Skip to main content

Two-Dimensional (2D)-Based Hybrid Composites for Cancer Diagnosis and Therapy

  • Chapter
  • First Online:
Two-dimensional Hybrid Composites

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 160 Accesses

Abstract

Cancer is the deadliest disease that has affected human health all over the world. Despite the much research that has been done in this field so far, there is an urgent need for improved techniques for diagnosis and treatment of cancer. In recent years, innovative nanomaterial-assisted therapies and diagnostics have led to significant enhancements in cancer treatment. In this context, two-dimensional nanomaterials (2DNMs) and their nanocomposites have been explored for cancer diagnostics and therapy due to their unique shape, size, chemical composition, biodegradability, and biocompatibility. The studies indicate that 2DNMs have significant potential in biomedicine, particularly in multimodal imaging, biosensors, drug/gene delivery, and cancer therapy. Due to high specific surface area, 2DNMs can efficiently adsorb molecules via covalent or non-covalent interactions and usage as carriers in controlled release systems in response to external stimuli. In addition, unique sheet-like nanostructures and photothermal converting ability led to 2DNMs being promising candidates for optical therapies such as photothermal therapy (PTT), photodynamic therapy (PDT), and theranostic. Furthermore, integrating 2DNMs in nanocomposites with further functional moieties become a new class of therapeutic agents in biomedicine substantially improving their features for synergistic cancer diagnosis and therapy. This chapter highlights the current state and benefits of using 2DNMs in cancer diagnosis and therapy and discusses the obstacles and prospects of their future development. Then we focus on 2DNMs applications in cancer treatment including smart drug delivery systems, PTT, and PDT. Lastly, the 2DNMs biocompatibility is also discussed to provide a unique overview of the topic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abedi, M., Abolmaali, S.S., Heidari, R., Samani S.M.,Tamaddon, A.M.: Hierarchical mesoporous zinc-imidazole dicarboxylic acid MOFs: surfactant-directed synthesis, pH-responsive degradation, and drug delivery. Int. J. Pharm. 602,120685 (2021)

    Google Scholar 

  2. Alimardani, V., Abolmaali, S.S., Tamaddon, A.M., Ashfaq, M.: Recent advances on microneedle arrays-mediated technology in cancer diagnosis and therapy. Drug Deliv. Transl. Res. 11, 788–816 (2021)

    Google Scholar 

  3. Alipour, S., Shirazi, H.C., Kazemi, M., Dehshahri, A., Ahmadi, F.: Synthesis and cytotoxicity evaluation of doxorubicin-polyethyleneimine conjugate as a potential carrier for dual delivery of drug and gene. J. Drug Deliv. Sci. Technol. 68,102994 (2022)

    Google Scholar 

  4. Alimardani, V., Farahavar, G., Salehi, S., Taghizadeh, S., Ghiasi, M.R., Abolmaali, S.S.: Gold nanocages in cancer diagnosis, therapy, and theranostics: a brief review. Front. Mater. Sci. 15, 494–511 (2021)

    Google Scholar 

  5. Taghizadeh, S., Alimardani, V., Roudbali, P.L., Ghasemi, Y., Kaviani, E.: Gold nanoparticles application in liver cancer. Photodiagnosis Photodyn. Ther. 25, 389–400 (2019)

    Google Scholar 

  6. Alimardani, V., et al.: Nanotechnology-based cell-mediated delivery systems for cancer therapy and diagnosis. Drug Deliv. Transl. Res. 13, 189–221 (2023)

    Google Scholar 

  7. Chen, W., et al.: Black phosphorus nanosheet-based drug delivery system for synergistic photodynamic/photothermal/chemotherapy of cancer. Adv. Mater. (Deerfield Beach, Fla) 29 (2017)

    Google Scholar 

  8. Peng, L., et al.: Monolayer nanosheets with an extremely high drug loading toward controlled delivery and cancer. Theranostics Adv. Mater. (Deerfield Beach, Fla) 30, e1707389 (2018)

    Google Scholar 

  9. Alimardani, V, Abolmaali, S.S., Borandeh, S.: Antifungal and antibacterial properties of graphene-based nanomaterials: a mini-review. J. Nanostructures 9, 402–413 (2019)

    Google Scholar 

  10. Borandeh, S., Alimardani, V., Abolmaali, S.S., Seppala, J.: Graphene family nanomaterials in ocular applications: physicochemical properties and toxicity. Chem. Res. Toxicol. 34, 1386–1402 (2021)

    Article  Google Scholar 

  11. Novoselov, K.S., et al.: Electric field effect in atomically thin carbon films science 306, 666–669 (2004)

    Google Scholar 

  12. Ashfaq, M., Talreja, N., Chauhan, D., Afreen, S., Sultana, A., Srituravanich, W.: Two-dimensional (2D) hybrid nanomaterials for diagnosis and treatment of cancer. J. Drug Deliv. Sci. Technol. 103268 (2022)

    Google Scholar 

  13. Chen, Y., et al.: Two-dimensional metal nanomaterials: synthesis. Prop., Appl. Chem. Rev. 118, 6409–6455 (2018)

    Google Scholar 

  14. Wang, X., Cheng, L.: Multifunctional two-dimensional nanocomposites for photothermal-based combined cancer therapy. Nanoscale 11, 15685–15708 (2019)

    Google Scholar 

  15. Zhang, H., Fan, T., Chen, W., Li, Y., Wang, B.: Recent advances of two-dimensional materials in smart drug delivery nano-systems. Bioact. Mater. 5, 1071–1086 (2020)

    Google Scholar 

  16. Gong, L., Yan, L., Zhou, R., Xie, J., Wu, W., Gu, Z.: Two-dimensional transition metal dichalcogenide nanomaterials for combination cancer therapy. J. Mater. Chem. B 5, 1873–1895 (2017)

    Google Scholar 

  17. Luo, S., et al.: Multifunctional photosensitizer grafted on polyethylene glycol and polyethylenimine dual-functionalized nanographene oxide for cancer-targeted near-infrared imaging and synergistic phototherapy. ACS Appl. Mater. Interfaces 8, 17176–17186 (2016)

    Article  Google Scholar 

  18. Yang, G., et al.: Manganese dioxide coated WS2@ Fe3O4/sSiO2 nanocomposites for pH‐responsive MR imaging and oxygen‐elevated synergetic therapy. Small 14, 1702664 (2018)

    Google Scholar 

  19. Li, H., Fan, R., Zou, B., Yan, J., Shi, Q., Guo, G.: Roles of MXenes in biomedical applications: recent developments and prospects. Journal of Nanobiotechnology 21, 1–39 (2023)

    Google Scholar 

  20. Hong, X., Tan, C., Chen, J., Xu, Z., Zhang, H.: Synthesis, properties and applications of one-and two-dimensional gold nanostructures. Nano Res. 8, 40–55 (2015)

    Google Scholar 

  21. Nosheen, F., et al.: Ultrathin Pd-based nanosheets: syntheses, properties and applications. Nanoscale 12, 4219–4237 (2020)

    Google Scholar 

  22. Mishra, G., Dash, B., Pandey, S.: Layered double hydroxides: a brief review from fundamentals to application as evolving biomaterials. Appl. Clay Sci. 153, 172–186 (2018)

    Article  Google Scholar 

  23. Fan, J., Sun, M.: Transition metal dichalcogenides (tmdcs) heterostructures: synthesis, excitons and photoelectric properties. Chem. Rec. 22, e202100313 (2022)

    Google Scholar 

  24. Tamang, S., Rai, S., Bhujel, R., Bhattacharyya, N.K., Swain, B.P., Biswas, J.: A concise review on GO, rGO and metal oxide/rGO composites: Fabrication and their supercapacitor and catalytic applications. J. Alloy. Compd. 169588 (2023)

    Google Scholar 

  25. Tian, Y., et al.: Inorganic boron-based nanostructures: synthesis, optoelectronic properties, and prospective applications. Nanomaterials 9, 538 (2019)

    Google Scholar 

  26. Luo, M., Fan, T., Zhou, Y., Zhang, H., Mei, L.: 2D black phosphorus–based biomedical applications. Adv. Funct. Mater. 29, 1808306 (2019)

    Google Scholar 

  27. Qin, Y., Wan, Y., Guo, J., Zhao, M.: Two-dimensional metal-organic framework nanosheet composites: preparations and applications. Chin. Chem. Lett. 33, 693–702 (2022)

    Article  Google Scholar 

  28. Fang, Y., Liu, Y., Qi, L., Xue, Y., Li, Y.: 2D graphdiyne: an emerging carbon material. Chem. Soc. Rev. (2022)

    Google Scholar 

  29. Soltani, A., Faramarzi, M., Farjadian, F., Parsa, S.A.M., Panahi, H.A.: pH-responsive glycodendrimer as a new active targeting agent for doxorubicin delivery. Int. J. Biol. Macromol. 221, 508–522 (2022)

    Google Scholar 

  30. Farjadian, F., Ghasemi, S., Akbarian, M., Hoseini-Ghahfarokhi, M., Moghoofei, M., Doroudian, M.: Physically stimulus-responsive nanoparticles for therapy and diagnosis. Front. Chem. 10 (2022)

    Google Scholar 

  31. Chakraborty, D., Ghosh, D., Kumar, S., Jenkins, D., Chandrasekaran, N., Mukherjee, A.: Nano-diagnostics as an emerging platform for oral cancer detection: Current and emerging trends. Wiley Interdiscip. Rev. Nanomedicine Nanobiotechnology 15, e1830 (2023)

    Article  Google Scholar 

  32. Wen, W., et al.: Recent advances in emerging 2D nanomaterials for biosensing and bioimaging applications. Mater. Today 21, 164–177 (2018)

    Google Scholar 

  33. Wang, L., Xiong, Q., Xiao, F., Duan, H.: 2D nanomaterials based electrochemical biosensors for cancer diagnosis. Biosens. Bioelectron. 89, 136–151 (2017)

    Google Scholar 

  34. Nawrot, W., Drzozga, K., Baluta, S., Cabaj, J., Malecha, K.: A fluorescent biosensors for detection vital body fluids’ agents. Sensors 18, 2357 (2018)

    Google Scholar 

  35. Son, M.H., Park, S.W., Sagong, H.Y., Jung, Y.K.: Recent advances in electrochemical and optical biosensors for cancer biomarker detection. BioChip J. 17, 44–67 (2023)

    Google Scholar 

  36. Mohammadpour-Haratbar, A., Boraei, S.B.A., Zare, Y., Rhee, K.Y., Park, S.-J.: Graphene-based electrochemical biosensors for breast cancer detection. Biosensors 13, 80 (2023)

    Article  Google Scholar 

  37. He, Y., Lin, Y., Tang, H., Pang, D.: A graphene oxide-based fluorescent aptasensor for the turn-on detection of epithelial tumor marker mucin 1 Nanoscale 4, 2054–2059 (2012)

    Google Scholar 

  38. Kadhim, M.M., Rheima, A.M., Abbas, Z.S., Jlood, H.H., Hachim, S.K., Kadhum, W.R.: Evaluation of a biosensor-based graphene oxide-DNA nanohybrid for lung cancer RSC. Advances 13, 2487–2500 (2023)

    Google Scholar 

  39. Hu, Y., et al.: Two-dimensional transition metal dichalcogenide nanomaterials for biosensing applications. Mater. Chem. Front. 1, 24–36 (2017)

    Article  Google Scholar 

  40. Presutti, D., et al.: Transition metal dichalcogenides (TMDC)-based nanozymes for biosensing and therapeutic applications. Materials 15, 337 (2022)

    Google Scholar 

  41. Cai, B., Guo, S., Li, Y.: MoS 2-based sensor for the detection of miRNA in serum samples related to breast cancer. Anal. Methods 10, 230–236 (2018)

    Google Scholar 

  42. Sadighbayan, D., Hasanzadeh, M., Ghafar-Zadeh, E.: Biosensing based on field-effect transistors (FET): recent progress and challenges TrAC. Trends Anal. Chem. 133, 116067 (2020)

    Google Scholar 

  43. Syu, Y.-C., Hsu, W.-E., Lin, C.-T.: Field-effect transistor biosensing: Devices and clinical applications ECS. J. Solid State Sci. Technol. 7, Q3196 (2018)

    Article  Google Scholar 

  44. Mao, S., Chang, J., Pu, H., Lu, G., He, Q., Zhang, H., Chen, J.: Two-dimensional nanomaterial-based field-effect transistors for chemical and biological sensing. Chem. Soc. Rev. 46, 6872–6904 (2017)

    Article  Google Scholar 

  45. Majd, S.M., Salimi, A., Ghasemi, F.: An ultrasensitive detection of miRNA-155 in breast cancer via direct hybridization assay using two-dimensional molybdenum disulfide field-effect transistor biosensor. Biosens. Bioelectron. 105, 6–13 (2018)

    Google Scholar 

  46. Cai, B., Xia, Z., Wang, J., Wu, S., Jin, X.: Reduced graphene oxide-based field effect transistor biosensors for high-sensitivity miRNA21 detection. ACS Appl. Nano Mater. 5, 12035–12044 (2022)

    Google Scholar 

  47. Aziz, A., et al.: Advancements in electrochemical sensing of hydrogen peroxide, glucose and dopamine by using 2D nanoarchitectures of layered double hydroxides or metal dichalcogenides. A review Microchimica Acta 186, 671 (2019)

    Article  Google Scholar 

  48. Khatri, R., Puri, N.K.: Electrochemical studies of biofunctionalized MoS 2 matrix for highly stable immobilization of antibodies and detection of lung cancer protein biomarker. New J. Chem. 46, 7477–7489 (2022)

    Google Scholar 

  49. Jafari-Kashi, A., Rafiee-Pour, H.-A., Shabani-Nooshabadi, M.: A new strategy to design label-free electrochemical biosensor for ultrasensitive diagnosis of CYFRA 21–1 as a biomarker for detection of non-small cell lung cancer. Chemosphere 301, 134636 (2022)

    Google Scholar 

  50. Zhao, L., et al.: A fluorescent biosensor based on molybdenum disulfide nanosheets and protein aptamer for sensitive detection of carcinoembryonic antigen. Sens. Actuators, B Chem. 273, 185–190 (2018)

    Article  Google Scholar 

  51. Oudeng, G., Au, M., Shi, J., Wen, C., Yang, M.: One-step in situ detection of miRNA-21 expression in single cancer cells based on biofunctionalized MoS2 Nanosheets. ACS Appl. Mater. Interfaces 10, 350–360 (2018)

    Google Scholar 

  52. Guo, S., Yang, F., Zhang, Y., Ning, Y., Yao, Q., Zhang, G.-J.: Amplified fluorescence sensing of miRNA by combination of graphene oxide with duplex-specific nuclease. Anal. Methods 6, 3598–3603 (2014)

    Article  Google Scholar 

  53. Cai, B., Wang, S., Huang, L., Ning, Y., Zhang, Z., Zhang, G.J.: Ultrasensitive label-free detection of PNA-DNA hybridization by reduced graphene oxide field-effect transistor biosensor. ACS Nano 8, 2632–2638 (2014)

    Article  Google Scholar 

  54. Lee, S.X., Lim, H.N., Ibrahim, I., Jamil, A., Pandikumar, A., Huang, N.M.: Horseradish peroxidase-labeled silver/reduced graphene oxide thin film-modified screen-printed electrode for detection of carcinoembryonic antigen. Biosens. Bioelectron. 89, 673–680 (2017)

    Article  Google Scholar 

  55. Liu, D., Yang, F., Xiong, F., Gu, N.: The smart drug delivery system and its clinical potential. Theranostics 6, 1306 (2016)

    Google Scholar 

  56. Alimardani, V., Sadat Abolmaali, S., Yousefi, G., Hossein Nowroozzadeh, M., Mohammad Tamaddon, A.: In-situ nanomicelle forming microneedles of poly NIPAAm-b-poly glutamic acid for trans-scleral delivery of dexamethasone. J. Ind. Eng. Chem. 119, 485–498 (2023)

    Article  Google Scholar 

  57. Ghasemi, S., Ahmadi, L., Farjadian, F.: Thermo-responsive PNIPAAm-b-PLA amphiphilic block copolymer micelle as nanoplatform for docetaxel drug release. J. Mater. Sci. 57, 17433–17447 (2022)

    Article  Google Scholar 

  58. Ahmadi, S., et al.: Stimulus-responsive sequential release systems for drug and gene delivery. Nano Today 34, 100914 (2020)

    Article  Google Scholar 

  59. Farjadian, F., Ghasemi, S., Andami, Z., Tamami, B.: Thermo-responsive nanocarrier based on poly (N-isopropylacrylamide) serving as a smart doxorubicin delivery system. Iran. Polym. J. 29, 197–207 (2020)

    Google Scholar 

  60. Chu, Z., Liu, J., Guo, Z., Zhang, H.: 2 μm passively Q-switched laser based on black phosphorus. Opt. Mater. Express 6, 2374–2379 (2016)

    Google Scholar 

  61. Fan, T., Zhou, Y., Qiu, M., Zhang, H.: Black phosphorus: a novel nanoplatform with potential in the field of bio-photonic nanomedicine. J. Innov. Opt. Health Sci. 11, 1830003 (2018)

    Google Scholar 

  62. Zhao, Y., et al.: Stable and multifunctional dye-modified black phosphorus nanosheets for near-infrared imaging-guided photothermal therapy. Chem. Mater. 29, 7131–7139 (2017)

    Article  Google Scholar 

  63. Liu, N., Fan, F., Xu, W., Zhang, H., Zhou, Q., Li, X.: Synthesis of functional hollow WS2 particles with large surface area for Near-Infrared (NIR) triggered drug delivery. J. Alloy. Compd. 875, 160034 (2021)

    Google Scholar 

  64. Farzanfar, J., Farjadian, F., Roointan, A., Mohammadi-Samani, S., Tayebi, L.: Assessment of pH responsive delivery of methotrexate based on PHEMA-st-PEG-DA nanohydrogels. Macromol. Res. 29, 54–61 (2021)

    Article  Google Scholar 

  65. Sawant, R.M., Hurley, J., Salmaso, S., Kale, A., Tolcheva, E., Levchenko, T., Torchilin, V.: “SMART” drug delivery systems: double-targeted pH-responsive pharmaceutical nanocarriers. Bioconjugate Chem. 17, 943–949 (2006)

    Google Scholar 

  66. Lee, G.-Y., Lo, P.-Y., Cho, E.-C., Zheng, J.-H., Li, M., Huang, J.-H., Lee, K.-C.: Integration of PEG and PEI with graphene quantum dots to fabricate pH-responsive nanostars for colon cancer suppression in vitro and in vivo. FlatChem 31, 100320 (2022)

    Google Scholar 

  67. Jung, H.S., Verwilst, P., Sharma, A., Shin, J., Sessler, J.L., Kim, J.S.: Organic molecule-based photothermal agents: an expanding photothermal therapy universe. Chem. Soc. Rev. 47, 2280–2297 (2018)

    Article  Google Scholar 

  68. Melamed, J.R., Edelstein, R.S., Day, E.S.: Elucidating the fundamental mechanisms of cell death triggered by photothermal therapy. ACS Nano 9, 6–11 (2015)

    Google Scholar 

  69. Lin, C., Hao, H., Mei, L., Wu, M.: Metal-free two-dimensional nanomaterial-mediated photothermal tumor therapy. Smart Mater. Med. 1, 150–167 (2020)

    Google Scholar 

  70. Qin, Z., Bischof, J.C.: Thermophysical and biological responses of gold nanoparticle laser heating. Chem. Soc. Rev. 41, 1191–1217 (2012)

    Article  Google Scholar 

  71. Kim, H., Lee, D., Kim, J., Kim, T.-I., Kim, W.J.: Photothermally triggered cytosolic drug delivery via endosome disruption using a functionalized reduced graphene oxide. ACS Nano 7, 6735–6746 (2013)

    Google Scholar 

  72. Liu, Y., Bhattarai, P., Dai, Z., Chen, X.: Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chem. Soc. Rev. 48, 2053–2108 (2019)

    Article  Google Scholar 

  73. Yan, M., et al.: Nanoscale reduced graphene oxide-mediated photothermal therapy together with IDO inhibition and PD-L1 blockade synergistically promote antitumor immunity ACS Appl. Mater. Interfaces 11, 1876–1885 (2018)

    Google Scholar 

  74. Yan, M., et al.: nanoscale reduced graphene oxide-mediated photothermal therapy together with IDO inhibition and PD-L1 blockade synergistically promote antitumor immunity. ACS Appl. Mater. Interfaces 11, 1876–1885 (2019)

    Google Scholar 

  75. Spikes, J.D., Bommer, J.C.: Photosensitizing properties of mono-l-aspartyl chlorin e6 (NPe6): a candidate sensitizer for the photodynamic therapy of tumors. J. Photochem. Photobiol. B: Biol. 17, 135–143 (1993)

    Google Scholar 

  76. Master, A., Livingston, M., Sen Gupta, A.: Photodynamic nanomedicine in the treatment of solid tumors: perspectives and challenges. J. Control. Release 168, 88–102 (2013)

    Article  Google Scholar 

  77. Gazzi, A., et al.: Photodynamic therapy based on graphene and MXene in cancer theranostics. Front. Bioeng. Biotechnol. 7 (2019)

    Google Scholar 

  78. Sahu, A., Choi, W.I., Lee, J.H., Tae, G.: Graphene oxide mediated delivery of methylene blue for combined photodynamic and photothermal therapy. Biomaterials 34, 6239–6248 (2013)

    Article  Google Scholar 

  79. Tian, B., Wang, C., Zhang, S., Feng, L., Liu, Z.: Photothermally enhanced photodynamic therapy delivered by nano-graphene oxide. ACS Nano 5, 7000–7009 (2011)

    Google Scholar 

  80. Yang, G., et al.: Smart nanoreactors for pH-responsive tumor homing, mitochondria-targeting, and enhanced photodynamic-immunotherapy of cancer. Nano Lett. 18, 2475–2484 (2018)

    Article  Google Scholar 

  81. Wang, H., et al.: SDS coated Fe3O4@MoS2 with NIR-enhanced photothermal-photodynamic therapy and antibiotic resistance gene dissemination inhibition functions. Colloids Surf.S B: Biointerfaces 214,112457 (2022)

    Google Scholar 

  82. Cao, Y., et al.: A near-infrared triggered upconversion/MoS2 nanoplatform for tumour-targeted chemo-photodynamic combination therapy colloids and Surfaces B: Biointerfaces 213, 112393 (2022)

    Google Scholar 

  83. Avitabile, E., Bedognetti, D., Ciofani, G., Bianco, A., Delogu, L.G.: How can nanotechnology help the fight against breast cancer? Nanoscale 10, 11719–11731 (2018)

    Article  Google Scholar 

  84. Viseu, T., Lopes, C.M., Fernandes, E., Real Oliveira, M.E.C., Lucio, M.: A systematic review and critical analysis of the role of graphene-based nanomaterials in cancer theranostics. Pharmaceutics 10, 282 (2018)

    Google Scholar 

  85. Gollavelli, G., Ling, Y.-C.: Magnetic and fluorescent graphene for dual modal imaging and single light induced photothermal and photodynamic therapy of cancer cells. Biomaterials 35, 4499–4507 (2014)

    Article  Google Scholar 

  86. Gulzar, A., Xu, J., Yang, D., Xu, L., He, F., Gai, S., Yang, P.: Nano-graphene oxide-UCNP-Ce6 covalently constructed nanocomposites for NIR-mediated bioimaging and PTT/PDT combinatorial therapy. Dalton Trans. 47, 3931–3939 (2018)

    Google Scholar 

  87. Wu, C., Zhu, A., Li, D., Wang, L., Yang, H., Zeng, H., Liu, Y.: Photosensitizer-assembled PEGylated graphene-copper sulfide nanohybrids as a synergistic near-infrared phototherapeutic agent. Expert Opin. Drug Deliv. 13, 155–165 (2016)

    Article  Google Scholar 

  88. Yang, K., Feng, L., Hong, H., Cai, W., Liu, Z.: Preparation and functionalization of graphene nanocomposites for biomedical applications. Nat. Protoc. 8, 2392–2403 (2013)

    Article  Google Scholar 

  89. Huang, P., et al.: Folic acid-conjugated graphene oxide loaded with photosensitizers for targeting photodynamic therapy. Theranostics 1, 240 (2011)

    Google Scholar 

  90. Zhou, L., Jiang, H., Wei, S., Ge, X., Zhou, J., Shen, J.: High-efficiency loading of hypocrellin B on graphene oxide for photodynamic therapy. Carbon 50, 5594–5604 (2012)

    Article  Google Scholar 

  91. Zhou, L., et al.: Combination of chemotherapy and photodynamic therapy using graphene oxide as drug delivery system. J. Photochem. Photobiol. B. 135, 7–16 (2014)

    Article  Google Scholar 

  92. Zhang, Q., et al.: The theranostic nanoagent Mo2C for multi-modal imaging-guided cancer synergistic phototherapy. Biomater. Sci. 7, 2729–2739 (2019)

    Google Scholar 

  93. Liu, G., et al.: Surface modified Ti3C2 MXene nanosheets for tumor targeting photothermal/photodynamic/chemo synergistic therapy ACS. Appl. Mater. Interfaces 9, 40077–40086 (2017)

    Google Scholar 

  94. Liu, T., et al.: Combined photothermal and photodynamic therapy delivered by PEGylated MoS2 nanosheets. Nanoscale 6, 11219–11225 (2014)

    Google Scholar 

  95. Peng, M.Y., Zheng, D.W., Wang, S.B., Cheng, S.X., Zhang, X.Z.: Multifunctional nanosystem for synergistic tumor therapy delivered by two-dimensional MoS(2). ACS Appl. Mater Interfaces 9, 13965–13975 (2017)

    Google Scholar 

  96. Li, S., et al.: Enhanced photothermal-photodynamic therapy by indocyanine green and curcumin-loaded layered MoS(2) Hollow Spheres via Inhibition of P-Glycoprotein. Int. J. Nanomedicine 16, 433–442 (2021)

    Google Scholar 

  97. Song, C., et al.: MoS2-Based multipurpose theranostic nanoplatform: realizing dual-imaging-guided combination phototherapy to eliminate solid tumor via a liquefaction necrosis process. J. Mater. Chem. B 5, 9015–9024 (2017)

    Google Scholar 

  98. Yougbaré, S., et al.: Gold nanorod-decorated metallic MoS2 nanosheets for synergistic photothermal and photodynamic antibacterial therapy. Nanomaterials 11, 3064 (2021)

    Google Scholar 

  99. Yang, L., Wang, J., Yang, S., Lu, Q., Li, P., Li, N.: Rod-shape MSN@MoS(2) Nanoplatform for FL/MSOT/CT imaging-guided photothermal and photodynamic therapy. Theranostics 9, 3992–4005 (2019)

    Google Scholar 

  100. Yang, G., Gong, H., Liu, T., Sun, X., Cheng, L., Liu, Z.: Two-dimensional magnetic WS2@Fe3O4 nanocomposite with mesoporous silica coating for drug delivery and imaging-guided therapy of cancer. Biomaterials 60, 62–71 (2015)

    Google Scholar 

  101. Yong, Y, et al.: WS2 nanosheet as a new photosensitizer carrier for combined photodynamic and photothermal therapy of cancer cells. Nanoscale 6, 10394–10403 (2014)

    Google Scholar 

  102. Liao, W., Zhang, L., Zhong, Y., Shen, Y., Li, C., An, N.: Fabrication of ultrasmall WS2 quantum dots-coated periodic mesoporous organosilica nanoparticles for intracellular drug delivery and synergistic chemo-photothermal therapy. OncoTargets Ther. 11, 1949–1960 (2018)

    Google Scholar 

  103. Yu, C., et al.: Ti3C2Tx MXene loaded with indocyanine green for synergistic photothermal and photodynamic therapy for drug-resistant bacterium. Colloids Surf. B. Biointerfaces 217, 112663 (2022)

    Google Scholar 

  104. Ahirwar, S., Mallick, S., Bahadur, D.: Photodynamic therapy using graphene quantum dot derivatives. J. Solid State Chem. 282, 121107 (2020)

    Article  Google Scholar 

  105. Guo, W., et al.: Graphene oxide (GO)-based nanosheets with combined chemo/photothermal/photodynamic therapy to overcome gastric cancer (GC) paclitaxel resistance by reducing mitochondria-derived adenosine-triphosphate (ATP). J. Nanobiotechnology 19, 146 (2021)

    Google Scholar 

  106. Ashkarran, A.A., Swann, J., Hollis, L., Mahmoudi, M.: The file drawer problem in nanomedicine. Trends Biotechnol. 39, 425–427 (2021)

    Article  Google Scholar 

  107. Liu, Y., Zhu, S., Gu, Z., Chen, C., Zhao, Y.: Toxicity of manufactured nanomaterials. Particuology 69, 31–48 (2022)

    Google Scholar 

  108. Derakhshi, M., Daemi, S., Shahini, P., Habibzadeh, A., Mostafavi, E., Ashkarran, A.A.: Two-Dimensional Nanomaterials beyond graphene for biomedical applications. J. Funct. Biomater. 13 (2022)

    Google Scholar 

  109. Duch, M.C., et al.: Minimizing oxidation and stable nanoscale dispersion improves the biocompatibility of graphene in the lung. Nano Lett. 11, 5201–5207 (2011)

    Article  Google Scholar 

  110. Bussy, C., Ali-Boucetta, H., Kostarelos, K.: Safety considerations for graphene: lessons learnt from carbon nanotubes. Acc. Chem. Res. 46, 692–701 (2013)

    Article  Google Scholar 

  111. Jayakumar, A., Surendranath, A., Mohanan, P.: 2D materials for next generation healthcare applications. Int. J. Pharm. 551, 309–321 (2018)

    Google Scholar 

  112. Li, M., Luo, Z., Zhao, Y.: Recent advancements in 2D nanomaterials for cancer therapy. Sci. China Chem. 61, 1214–1226 (2018)

    Google Scholar 

  113. Lin, H., Chen, Y., Shi, J.: Insights into 2D MXenes for versatile biomedical applications: current advances and challenges ahead. Adv. Sci. 5, 1800518 (2018)

    Google Scholar 

  114. Kyriakides, T.R., et al.: Biocompatibility of nanomaterials and their immunological properties. Biomed. Mater. 16 (2021)

    Google Scholar 

  115. Bullock, C.J., Bussy, C.: Biocompatibility considerations in the design of graphene biomedical materials advanced materials. Interfaces 6, 1900229 (2019)

    Google Scholar 

  116. Liao, C., Li, Y., Tjong, S.C.: Graphene nanomaterials: synthesis, biocompatibility, and cytotoxicity. Int. J. Mol. Sci. 19 (2018).

    Google Scholar 

  117. Maio, A., Pibiri, I., Morreale, M., Mantia, F.P.L., Scaffaro, R.: An overview of functionalized graphene nanomaterials for advanced. Appl. Nanomater. 11, 1717 (2021)

    Google Scholar 

  118. Jones, C.F., Grainger, D.W.: In vitro assessments of nanomaterial toxicity. Adv. Drug Deliv. Rev. 61, 438–456 (2009)

    Article  Google Scholar 

  119. Liao, C., Li, Y., Tjong, S.C.: Graphene nanomaterials: synthesis, biocompatibility, and cytotoxicity. Int. J. Mol. Sci. 19, 3564 (2018)

    Article  Google Scholar 

  120. Ou, L., et al.: Toxicity of graphene-family nanoparticles: a general review of the origins and mechanisms. Part. Fibre Toxicol. 13, 57 (2016)

    Article  Google Scholar 

  121. Zhang, B., Wei, P., Zhou, Z., Wei, T.: Interactions of graphene with mammalian cells: molecular mechanisms and biomedical insights. Adv. Drug Deliv. Rev. 105, 145–162 (2016)

    Article  Google Scholar 

  122. Duan, G., et al.: Graphene-induced pore formation on cell membranes. Sci. Rep. 7, 42767 (2017)

    Google Scholar 

  123. Bach, D., Wachtel, E.: Phospholipid/cholesterol model membranes: formation of cholesterol crystallites. Biochimica et Biophysica Acta (BBA) - Biomembranes 1610, 187–197 (2003)

    Google Scholar 

  124. Ermilova, I., Lyubartsev, A.P.: Cholesterol in phospholipid bilayers: positions and orientations inside membranes with different unsaturation degrees. Soft Matter 15, 78–93 (2019)

    Article  Google Scholar 

  125. Zhan, J., Lei, Z., Zhang, Y.: Non-covalent interactions of graphene surface: mechanisms and applications. Chem 8, 947–979 (2022)

    Google Scholar 

  126. Li, S., Stein, A.J., Kruger, A., Leblanc, R.M.: Head groups of lipids govern the interaction and orientation between graphene oxide and lipids. J. Phys. Chem. C 117, 16150–16158 (2013)

    Article  Google Scholar 

  127. Hu, X., Lei, H., Zhang, X., Zhang, Y.: Strong hydrophobic interaction between graphene oxide and supported lipid bilayers revealed by AFM. Microsc. Res. Tech. 79, 721–726 (2016)

    Article  Google Scholar 

  128. Li, R.: et al.: Surface oxidation of graphene oxide determines membrane damage, lipid peroxidation, and cytotoxicity in macrophages in a pulmonary toxicity model. ACS Nano 12, 1390–1402 (2018)

    Google Scholar 

  129. Pelin, M. et al.: Graphene and graphene oxide induce ROS production in human HaCaT skin keratinocytes: the role of xanthine oxidase and NADH dehydrogenase. Nanoscale 10, 11820–11830 (2018)

    Google Scholar 

  130. Liu, J.H., Yang, S.T., Wang, H., Chang, Y., Cao, A., Liu, Y.: Effect of size and dose on the biodistribution of graphene oxide in mice. Nanomedicine (Lond.) 7, 1801–1812 (2012)

    Article  Google Scholar 

  131. Kurantowicz, N., et al.: Biodistribution of a high dose of diamond, graphite, and graphene oxide nanoparticles after multiple intraperitoneal injections in rats. Nanoscale Res. Lett. 10, 398 (2015)

    Article  Google Scholar 

  132. Strojny, B., et al.: Long term influence of carbon nanoparticles on health and liver status in rats. PloS one 10, e0144821 (2015)

    Google Scholar 

  133. Baur, X., Sanyal, S., Abraham, J.L.: Mixed-dust pneumoconiosis: review of diagnostic and classification problems with presentation of a work-related case. Sci. Total. Environ. 652, 413–421 (2019)

    Article  Google Scholar 

  134. Lin, H., Gao, S., Dai, C., Chen, Y., Shi, J.: Correction to A two-dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR-I and NIR-II biowindows. J. Am. Chem. Soc. 142, 10567–10567 (2020)

    Google Scholar 

  135. Lin, H., Wang, X., Yu, L., Chen, Y., Shi, J.: Two-dimensional ultrathin MXene ceramic nanosheets for photothermal conversion. Nano Lett. 17, 384–391 (2017)

    Article  Google Scholar 

  136. Lin, H., Wang, Y., Gao, S., Chen, Y., Shi, J.: Theranostic 2D tantalum carbide (MXene). Adv. Mater. 30, 1703284 (2018)

    Google Scholar 

  137. Yang, C., Xu, D., Peng, W., Li, Y., Zhang, G., Zhang, F., Fan, X.: Ti2C3Tx nanosheets as photothermal agents for near-infrared responsive hydrogels. Nanoscale 10, 15387–15392 (2018)

    Google Scholar 

  138. Dai, C. Lin, H., Xu, G., Liu, Z., Wu, R., Chen, Y.: Biocompatible 2D titanium carbide (MXenes) composite nanosheets for pH-responsive MRI-guided tumor hyperthermia. Chem. Mater. 29, 8637–8652 (2017)

    Google Scholar 

  139. Xing, C., et al.: Two-dimensional MXene (Ti3C2)-integrated cellulose hydrogels: toward smart three-dimensional network nanoplatforms exhibiting light-induced swelling and bimodal photothermal/chemotherapy anticancer activity. ACS Appl. Mater. Interfaces 10, 27631–27643 (2018)

    Google Scholar 

  140. Pandey, R.P., Rasool, K., Madhavan, V.E., Aïssa, B., Gogotsi, Y., Mahmoud, K.A.: Ultrahigh-flux and fouling-resistant membranes based on layered silver/MXene (Ti3C2Tx) nanosheets. J. Mater. Chem. A 6, 3522–3533 (2018)

    Google Scholar 

  141. Rakhi, R., Nayak, P., Xia, C., Alshareef, H.N.: Novel amperometric glucose biosensor based on MXene nanocomposite. Sci. Rep. 6, 1–10 (2016)

    Google Scholar 

  142. Wu, L., et al.: 2D transition metal carbide MXene as a robust biosensing platform for enzyme immobilization and ultrasensitive detection of phenol. Biosens. Bioelectron. 107, 69–75 (2018)

    Google Scholar 

  143. Lim, G.P., Soon, C.F., Ma, N.L., Morsin, M., Nayan, N., Ahmad, M.K., Tee, K.S.: Cytotoxicity of MXene-based nanomaterials for biomedical applications: A mini review. Environ. Res. 201, 111592 (2021)

    Article  Google Scholar 

  144. Arabi Shamsabadi, A., Sharifian Gh, M., Anasori, B., Soroush, M.: Antimicrobial mode-of-action of colloidal Ti3C2Tx MXene nanosheets. ACS Sustain. Chem. Eng. 6, 16586–16596 (2018)

    Google Scholar 

  145. Jastrzębska, A.M., et al.: On the rapid in situ oxidation of two-dimensional V2CTz MXene in culture cell media and their cytotoxicity. Mater. Sci. Eng. C 119, 111431 (2021)

    Google Scholar 

  146. Jastrzębska, A.M., et al.: On tuning the cytotoxicity of Ti3C2 (MXene) flakes to cancerous and benign cells by post-delamination surface modifications 2D. Materials 7, 025018 (2020)

    Google Scholar 

  147. Liu, J., Pope, C.N.: Chapter 21 - Intrinsic and extrinsic factors that can modify toxicity. In: Pope, C.N., Liu, J. (eds.). An Introduction to Interdisciplinary Toxicology, pp. 285–293. Academic Press (2020). https://doi.org/10.1016/B978-0-12-813602-7.00021-1

  148. Jastrzębska, A.M., et al.: In vitro studies on cytotoxicity of delaminated Ti3C2 MXene. J. Hazard. Mater. 339, 1–8 (2017)

    Google Scholar 

  149. Ganguly, P., Breen, A., Pillai, S.C.: Toxicity of nanomaterials: exposure, pathways, assessment, and recent advances ACS. Biomater. Sci. Eng. 4, 2237–2275 (2018)

    Google Scholar 

  150. Wu, W., Ge, H., Zhang, L., Lei, X., Yang, Y., Fu, Y., Feng, H.: Evaluating the Cytotoxicity of Ti3C2 MXene to neural stem. Cells Chem. Res. Toxicol. 33, 2953–2962 (2020)

    Google Scholar 

  151. Teo, W.Z., Chng, E.L.K., Sofer, Z., Pumera, M.: Cytotoxicity of exfoliated transition‐metal dichalcogenides (MoS2, WS2, and WSe2) is lower than that of graphene and its analogues. Chem. A Eur. J. 20, 9627–9632 (2014)

    Google Scholar 

  152. Wu, H., et al.: Biocompatible inorganic fullerene-like molybdenum disulfide nanoparticles produced by pulsed laser ablation in water. ACS Nano 5, 1276–1281 (2011)

    Google Scholar 

  153. Gupta, M., Gupta, S.: An overview of selenium uptake, metabolism, and toxicity in plants. Front. Plant Sci. 7, 2074 (2017)

    Google Scholar 

  154. Pereira, B.B., Limongi, J.E., Campos Júnior, E.Od., Luiz, D.P., Kerr, W.E.: Effects of piperonyl butoxide on the toxicity of the organophosphate temephos and the role of esterases in the insecticide resistance of Aedes aegypti Revista da Sociedade Brasileira de Medicina Tropical 47, 579–582 (2014)

    Google Scholar 

  155. Saha, U., Fayiga, A., Hancock, D., Sonon, L.: Selenium in animal nutrition: deficiencies in soils and forages, requirements, supplementation and toxicity. Int. J. Appl. Agric. Sci. 2, 112–125 (2016)

    Google Scholar 

  156. Nurunnabi, M., McCarthy, J.: Biomedical applications of graphene and 2D nanomaterials. Elsevier (2019)

    Google Scholar 

  157. Moroder, L.: Isosteric replacement of sulfur with other chalcogens in peptides and proteins. J. Pept. Sci.: Off. Publ. Eur. Pept. Soc. 11, 187–214 (2005)

    Google Scholar 

  158. Nath, N.C.D., Debnath, T., Nurunnabi, M., Kim, E.-K.: In vitro toxicity of 2D materials. In: Biomedical Applications of Graphene and 2D Nanomaterials. Elsevier, pp 165–186 (2019)

    Google Scholar 

  159. Wang, X., et al.: Differences in the toxicological potential of 2D versus aggregated molybdenum disulfide in the lung. Small 11, 5079–5087 (2015)

    Google Scholar 

  160. Yin, W., et al.: High-throughput synthesis of single-layer MoS2 nanosheets as a near-infrared photothermal-triggered drug delivery for effective cancer therapy. ACS Nano 8, 6922–6933 (2014)

    Google Scholar 

  161. Chou, S.S., et al.: Ligand conjugation of chemically exfoliated MoS2. J. Am. Chem. Soc. 135, 4584–4587 (2013)

    Google Scholar 

  162. Kim, J.S., Yoo, H.W., Choi, H.O., Jung, H.T.: Tunable volatile organic compounds sensor by using thiolated ligand conjugation on MoS2. Nano Lett. 14, 5941–5947 (2014)

    Google Scholar 

  163. Anielle Christine Almeida, S., et al.: Biocompatibility of doped semiconductors nanocrystals and nanocomposites. In: Tülay Aşkin, Ç. (ed.) Cytotoxicity. IntechOpen, Rijeka, p Ch. 9. (2018). https://doi.org/10.5772/intechopen.77197

  164. Dymek, M., Sikora, E.: Liposomes as biocompatible and smart delivery systems—the current state. Adv. Colloid Interface Sci. 309, 102757 (2022)

    Google Scholar 

  165. Saroia, J., Yanen, W., Wei, Q., Zhang, K., Lu, T., Zhang, B.: A review on biocompatibility nature of hydrogels with 3D printing techniques, tissue engineering application and its future prospective. Bio-Des. Manuf. 1, 265–279 (2018)

    Google Scholar 

  166. Areecheewakul, S., et al.: Toxicity assessment of metal oxide nanomaterials using in vitro screening and murine acute inhalation studies. NanoImpact 18, 100214 (2020)

    Google Scholar 

  167. Park, E.-J., Lee, G.-H., Yoon, C., Kim, D.-W.: Comparison of distribution and toxicity following repeated oral dosing of different vanadium oxide nanoparticles in mice. Environ. Res. 150, 154–165 (2016)

    Article  Google Scholar 

  168. Uche, F., Obianime, A., Gogo-Abite, M.: Effects of vanadium pentoxide on the histological and sperm parameters of male guinea pigs. Chem. A Eur. J. 12 (2008)

    Google Scholar 

  169. Morris, A.S., Givens, B.E., Silva, A., Salem, A.K.: Copper oxide nanoparticle diameter mediates serum‐sensitive toxicity in BEAS‐2B cells. Adv. NanoBiomed Res. 1, 2000062 (2021)

    Google Scholar 

  170. Naz, S., Gul, A., Zia, M.: Toxicity of copper oxide nanoparticles: a review study. IET Nanobiotechnol. 14, 1–13 (2020)

    Google Scholar 

  171. Worthington, K.L., et al.: Chitosan coating of copper nanoparticles reduces in vitro toxicity and increases inflammation in the lung. Nanotechnology 24, 395101 (2013)

    Article  Google Scholar 

  172. Sánchez-López, E., et al.: Metal-based nanoparticles as antimicrobial agents: an overview. Nanomaterials 10, 292 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vahid Alimardani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abedi, M., Asadi, M., Mehrzadeh, M., Rahiminezhad, Z., Ghasemi, Y., Alimardani, V. (2024). Two-Dimensional (2D)-Based Hybrid Composites for Cancer Diagnosis and Therapy. In: Talreja, N., Chauhan, D., Ashfaq, M. (eds) Two-dimensional Hybrid Composites. Engineering Materials. Springer, Singapore. https://doi.org/10.1007/978-981-99-8010-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8010-9_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8009-3

  • Online ISBN: 978-981-99-8010-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics