Skip to main content

Huperzine-Based Derivatives: Design, Synthesis, and Anti-Alzheimer Activity

  • Chapter
  • First Online:
Natural Product-based Synthetic Drug Molecules in Alzheimer's Disease

Abstract

Alzheimer’s disease (AD) is a progressive illness of the nervous system typified by degenerative cognitive disability with challenging behavioural changes and dwindling physical activities for day-to-day living and remains one of the major reasons of dementia. As per the worldwide status report released by World Health Organization, the numbers of people with dementia will double every 20 years, reaching about 140 million in 2050. The currently used drugs for AD include galantamine, rivastigmine, and donepezil. These slow the progression of the disease or help to control cognitive and behavioural changes. Recently, aducanumab has been approved as a disease modifying drug targeting beta-amyloid and helps to reduce brain lesions. Another drug, memantine, is effective in regulating levels of glutamate, leading to brain cell death. Thus, the future involves multifunctional and targeted approaches, and multipotent naturally occurring agents have recently drawn attention in this regard. Huperzine A, derived from Huperzia serrata or Lycopodium serrata is one amongst these. Chemically, it is an alkaloid containing quinolizidine with good potency and selectivity and reversible inhibition of acetylcholinesterase. Many analogs of huperzine A have been reported but most of them are not able to cross the blood–brain barrier. Structural modifications of huperzine A are in process to achieve analogs with better anticholinesterase activity and improve their method of synthesis. The present chapter is aimed to compile and review the numerous evidence-based scientific information related to huperzine derivatives to make it easily available to the scientific community and researchers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alcalá M, Vivas NM, Hospital S et al (2003) Characterisation of the anticholinesterase activity of two new tacrine-huperzine A hybrids. Neuropharmacology 44:749–755

    Article  PubMed  Google Scholar 

  • Alzheimer’s Association (n.d.) FDA-Approved Treatment for Alzheimer’s. http://www.alz.org

  • Ashani Y, Peggins JO, Doctor BP (1992) Mechanism of inhibition of cholinesterases by Huperzine A. (Reannouncement with new availability information). No. AD-A-254440/1/XAB. Walter Reed Army Inst. of Research, Washington, DC

    Google Scholar 

  • Bai DL, Tang XC, He XC (2000) Huperzine A, a potential therapeutic agent for treatment of Alzheimer’s disease. Curr Med Chem 7(3):355–374

    Article  CAS  PubMed  Google Scholar 

  • Batsch NL, Mittelman MS, Alzheimer’s Disease International (2012) World Alzheimer Report 2012: overcoming the stigma of dementia. Alzheimer’s Disease International, London, UK

    Google Scholar 

  • Campiani G, Sun LQ, Kozikowski AP, Aagaard P, McKinney M (1993) A palladium catalyzed route to huperzine A and its analogues and their anticholinesterase activity. J Org Chem 58:7660–7669

    Article  CAS  Google Scholar 

  • Camps P, Contreras J, Fontbardia M, Solans X (1996) Improved synthesis of methyl 7,7-ethylenedioxy-3-methyl-9-oxobicyclo[3.3.1]non-3-ene-1-carboxylate intermediate for the synthesis of huperzine A analogues. Synthetic Commun 26(1):9–18

    Article  CAS  Google Scholar 

  • Camps P, El Achab R, Morral J et al (2000a) New tacrine-huperzine A hybrids (huprines): highly potent tight-binding acetylcholinesterase inhibitors of interest for the treatment of Alzheimer’s disease. J Med Chem 43:4657–4666

    Article  CAS  PubMed  Google Scholar 

  • Camps P, Contreras J, El Achab R, Morral J, Munoz-Torrero D, Font-Bardia M, Solans X, Badia A, Vivas NM (2000b) New syntheses of rac-huperzine A and its rac-7-ethyl-derivative. Evaluation of several huperzine A analogues as acetylcholinesterase inhibitors. Tetrahedron 56(26):4541–4553

    Article  CAS  Google Scholar 

  • Chen WP, Yang FQ (1995) Asymmetric total synthesis of optically active huperzine A. Chinese J Med Chem 5(1):10–17

    Article  CAS  Google Scholar 

  • Ding R, Sun B-F, Lin G-Q (2012) An efficient total synthesis of (−)-huperzine A. Org Lett 14(17):4446–4449

    Article  CAS  PubMed  Google Scholar 

  • Ferreira A, Rodrigues M, Fortuna A, Falcão A, Alves G (2016) Huperzine A from Huperzia serrata: a review of its sources, chemistry, pharmacology and toxicology. Phytochem Rev 15(1):51–85

    Article  CAS  Google Scholar 

  • Gemma S, Gabellieri E, Huleatt P et al (2006) Discovery of huperzine A-tacrine hybrids as potent inhibitors of human cholinesterases targeting their midgorge recognition sites. J Med Chem 49:3421–3425

    Article  CAS  PubMed  Google Scholar 

  • Giménez-Llort L, Ratia M, Pérez B, Camps P, Muñoz-Torrero D, Badia A, Clos M (2017) Behavioural effects of novel multitarget anticholinesterasic derivatives in Alzheimer’s disease. Behav Pharmacol 28(2):124–131

    Article  PubMed  Google Scholar 

  • Gordon RK, Nigam SV, Weitz JA et al (2001) The NMDA receptor ion channel: a site for binding of Huperzine A. J Anal Toxicol 21(Suppl 1):S47–S51

    CAS  Google Scholar 

  • Ha GT, Wong RK, Zhang Y (2011) Huperzine A as potential treatment of Alzheimer’s disease: an assessment on chemistry, pharmacology, and clinical studies. Chem Biodivers 8:1189–1204

    Article  CAS  PubMed  Google Scholar 

  • Hanns H, Gabriele N (2003) The discovery of Alzheimer’s disease. Dialogues Clin Neurosci 51:101–108

    Google Scholar 

  • Hassan M, Abbas Q, Seo S-Y, Shahzadi S, Al Ashwal H, Zaki N, Iqbal Z, Moustafa AA (2018) Computational modeling and biomarker studies of pharmacological treatment of Alzheimer’s disease. Mol Med Rep 18(1):639–655

    CAS  PubMed  PubMed Central  Google Scholar 

  • He XC, Wang B, Bai DL (1998) Studies on asymmetric synthesis of huperzine A-1. Palladium-catalyzed asymmetric bicycloannulation of 5,6,7,8-tetrahydro-2-methoxy-6-oxo-5-quinolinecarboxylic esters. Tetrahedron Lett 39(5–6):411–414

    Article  CAS  Google Scholar 

  • He XC, Wang B, Yu GL, Bai DL (2001) Studies on the asymmetric synthesis of huperzine A. Part 2: highly enantioselective palladium-catalyzed bicycloannulation of the beta-keto-ester using new chiral ferrocenylphosphine ligands. Tetrahedron-Asymmetry 12(23):3213–3216

    Article  CAS  Google Scholar 

  • Jaswinder K, Rajmeet S, Gurinder S, Harpreet K, Jasvir K, Manpreet K, Parminder S, Jaspreet K (2016) A systematic review on Huperzia serrata. Int J Pharmac Phytochem Res 8(8):1250–1255

    Google Scholar 

  • Jia J-Y, Zhao Q-H, Liu Y et al (2013) Phase I study on the pharmacokinetics and tolerance of ZT-1, a prodrug of huperzine A, for the treatment of Alzheimer’s disease. Acta Pharmacol Sin 34:976–982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaneko S, Yoshino T, Katoh T, Terashima S (1997) A novel enantioselective synthesis of the key intermediate of (_)-huperzine A employing asymmetric palladium-catalyzed bicycloannulation. Tetrahedron-Asymmetry 8(6):829–832

    Article  CAS  Google Scholar 

  • Kozikowski AP, Campiani G, Tuckmantel W (1994) An approach to open-chain and modified heterocyclic-analogs of the acetylcholinesterase inhibitor huperzine-A through a bicyclo[3.3.1]nonane intermediate. Heterocycles 39(1):101–116

    Article  CAS  Google Scholar 

  • Kozikwoski AP, Reddy ER, Miller CP (1990) A simplified route to a key intermediate in the synthesis of the Chinese noortropic agent huperzine A. J Chem Soc Perkin Trans 1:195–197

    Article  Google Scholar 

  • Lee IYC, Jung MH, Lee HW, Yang JY (2002) Synthesis of huperzine intermediates via Mn(III)-mediated radical cyclization. Tetrahedron Lett 43(13):2407–2409

    Article  CAS  Google Scholar 

  • Lim WH, Goodger JQ, Field AR, Holtum JA, Woodrow IE (2010) Huperzine alkaloids from Australasian and southeast Asian Huperzia. Pharm Biol 48(9):1073–1078

    Article  CAS  PubMed  Google Scholar 

  • Lin L-J, Lin L-Z, Cordell GA, Zhou B-N, Zhu D-Y, Huang M-F, Han X-Y (1993) NMR assignments of huperzine A, serratinine and lucidioline. Phytochemistry 34(5):1425–1428

    Article  Google Scholar 

  • Ma X, Gang DR (2004) The lycopodium alkaloids. Nat Prod Rep 21:752–772

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Tan C, Zhu D, Gang DR, Xiao P (2007) Huperzine A from Huperzia species—an ethnopharmacological review. J Ethnopharmacol 113(1):15–34

    Article  CAS  PubMed  Google Scholar 

  • Nguyen NC, Vinh D, Nguyen DT, Nguyen HVT, Tran CL, Tran MH (2021) Development of a capillary electrophoretic method for the determination of huperzine A concentration in vietnamese huperzia serrata. Nat Prod Commun 16(9). https://doi.org/10.1177/1934578X211033225

  • Prince M, Jackson J, Alzheimer’s Disease International (2009) World Alzheimer Report 2009. Alzheimer’s Disease International

    Google Scholar 

  • Qian LG, Ji RY (1989) A total synthesis of (−)Huperzine A. Tetrahedron Lett 30:2089–2090

    Article  CAS  Google Scholar 

  • Reitz C, Brayne C, Mayeux R (2011) Epidemiology of Alzheimer disease. Nat Rev Neurol 7(3):137–152

    Article  PubMed  PubMed Central  Google Scholar 

  • Ros E, Aleu J, Go’mez de Aranda I et al (2001) The pharmacology of novel acetylcholinesterase inhibitors, (±)-huprines Y and X, on the torpedo electric organ. Eur J Pharmacol 421:77–84

    Article  CAS  PubMed  Google Scholar 

  • Tang XC, Han YF (1999) Pharmacological profile of huperzine A, a novel acetylcholinesterase inhibitor from Chinese herb. CNS Drug Rev 5(3):281–300

    Article  CAS  Google Scholar 

  • Wang YE, Yue DX, Tang XC (1986) Anti-cholinesterase activity of Huperzine-A. Acta Pharmacology Sinica 7:110–113

    CAS  Google Scholar 

  • Wang YE, Feng J, Lu WH, Tang XC (1988) Pharmacokinetics of huperzine A in rats and mice. Acta Pharmacol Sin 9:193–196

    CAS  Google Scholar 

  • Wang R, Yan H, Xi-can TANG (2006) Progress in studies of huperzine A, a natural cholinesterase inhibitor from Chinese herbal medicine 1. Acta Pharmacol Sin 27(1):1–26

    Article  PubMed  Google Scholar 

  • Wu Q, Gu Y (2006) Quantification of huperzine A in Huperzia serrata by HPLC-UV and identification of the major constituents in its alkaloid extracts by HPLC-DAD-MS-MS. J Pharm Biomed Anal 40(4):993–998. https://doi.org/10.1016/j.jpba.2005.07.047. Epub 2005 Dec 7

    Article  CAS  PubMed  Google Scholar 

  • Xia Y, Kozikowski AP (1989) A practical synthesis of the Chinese “nootropic” agent huperzine A: a possible lead in the treatment of Alzheimer’s disease. J Am Chem Soc 111:4116–4117

    Article  CAS  Google Scholar 

  • Yamada F, Kozikowski AP, Reddy ER, Pang YP, Miller JH, Mckinney M (1991) A route to optically pure (−)-huperzine-A-molecular modeling and in vitro pharmacology. J Am Chem Soc 113(12):4695–4696

    Article  CAS  Google Scholar 

  • Yang HL, Ma YS, Wang XL, Zhu D (2020) Huperzine A: a mini-review of biological characteristics, natural sources, synthetic origins, and future prospects. Russ J Org Chem 56(1):148–157

    Article  CAS  Google Scholar 

  • Zangara A (2003) The psychopharmacology of huperzine A: an alkaloid with cognitive enhancing and neuroprotective properties of interest in the treatment of Alzheimer’s disease. Pharmacol Biochem Behav 75(3):675–686

    Article  CAS  PubMed  Google Scholar 

  • Zhang H-y (2012) New insights into huperzine A for the treatment of Alzheimer’s disease. Acta Pharmacol Sin 33(9):1170–1175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou GC, Zhu DY (2000) Synthesis of 5-substituted analogues of huperzine A. Bioorg Med Chem Lett 10:2055–2057

    Article  CAS  PubMed  Google Scholar 

  • Zhu D-Y, Tan C-H, Li Y-M (2005) The overview of studies on huperzine A: a natural drug for the treatment of Alzheimer’s disease. Med Chem Bioactive Nat Prod:143–182

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Ethics declarations

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dadlani, V.G., Pawar, H.A., Tripathi, P.K. (2023). Huperzine-Based Derivatives: Design, Synthesis, and Anti-Alzheimer Activity. In: Sharma, A., Modi, G.P. (eds) Natural Product-based Synthetic Drug Molecules in Alzheimer's Disease. Springer, Singapore. https://doi.org/10.1007/978-981-99-6038-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-6038-5_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-6037-8

  • Online ISBN: 978-981-99-6038-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics