotropy of the intracellular and extracellular conductivities influences stimulation of cardiac muscle.J. Math. Biol. 30, 633–646.

    Article  MATH  Google Scholar 

  • Sepulveda, N. G. and J. P. Wilswo. 1987. Electric and magnetic fields from two-dimensional anisotropic bisyncytia.Biophys. J. 51, 557–568.

    Google Scholar 

  • Sepulveda, N. G., B. J. Roth and J. P. Wikswo. 1989. Current injection into a two-dimensional anisotropic bidomain.Biophys. J. 55, 987–999.

    Article  Google Scholar 

  • Tiegs, O. W. 1925. The nerve net of plain muscle and its relation to automatic rhythmic movements.Aust. J. Exp. Biol. Med. Sci. 2, 157–166.

    Google Scholar 

  • Tomita, T. 1990. Spread of excitation in smooth muscle.Prog. Clin. Biol. Res. 327, 361–373.

    Google Scholar 

  • Toro, L. and E. Stefani, 1987. Ca2+ and K+ current in cultured vascular smooth muscle cells from rat aorta.Pflugers Arch. Eur. J. Physiol. 408, 417–419.

    Article  Google Scholar 

  • Tung, L. 1979. Three dimensional cable theory: a bidomain model.Biophys. J. 25, 214a.

    MathSciNet  Google Scholar 

  • Veenstra, R. and R. de Haan. 1988. Cardiac gap junction channel activity in embryonic chick ventricle cells.Am. J. Physiol. 254, H170-H180.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henery, R., Gibson, W.G. & Bennett, M.R. Quantal currents and potential in the three-dimensional anisotropic bidomain model of smooth muscle. Bltn Mathcal Biology 59, 1047–1075 (1997). https://doi.org/10.1007/BF02460101

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02460101

Keywords

Navigation