Skip to main content

Cross-Scale Dynamic Alignment Network for Reference-Based Super-Resolution

  • Conference paper
  • First Online:
Advanced Intelligent Computing Technology and Applications (ICIC 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14087))

Included in the following conference series:

Abstract

Image super-resolution aims to recover high-resolution (HR) images from corresponding low-resolution (LR) images, but it is prone to lose significant details in reconstruction progress. Reference-based image super-resolution can produce realistic textures using an external reference (Ref) image, thus reconstructing pleasant images. Despite the remarkable advancement, there are two critical challenges in reference-based image super-resolution. One is that it is difficult to match the correspondence between LR and Ref images when they are significantly different. The other is how the details of the Ref image are accurately transferred to the LR image. In order to solve these issues, we propose improved feature extraction and matching method to find the matching relationship corresponding to the LR and Ref images more accurately, propose cross-scale dynamic correction module to use multiple scale related textures to compensate for more information. Extensive experimental results over multiple datasets demonstrate that our method is better than the baseline model on both quantitative and qualitative evaluations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bai, Y., Zhang, Y., Ding, M., Ghanem, B.: SOD-MTGAN: small object detection via multi-task generative adversarial network. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11217, pp. 210–226. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01261-8_13

    Chapter  Google Scholar 

  2. Dai, D., Wang, Y., Chen, Y., Van Gool, L.: Is image super-resolution helpful for other vision tasks? In: 2016 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1–9. IEEE (2016)

    Google Scholar 

  3. Dai, T., Cai, J., Zhang, Y., Xia, S.T., Zhang, L.: Second-order attention network for single image super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11065–11074 (2019)

    Google Scholar 

  4. Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 38(2), 295–307 (2015)

    Article  Google Scholar 

  5. Ghifary, M., Kleijn, W.B., Zhang, M., Balduzzi, D., Li, W.: Deep reconstruction-classification networks for unsupervised domain adaptation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 597–613. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_36

    Chapter  Google Scholar 

  6. Haris, M., Shakhnarovich, G., Ukita, N.: Task-driven super resolution: object detection in low-resolution images. In: Mantoro, T., Lee, M., Ayu, M.A., Wong, K.W., Hidayanto, A.N. (eds.) ICONIP 2021. CCIS, vol. 1516, pp. 387–395. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92307-5_45

    Chapter  Google Scholar 

  7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  8. Jiang, Y., Chan, K.C., Wang, X., Loy, C.C., Liu, Z.: Robust reference-based super-resolution via c2-matching. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2103–2112 (2021)

    Google Scholar 

  9. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  10. Kim, J., Lee, J.K., Lee, K.M.: Accurate image super-resolution using very deep convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1646–1654 (2016)

    Google Scholar 

  11. Kim, J., Lee, J.K., Lee, K.M.: Deeply-recursive convolutional network for image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1637–1645 (2016)

    Google Scholar 

  12. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4681–4690 (2017)

    Google Scholar 

  13. Lim, B., Son, S., Kim, H., Nah, S., Mu Lee, K.: Enhanced deep residual networks for single image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 136–144 (2017)

    Google Scholar 

  14. Lu, L., Li, W., Tao, X., Lu, J., Jia, J.: MASA-SR: matching acceleration and spatial adaptation for reference-based image super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6368–6377 (2021)

    Google Scholar 

  15. Sajjadi, M.S., Scholkopf, B., Hirsch, M.: Enhancenet: single image super-resolution through automated texture synthesis. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4491–4500 (2017)

    Google Scholar 

  16. Shim, G., Park, J., Kweon, I.S.: Robust reference-based super-resolution with similarity-aware deformable convolution. In: Proceedings of the IEEE/CVF conference on Computer Vision and Pattern Recognition, pp. 8425–8434 (2020)

    Google Scholar 

  17. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  18. Wang, X., Xie, L., Dong, C., Shan, Y.: Real-esrgan: training real-world blind super-resolution with pure synthetic data. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1905–1914 (2021)

    Google Scholar 

  19. Wang, X., et al.: ESRGAN: enhanced super-resolution generative adversarial networks. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11133, pp. 63–79. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11021-5_5

    Chapter  Google Scholar 

  20. Xia, B., Tian, Y., Hang, Y., Yang, W., Liao, Q., Zhou, J.: Coarse-to-fine embedded patchmatch and multi-scale dynamic aggregation for reference-based superresolution. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 2768–2776 (2022)

    Google Scholar 

  21. Xie, Y., Xiao, J., Sun, M., Yao, C., Huang, K.: Feature representation matters: end-to-end learning for reference-based image super-resolution. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12349, pp. 230–245. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58548-8_14

    Chapter  Google Scholar 

  22. Yang, F., Yang, H., Fu, J., Lu, H., Guo, B.: Learning texture transformer network for image super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5791–5800 (2020)

    Google Scholar 

  23. Yu, R., et al.: Cascade transformers for end-to-end person search. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7267–7276 (2022)

    Google Scholar 

  24. Zamir, S.W., Arora, A., Khan, S., Hayat, M., Khan, F.S., Yang, M.H.: Restormer: efficient transformer for high-resolution image restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5728–5739 (2022)

    Google Scholar 

  25. Zhang, K., Liang, J., Van Gool, L., Timofte, R.: Designing a practical degradation model for deep blind image super-resolution. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4791–4800 (2021)

    Google Scholar 

  26. Zhang, Y., Li, K., Li, K., Fu, Y.: MR image super-resolution with squeeze and excitation reasoning attention network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13425–13434 (2021)

    Google Scholar 

  27. Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image super-resolution using very deep residual channel attention networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 294–310. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_18

    Chapter  Google Scholar 

  28. Zhang, Z., Wang, Z., Lin, Z., Qi, H.: Image super-resolution by neural texture transfer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7982–7991 (2019)

    Google Scholar 

  29. Zhang, Y., Tian, Y., Kong, Y., Zhong, B., Fu, Y.: Residual dense network for image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2472–2481 (2018)

    Google Scholar 

  30. Zheng, H., Ji, M., Wang, H., Liu, Y., Fang, L.: CrossNet: an end-to-end reference-based super resolution network using cross-scale warping. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11210, pp. 87–104. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01231-1_6

    Chapter  Google Scholar 

  31. Li, J., Zhao, Z.Q.: Training super-resolution network with difficulty-based adaptive sampling. In: 2022 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6. IEEE (2022)

    Google Scholar 

  32. Shen, H., Zhao, Z.Q.: Mid-weight image super-resolution with bypass connectionattention network. In: ECAI 2020, pp. 2760–2767. IOS Press (2020)

    Google Scholar 

  33. Shen, H., Zhao, Z.Q., Liao, W., Tian, W., Huang, D.S.: Joint operation and attention block search for lightweight image restoration. Pattern Recogn. 132, 108909 (2022)

    Article  Google Scholar 

  34. Shen, H., Zhao, Z.Q., Zhang, W.: Adaptive dynamic filtering network for image denoising. arXiv preprint arXiv:2211.12051 (2022)

Download references

Acknowledgement

This work was supported in part by the National Natural Science Foundation of China under Grants 61976079, in part by Guangxi Key Research and Development Program under Grant AB22035022, and in part by Anhui Key Research and Development Program under Grant 202004a05020039.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong-Qiu Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hu, K., Chen, R., Zhao, ZQ. (2023). Cross-Scale Dynamic Alignment Network for Reference-Based Super-Resolution. In: Huang, DS., Premaratne, P., Jin, B., Qu, B., Jo, KH., Hussain, A. (eds) Advanced Intelligent Computing Technology and Applications. ICIC 2023. Lecture Notes in Computer Science, vol 14087. Springer, Singapore. https://doi.org/10.1007/978-981-99-4742-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-4742-3_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-4741-6

  • Online ISBN: 978-981-99-4742-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics