Skip to main content

Nanozymes for Antioxidant Therapy

  • Chapter
  • First Online:
Biomedical Nanozymes

Abstract

With in-depth research over the past decade, impressive progress of nanozymes has been made in exploration of their activity, mechanism, and advanced applications. Among them, nanozymes with catalase-, superoxide dismutase-, glutathione peroxidase-like, and other activities can catalyze reactive oxygen species into water or oxygen and relieve oxidative stress on cells, thus attracting special attention for their potential application in antioxidant therapy. This chapter aims to focus on the main classifications and synthesis methods of antioxidant nanozymes, their enzymatic mechanisms and activity modulation approaches, and their current progress, challenges, and future directions for antioxidant therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, Yan X. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol. 2007;2(9):577–83.

    Article  CAS  Google Scholar 

  2. Zhang T, Fang J, Tsutsuki H, Ono K, Islam W, Sawa T. Synthesis of pegylated manganese protoporphyrin as a catalase mimic and its therapeutic application to acetaminophen-induced acute liver failure. Biol Pharm Bull. 2019;42(7):1199–206.

    Article  CAS  Google Scholar 

  3. Tian R, Xu J, Luo Q, Hou C, Liu J. Rational design and biological application of antioxidant nanozymes. Front Chem. 2021;8:831.

    Article  Google Scholar 

  4. Wang Q, Cheng C, Zhao S, Liu Q, Zhang Y, Liu W, Zhao X, Zhang H, Pu J, Zhang S, Zhang H, Du Y, Wei H. A valence-engineered self-cascading antioxidant nanozyme for the therapy of inflammatory bowel disease. Angew Chem Int Ed. 2022;61(27):e202201101.

    Article  CAS  Google Scholar 

  5. Shi X, Yang J, Wen X, Tian F, Li C. Oxygen vacancy enhanced biomimetic superoxide dismutase activity of CeO2-Gd nanozymes. J Rare Earth. 2021;39(9):1108–16.

    Article  CAS  Google Scholar 

  6. Wei H, Gao LZ, Fan KL, Liu JW, He JY, Qu XG, Dong SJ, Wang EK, Yan XY. Nanozymes: a clear definition with fuzzy edges. Nano Today. 2021;40:6.

    Article  Google Scholar 

  7. Novoselov KS, Fal'ko VI, Colombo L, Gellert PR, Schwab MG, Kim K. A roadmap for graphene. Nature. 2012;490(7419):192–200.

    Article  CAS  Google Scholar 

  8. Yi K, Liu D, Chen X, Yang J, Wei D, Liu Y, Wei D. Plasma-enhanced chemical vapor deposition of two-dimensional materials for applications. Acc Chem Res. 2021;54(4):1011–22.

    Article  CAS  Google Scholar 

  9. Zhang C, Zhai X, Zhao G, Ren F, Leng X. Synthesis, characterization, and controlled release of selenium nanoparticles stabilized by chitosan of different molecular weights. Carbohydr Polym. 2015;134:158–66.

    Article  CAS  Google Scholar 

  10. Ali SS, Hardt JI, Quick KL, Kim-Han JS, Erlanger BF, Huang TT, Epstein CJ, Dugan LL. A biologically effective fullerene (C60) derivative with superoxide dismutase mimetic properties. Free Radic Biol Med. 2004;37(8):1191–202.

    Article  CAS  Google Scholar 

  11. Mu X, He H, Wang J, Long W, Li Q, Liu H, Gao Y, Ouyang L, Ren Q, Sun S, Wang J, Yang J, Liu Q, Sun Y, Liu C, Zhang XD, Hu W. Carbogenic nanozyme with ultrahigh reactive nitrogen species selectivity for traumatic brain injury. Nano Lett. 2019;19(7):4527–34.

    Article  CAS  Google Scholar 

  12. Cong W, Bai R, Li Y-F, Wang L, Chen C. Selenium nanoparticles as an efficient nanomedicine for the therapy of Huntington’s disease. ACS Appl Mater Interfaces. 2019;11(38):34725–35.

    Article  CAS  Google Scholar 

  13. Plauck A, Stangland EE, Dumesic JA, Mavrikakis M. Active sites and mechanisms for H2O2 decomposition over Pd catalysts. Proc Natl Acad Sci U S A. 2016;113(14):E1973–82.

    Article  CAS  Google Scholar 

  14. Watanabe A, Kajita M, Kim J, Kanayama A, Takahashi K, Mashino T, Miyamoto Y. In vitro free radical scavenging activity of platinum nanoparticles. Nanotechnology. 2009;20(45):e455105.

    Article  Google Scholar 

  15. He W, Zhou YT, Wamer WG, Hu X, Wu X, Zheng Z, Boudreau MD, Yin JJ. Intrinsic catalytic activity of au nanoparticles with respect to hydrogen peroxide decomposition and superoxide scavenging. Biomaterials. 2013;34(3):765–73.

    Article  CAS  Google Scholar 

  16. Wei Z, Peng G, Zhao Y, Chen S, Wang R, Mao H, Xie Y, Zhao C. Engineering antioxidative cascade metal-phenolic nanozymes for alleviating oxidative stress during extracorporeal blood purification. ACS Nano. 2022;16(11):18329–43.

    Article  CAS  Google Scholar 

  17. Lord MS, Berret JF, Singh S, Vinu A, Karakoti AS. Redox active cerium oxide nanoparticles: current status and burning issues. Small. 2021;17(51):22.

    Article  Google Scholar 

  18. Kwon HJ, Cha M-Y, Kim D, Kim DK, Soh M, Shin K, Hyeon T, Mook-Jung I. Mitochondria-targeting ceria nanoparticles as antioxidants for Alzheimer’s disease. ACS Nano. 2016;10(2):2860–70.

    Article  CAS  Google Scholar 

  19. Chen Z, Yin J-J, Zhou Y-T, Zhang Y, Song L, Song M, Hu S, Gu N. Dual enzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxicity. ACS Nano. 2012;6(5):4001–12.

    Article  CAS  Google Scholar 

  20. Liu Y, Wang X, Li X, Qiao S, Huang G, Hermann DM, Doeppner TR, Zeng M, Liu W, Xu G, Ren L, Zhang Y, Liu W, Casals E, Li W, Wang YC. A Co-doped Fe3O4 nanozyme shows enhanced reactive oxygen and nitrogen species scavenging activity and ameliorates the deleterious effects of ischemic stroke. ACS Appl Mater Interfaces. 2021;13(39):46213–24.

    Article  CAS  Google Scholar 

  21. Vernekar AA, Sinha D, Srivastava S, Paramasivam PU, D'Silva P, Mugesh G. An antioxidant nanozyme that uncovers the cytoprotective potential of vanadia nanowires. Nat Commun. 2014;5:5301.

    Article  CAS  Google Scholar 

  22. Prasad P, Gordijo CR, Abbasi AZ, Maeda A, Ip A, Rauth AM, DaCosta RS, Wu XY. Multifunctional albumin–MnO2 nanoparticles modulate solid tumor microenvironment by attenuating hypoxia, acidosis, vascular endothelial growth factor and enhance radiation response. ACS Nano. 2014;8(4):3202–12.

    Article  CAS  Google Scholar 

  23. Cheng Y, Cheng CQ, Yao J, Yu YJ, Liu YF, Zhang H, Miao LY, Wei H. Mn3O4 nanozyme for inflammatory bowel disease therapy. Adv Ther. 2021;4(9):9.

    Google Scholar 

  24. Yao J, Cheng Y, Zhou M, Zhao S, Lin SC, Wang XY, Wu JJX, Li SR, Wei H. ROS scavenging Mn3O4 nanozymes for in vivo anti-inflammation. Chem Sci. 2018;9(11):2927–33.

    Article  CAS  Google Scholar 

  25. Singh N, Savanur MA, Srivastava S, D'Silva P, Mugesh G. A redox modulatory Mn3O4 nanozyme with multi-enzyme activity provides efficient cytoprotection to human cells in a Parkinson’s disease model. Angew Chem Int Ed. 2017;56(45):14267–71.

    Article  CAS  Google Scholar 

  26. Liu Z, Xie L, Qiu K, Liao X, Rees TW, Zhao Z, Ji L, Chao H. An ultrasmall RuO2 nanozyme exhibiting multienzyme-like activity for the prevention of acute kidney injury. ACS Appl Mater Interfaces. 2020;12(28):31205–16.

    Article  CAS  Google Scholar 

  27. Hao C, Qu A, Xu L, Sun M, Zhang H, Xu C, Kuang H. Chiral molecule-mediated porous CuxO nanoparticle clusters with antioxidation activity for ameliorating Parkinson’s disease. J Am Chem Soc. 2019;141(2):1091–9.

    Article  CAS  Google Scholar 

  28. Ma MM, Liu ZQ, Gao N, Pi ZF, Du XB, Ren JS, Qu XG. Self-protecting biomimetic nanozyme for selective and synergistic clearance of peripheral amyloid-beta in an Alzheimer’s disease model. J Am Chem Soc. 2020;142(52):21702–11.

    Article  CAS  Google Scholar 

  29. Liu T, Xiao B, Xiang F, Tan J, Chen Z, Zhang X, Wu C, Mao Z, Luo G, Chen X, Deng J. Ultrasmall copper-based nanoparticles for reactive oxygen species scavenging and alleviation of inflammation related diseases. Nat Commun. 2020;11(1):2788.

    Article  CAS  Google Scholar 

  30. Chen T, Zou H, Wu X, Chen Y, Situ B, Zheng L, Yang G. Fullerene-like MoS2 nanoparticles as cascade catalysts improving lubricant and antioxidant abilities of artificial synovial fluid. ACS Biomater Sci Eng. 2019;5(6):3079–88.

    Article  CAS  Google Scholar 

  31. Chen T, Zou H, Wu X, Liu C, Situ B, Zheng L, Yang G. Nanozymatic antioxidant system based on MoS2 nanosheets. ACS Appl Mater Interfaces. 2018;10(15):12453–62.

    Article  CAS  Google Scholar 

  32. Ren C, Li D, Zhou Q, Hu X. Mitochondria-targeted TPP-MoS2 with dual enzyme activity provides efficient neuroprotection through M1/M2 microglial polarization in an Alzheimer’s disease model. Biomaterials. 2020;232:119752.

    Article  CAS  Google Scholar 

  33. Feng W, Han XG, Hu H, Chang MQ, Ding L, Xiang HJ, Chen Y, Li YH. 2D vanadium carbide MXenzyme to alleviate ROS-mediated inflammatory and neurodegenerative diseases. Nat Commun. 2021;12(1):16.

    Google Scholar 

  34. Zhang W, Hu S, Yin JJ, He W, Lu W, Ma M, Gu N, Zhang Y. Prussian blue nanoparticles as multienzyme mimetics and reactive oxygen species scavengers. J Am Chem Soc. 2016;138(18):5860–5.

    Article  CAS  Google Scholar 

  35. Bai H, Kong F, Feng K, Zhang X, Dong H, Liu D, Ma M, Liu F, Gu N, Zhang Y. Prussian blue nanozymes prevent anthracycline-induced liver injury by attenuating oxidative stress and regulating inflammation. ACS Appl Mater Interfaces. 2021;13(36):42382–95.

    Article  CAS  Google Scholar 

  36. Zhang DY, Liu H, Zhu KS, He T, Younis MR, Yang C, Lei S, Wu J, Lin J, Qu J, Huang P. Prussian blue-based theranostics for ameliorating acute kidney injury. J Nanobiotechnol. 2021;19(1):266.

    Article  CAS  Google Scholar 

  37. Xiong H, Zhao Y, Xu Q, Xie X, Wu J, Hu B, Chen S, Cai X, Zheng Y, Fan C. Biodegradable hollow-structured nanozymes modulate phenotypic polarization of macrophages and relieve hypoxia for treatment of osteoarthritis. Small. 2022;18(32):2203240.

    Article  CAS  Google Scholar 

  38. Zhang K, Tu M, Gao W, Cai X, Song F, Chen Z, Zhang Q, Wang J, Jin C, Shi J, Yang X, Zhu Y, Gu W, Hu B, Zheng Y, Zhang H, Tian M. Hollow Prussian blue nanozymes drive neuroprotection against ischemic stroke via attenuating oxidative stress, counteracting inflammation, and suppressing cell apoptosis. Nano Lett. 2019;19(5):2812–23.

    Article  CAS  Google Scholar 

  39. Wang T, Dong HJ, Zhang MC, Wen T, Meng J, Liu J, Li ZL, Zhang Y, Xu HY. Prussian blue nanoparticles induce myeloid leukemia cells to differentiate into red blood cells through nanozyme activities. Nanoscale. 2020;12(45):23084–91.

    Article  CAS  Google Scholar 

  40. Xie X, Zhao JL, Gao W, Chen J, Hu B, Cai XJ, Zheng YY. Prussian blue nanozyme-mediated nanoscavenger ameliorates acute pancreatitis via inhibiting TLRs/NF-kappa b signaling pathway. Theranostics. 2021;11(7):3213–28.

    Article  CAS  Google Scholar 

  41. Ma XX, Hao JN, Wu JR, Li YH, Cai XJ, Zheng YY. Prussian blue nanozyme as a pyroptosis inhibitor alleviates neurodegeneration. Adv Mater. 2022;34(15):12.

    Article  Google Scholar 

  42. Ye CY, Zhang W, Zhao YZ, Zhang K, Hou WD, Chen M, Lu JW, Wu JR, He RX, Gao W, Zheng YY, Cai XJ. Prussian blue nanozyme normalizes microenvironment to delay osteoporosis. Adv Healthc Mater. 2022;11(19):11.

    Google Scholar 

  43. Zhao JL, Cai XJ, Gao W, Zhang LL, Zou DW, Zheng YY, Li ZS, Chen HR. Prussian blue nanozyme with multienzyme activity reduces colitis in mice. ACS Appl Mater Interfaces. 2018;10(31):26108–17.

    Article  CAS  Google Scholar 

  44. Chao D, Dong Q, Yu Z, Qi D, Li M, Xu L, Liu L, Fang Y, Dong S. Specific nanodrug for diabetic chronic wounds based on antioxidase-mimicking MOF-818 nanozymes. J Am Chem Soc. 2022;144(51):23438–47.

    Article  CAS  Google Scholar 

  45. Zhang L, Zhang Y, Wang ZZ, Cao FF, Sang YJ, Dong K, Pu F, Ren JS, Qu XG. Constructing metal-organic framework nanodots as bio-inspired artificial superoxide dismutase for alleviating endotoxemia. Mater Horizons. 2019;6(8):1682–7.

    Article  CAS  Google Scholar 

  46. Wu JJX, Yu YJ, Cheng Y, Cheng CQ, Zhang YH, Jiang B, Zhao XZ, Miao LY, Wei H. Ligand-dependent activity engineering of glutathione peroxidase-mimicking MIL-47(V) metal-organic framework nanozyme for therapy. Angew Chem Int Ed. 2021;60(3):1227–34.

    Article  CAS  Google Scholar 

  47. Zhang R, Xue B, Tao Y, Zhao H, Zhang Z, Wang X, Zhou X, Jiang B, Yang Z, Yan X, Fan K. Edge-site engineering of defective Fe-N4 nanozymes with boosted catalase-like performance for retinal vasculopathies. Adv Mater. 2022;34(39):e2205324.

    Article  Google Scholar 

  48. Wang Z, Wang W, Wang J, Wang D, Liu M, Wu Q, Hu H. Single-atom catalysts with ultrahigh catalase-like activity through electron filling and orbital energy regulation. Adv Funct Mater. 2022;33(2):2209560.

    Article  Google Scholar 

  49. Zhu S, Li Z, Zhang F, Liu F, Ni P, Chen C, Jiang Y, Lu Y. Single-atom cobalt catalysts as highly efficient oxidase mimics for time-based visualization monitoring the TAC of skin care products. Chem Eng J. 2023;456:141053.

    Article  CAS  Google Scholar 

  50. Cao FF, Zhang L, You YW, Zheng LR, Ren JS, Qu XG. An enzyme-mimicking single-atom catalyst as an efficient multiple reactive oxygen and nitrogen species scavenger for sepsis management. Angew Chem Int Ed. 2020;59(13):5108–15.

    Article  CAS  Google Scholar 

  51. Yan RJ, Sun S, Yang J, Long W, Wang JY, Mu XY, Li QF, Hao WT, Zhang SF, Liu HL, Gao YL, Ouyang LF, Chen JC, Liu SJ, Zhang XD, Ming D. Nanozyme-based bandage with single-atom catalysis for brain trauma. ACS Nano. 2019;13(10):11552–60.

    Article  CAS  Google Scholar 

  52. Tian R, Ma H, Ye W, Li Y, Wang S, Zhang Z, Liu S, Zang M, Hou J, Xu J, Luo Q, Sun H, Bai F, Yang Y, Liu J. Se-containing MOF coated dual-Fe-atom nanozymes with multi-enzyme cascade activities protect against cerebral ischemic reperfusion injury. Adv Funct Mater. 2022;32(36):2204025.

    Article  CAS  Google Scholar 

  53. Xiong B, Xu R, Zhou R, He Y, Yeung ES. Preventing UV induced cell damage by scavenging reactive oxygen species with enzyme-mimic Au–Pt nanocomposites. Talanta. 2014;120:262–7.

    Article  CAS  Google Scholar 

  54. Xu S, Chang L, Zhao X, Hu Y, Lin Y, Chen Z, Ren X, Mei X. Preparation of epigallocatechin gallate decorated Au–Ag nano-heterostructures as NIR-sensitive nano-enzymes for the treatment of osteoarthritis through mitochondrial repair and cartilage protection. Acta Biomater. 2022;144:168–82.

    Article  CAS  Google Scholar 

  55. Liu Y, Qing Y, Jing L, Zou W, Guo R. Platinum-copper bimetallic colloid nanoparticle cluster nanozymes with multiple enzyme-like activities for scavenging reactive oxygen species. Langmuir. 2021;37(24):7364–72.

    Article  CAS  Google Scholar 

  56. Huang Y, Liu Z, Liu C, Ju E, Zhang Y, Ren J, Qu X. Self-assembly of multi-nanozymes to mimic an intracellular antioxidant defense system. Angew Chem Int Ed. 2016;55(23):6646–50.

    Article  CAS  Google Scholar 

  57. Sun Y, Liu X, Wang L, Xu L, Liu K, Xu L, Shi F, Zhang Y, Gu N, Xiong F. High-performance sod mimetic enzyme Au@Ce for arresting cell cycle and proliferation of acute myeloid leukemia. Bioact Mater. 2022;10:117–30.

    Article  CAS  Google Scholar 

  58. Li Y, Fu R, Duan Z, Zhu C, Fan D. Construction of multifunctional hydrogel based on the tannic acid-metal coating decorated MoS2 dual nanozyme for bacteria-infected wound healing. Bioact Mater. 2022;9:461–74.

    Article  CAS  Google Scholar 

  59. Muhammad F, Huang F, Cheng Y, Chen X, Wang Q, Zhu C, Zhang Y, Yang X, Wang P, Wei H. Nanoceria as an electron reservoir: spontaneous deposition of metal nanoparticles on oxides and their anti-inflammatory activities. ACS Nano. 2022;16(12):20567–76.

    Article  CAS  Google Scholar 

  60. Huang Y, Liu C, Pu F, Liu Z, Ren J, Qu X. A Go-Se nanocomposite as an antioxidant nanozyme for cytoprotection. Chem Commun. 2017;53(21):3082–5.

    Article  CAS  Google Scholar 

  61. Ai Y, You J, Gao J, Wang J, Sun H-B, Ding M, Liang Q. Multi-shell nanocomposites based multienzyme mimetics for efficient intracellular antioxidation. Nano Res. 2021;14(8):2644–53.

    Article  CAS  Google Scholar 

  62. Shibuya S, Ozawa Y, Watanabe K, Izuo N, Toda T, Yokote K, Shimizu T. Palladium and platinum nanoparticles attenuate aging-like skin atrophy via antioxidant activity in mice. PLoS One. 2014;9(10):e109288.

    Article  Google Scholar 

  63. Liu Y-Q, Mao Y, Xu E, Jia H, Zhang S, Dawson VL, Dawson TM, Li Y-M, Zheng Z, He W, Mao X. Nanozyme scavenging ROS for prevention of pathologic α-synuclein transmission in Parkinson’s disease. Nano Today. 2021;36:101027.

    Article  CAS  Google Scholar 

  64. Wang SY, Zhou Y, Liang XY, Xu M, Li N, Zhao K. Platinum–cerium bimetallic nano-raspberry for atherosclerosis treatment via synergistic foam cell inhibition and P2Y12 targeted antiplatelet aggregation. Chem Eng J. 2022;430:15.

    Google Scholar 

  65. Liu YF, Cheng Y, Zhang H, Zhou M, Yu YJ, Lin SC, Jiang B, Zhao XZ, Miao LY, Wei CW, Liu QY, Lin YW, Du Y, Butch CJ, Wei H. Integrated cascade nanozyme catalyzes in vivo ROS scavenging for anti-inflammatory therapy. Sci Adv. 2020;6(29):10.

    Article  Google Scholar 

  66. Das R, Dhiman A, Kapil A, Bansal V, Sharma TK. Aptamer-mediated colorimetric and electrochemical detection of Pseudomonas aeruginosa utilizing peroxidase-mimic activity of gold nanozyme. Anal Bioanal Chem. 2019;411(6):1229–38.

    Article  CAS  Google Scholar 

  67. Lin YH, Ren JS, Qu XG. Catalytically active nanomaterials: a promising candidate for artificial enzymes. Acc Chem Res. 2014;47(4):1097–105.

    Article  CAS  Google Scholar 

  68. Huang L, Chen JX, Gan LF, Wang J, Dong SJ. Single-atom nanozymes. Sci Adv. 2019;5(5):9.

    Article  Google Scholar 

  69. Yang HZ, Shang L, Zhang QH, Shi R, Waterhouse GIN, Gu L, Zhang TR. A universal ligand mediated method for large scale synthesis of transition metal single atom catalysts. Nat Commun. 2019;10:9.

    Article  Google Scholar 

  70. Zhao H, Zhang R, Yan X, Fan K. Superoxide dismutase nanozymes: an emerging star for anti-oxidation. J Mater Chem B. 2021;9(35):6939–57.

    Article  CAS  Google Scholar 

  71. Beem KM, Rich WE, Rajagopalan KV. Total reconstitution of copper-zinc superoxide dismutase. J Biol Chem. 1974;249(22):7298–305.

    Article  CAS  Google Scholar 

  72. Abreu IA, Cabelli DE. Superoxide dismutases—a review of the metal-associated mechanistic variations. Biochim Biophys Acta. 2010;1804(2):263–74.

    Article  CAS  Google Scholar 

  73. Lah MS, Dixon MM, Pattridge KA, Stallings WC, Fee JA, Ludwig ML. Structure-function in Escherichia coli iron superoxide dismutase: comparisons with the manganese enzyme from Thermus thermophilus. Biochemistry. 1995;34(5):1646–60.

    Article  CAS  Google Scholar 

  74. Shearer J. Insight into the structure and mechanism of nickel-containing superoxide dismutase derived from peptide-based mimics. Acc Chem Res. 2014;47(8):2332–41.

    Article  CAS  Google Scholar 

  75. Shen X, Liu W, Gao X, Lu Z, Wu X, Gao X. Mechanisms of oxidase and superoxide dismutation-like activities of gold, silver, platinum, and palladium, and their alloys: a general way to the activation of molecular oxygen. J Am Chem Soc. 2015;137(50):15882–91.

    Article  CAS  Google Scholar 

  76. Chelikani P, Fita I, Loewen PC. Diversity of structures and properties among catalases. Cell Mol Life Sci. 2004;61(2):192–208.

    Article  CAS  Google Scholar 

  77. Xu D, Wu L, Yao H, Zhao L. Catalase-like nanozymes: classification, catalytic mechanisms, and their applications. Small. 2022;18(37):e2203400.

    Article  Google Scholar 

  78. Pirmohamed T, Dowding JM, Singh S, Wasserman B, Heckert E, Karakoti AS, King JE, Seal S, Self WT. Nanoceria exhibit redox state-dependent catalase mimetic activity. Chem Commun. 2010;46(16):2736–8.

    Article  CAS  Google Scholar 

  79. Li J, Liu W, Wu X, Gao X. Mechanism of pH-switchable peroxidase and catalase-like activities of gold, silver, platinum and palladium. Biomaterials. 2015;48:37–44.

    Article  Google Scholar 

  80. Mu J, Zhang L, Zhao M, Wang Y. Co3O4 nanoparticles as an efficient catalase mimic: properties, mechanism and its electrocatalytic sensing application for hydrogen peroxide. J Mol Catal A Chem. 2013;378:30–7.

    Article  CAS  Google Scholar 

  81. de Oliveira FK, Santos LO, Buffon JG. Mechanism of action, sources, and application of peroxidases. Food Res Int. 2021;143:110266.

    Article  Google Scholar 

  82. Dong H, Du W, Dong J, Che R, Kong F, Cheng W, Ma M, Gu N, Zhang Y. Depletable peroxidase-like activity of Fe3O4 nanozymes accompanied with separate migration of electrons and iron ions. Nat Commun. 2022;13(1):5365.

    Article  CAS  Google Scholar 

  83. Wu X, Chen T, Chen Y, Yang G. Modified Ti3C2 nanosheets as peroxidase mimetics for use in colorimetric detection and immunoassays. J Mater Chem B. 2020;8(13):2650–9.

    Article  CAS  Google Scholar 

  84. Dong J, Song L, Yin JJ, He W, Wu Y, Gu N, Zhang Y. Co3O4 nanoparticles with multi-enzyme activities and their application in immunohistochemical assay. ACS Appl Mater Interfaces. 2014;6(3):1959–70.

    Article  CAS  Google Scholar 

  85. Brigelius-Flohe R, Maiorino M. Glutathione peroxidases. Biochim Biophys Acta. 2013;1830(5):3289–303.

    Article  CAS  Google Scholar 

  86. Ursini F, Maiorino M, Brigelius-Flohe R, Aumann KD, Roveri A, Schomburg D, Flohe L. Diversity of glutathione peroxidases. In: Packer L, editor. Biothiols, part B: glutathione and thioredoxin: thiols in signal transduction and gene regulation, vol. 252. San Diego: Elsevier Academic Press Inc; 1995. p. 38–53.

    Chapter  Google Scholar 

  87. Dong H, Fan Y, Zhang W, Gu N, Zhang Y. Catalytic mechanisms of nanozymes and their applications in biomedicine. Bioconjug Chem. 2019;30(5):1273–96.

    Article  CAS  Google Scholar 

  88. Hamasaki T, Kashiwagi T, Imada T, Nakamichi N, Aramaki S, Toh K, Morisawa S, Shimakoshi H, Hisaeda Y, Shirahata S. Kinetic analysis of superoxide anion radical-scavenging and hydroxyl radical-scavenging activities of platinum nanoparticles. Langmuir. 2008;24(14):7354–64.

    Article  CAS  Google Scholar 

  89. Lou Z, Zhao S, Wang Q, Wei H. N-doped carbon as peroxidase-like nanozymes for total antioxidant capacity assay. Anal Chem. 2019;91(23):15267–74.

    Article  CAS  Google Scholar 

  90. Damle MA, Jakhade AP, Chikate RC. Modulating pro- and antioxidant activities of nanoengineered cerium dioxide nanoparticles against Escherichia coli. ACS Omega. 2019;4(2):3761–71.

    Article  CAS  Google Scholar 

  91. Winterbourn CC. Reconciling the chemistry and biology of reactive oxygen species. Nat Chem Biol. 2008;4(5):278–86.

    Article  CAS  Google Scholar 

  92. Mittal M, Siddiqui MR, Tran K, Reddy SP, Malik AB. Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal. 2013;20(7):1126–67.

    Article  Google Scholar 

  93. Ito K, Hirao A, Arai F, Takubo K, Matsuoka S, Miyamoto K, Ohmura M, Naka K, Hosokawa K, Ikeda Y, Suda T. Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nat Med. 2006;12(4):446–51.

    Article  CAS  Google Scholar 

  94. Stadtman ER. Protein oxidation and aging. Free Radic Res. 2006;40(12):1250–8.

    Article  CAS  Google Scholar 

  95. Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes. 2005;54(6):1615–25.

    Article  CAS  Google Scholar 

  96. Mukherjee S, Madamsetty VS, Bhattacharya D, Roy Chowdhury S, Paul MK, Mukherjee A. Recent advancements of nanomedicine in neurodegenerative disorders theranostics. Adv Funct Mater. 2020;30(35):2003054.

    Article  CAS  Google Scholar 

  97. Yang W, Yang X, Zhu L, Chu H, Li X, Xu W. Nanozymes: activity origin, catalytic mechanism, and biological application. Coord Chem Rev. 2021;448:214170.

    Article  CAS  Google Scholar 

  98. Wang Q, Jiang J, Gao L. Nanozyme-based medicine for enzymatic therapy: progress and challenges. Biomed Mater. 2021;16(4):042002.

    Article  CAS  Google Scholar 

  99. Fan K, Lin Y, Bansal V. Nanozymes: from rational design to biomedical applications. Front Chem. 2021;9:670767.

    Article  Google Scholar 

  100. Wang J, Ni Q, Wang Y, Zhang Y, He H, Gao D, Ma X, Liang X-J. Nanoscale drug delivery systems for controllable drug behaviors by multi-stage barrier penetration. J Control Release. 2021;331:282–95.

    Article  CAS  Google Scholar 

  101. Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015;33(9):941–51.

    Article  CAS  Google Scholar 

  102. Lai Y, Zhu Y, Xu Z, Hu X, Saeed M, Yu H, Chen X, Liu J, Zhang W. Engineering versatile nanoparticles for near-infrared light-tunable drug release and photothermal degradation of amyloid β. Adv Funct Mater. 2020;30(11):1908473.

    Article  CAS  Google Scholar 

  103. Xu C, Wang Y, Yu H, Tian H, Chen X. Multifunctional theranostic nanoparticles derived from fruit-extracted anthocyanins with dynamic disassembly and elimination abilities. ACS Nano. 2018;12(8):8255–65.

    Article  CAS  Google Scholar 

  104. Kim D, Shin K, Kwon SG, Hyeon T. Synthesis and biomedical applications of multifunctional nanoparticles. Adv Mater. 2018;30(49):1802309.

    Article  Google Scholar 

  105. Zhao Z, Ukidve A, Kim J, Mitragotri S. Targeting strategies for tissue-specific drug delivery. Cell. 2020;181(1):151–67.

    Article  CAS  Google Scholar 

  106. Choo P, Liu T, Odom TW. Nanoparticle shape determines dynamics of targeting nanoconstructs on cell membranes. J Am Chem Soc. 2021;143(12):4550–5.

    Article  CAS  Google Scholar 

  107. Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov. 2021;20(2):101–24.

    Article  CAS  Google Scholar 

  108. Bian HT, Shen YW, Zhou YD, Nagle DG, Guan YY, Zhang WD, Luan X. CD47: Beyond an immune checkpoint in cancer treatment. Biochim Biophys Acta Rev Cancer. 2022;1877(5):188771.

    Article  CAS  Google Scholar 

  109. Wang C, Sun C, Li M, Xia B, Wang Y, Zhang L, Zhang Y, Wang J, Sun F, Lu S, Zhu J, Huang J, Zhang Y. Novel fully human anti-CD47 antibodies stimulate phagocytosis and promote elimination of AML cells. J Cell Physiol. 2021;236(6):4470–81.

    Article  CAS  Google Scholar 

  110. Zhang X, Fan J, Ju D. Insights into CD47/SIRPα axis-targeting tumor immunotherapy. Antibody Ther. 2018;1(2):37–42.

    Article  CAS  Google Scholar 

  111. Lu G, Wang X, Li F, Wang S, Zhao J, Wang J, Liu J, Lyu C, Ye P, Tan H, Li W, Ma G, Wei W. Engineered biomimetic nanoparticles achieve targeted delivery and efficient metabolism-based synergistic therapy against glioblastoma. Nat Commun. 2022;13(1):4214.

    Article  CAS  Google Scholar 

  112. Miao Y, Yang Y, Guo L, Chen M, Zhou X, Zhao Y, Nie D, Gan Y, Zhang X. Cell membrane-camouflaged nanocarriers with biomimetic deformability of erythrocytes for ultralong circulation and enhanced cancer therapy. ACS Nano. 2022;16(4):6527–40.

    Article  CAS  Google Scholar 

  113. Ben-Akiva E, Meyer RA, Yu H, Smith JT, Pardoll DM, Green JJ. Biomimetic anisotropic polymeric nanoparticles coated with red blood cell membranes for enhanced circulation and toxin removal. Sci Adv. 2020;6(16):eaay9035.

    Article  CAS  Google Scholar 

  114. Wu G, Wei W, Zhang J, Nie W, Yuan L, Huang Y, Zuo L, Huang L, Xi X, Xie H-Y. A self-driven bioinspired nanovehicle by leukocyte membrane-hitchhiking for early detection and treatment of atherosclerosis. Biomaterials. 2020;250:119963.

    Article  CAS  Google Scholar 

  115. Zinger A, Sushnitha M, Naoi T, Baudo G, De Rosa E, Chang J, Tasciotti E, Taraballi F. Enhancing inflammation targeting using tunable leukocyte-based biomimetic nanoparticles. ACS Nano. 2021;15(4):6326–39.

    Article  CAS  Google Scholar 

  116. Kapoor D, Bhatt S, Kumar M, Maheshwari R, Tekade RK. Chapter 8—Ligands for targeted drug delivery and applications. In: Tekade RK, editor. Basic fundamentals of drug delivery. Academic Press; 2019. p. 307–42.

    Chapter  Google Scholar 

  117. Muro S. Challenges in design and characterization of ligand-targeted drug delivery systems. J Control Release. 2012;164(2):125–37.

    Article  CAS  Google Scholar 

  118. Srinivasarao M, Low PS. Ligand-targeted drug delivery. Chem Rev. 2017;117(19):12133–64.

    Article  CAS  Google Scholar 

  119. Vanhee P, Van der Sloot A, Verschueren E, Serrano L, Rousseau F, Schymkowitz J. Computational design of peptide ligands. Trends Biotechnol. 2011;29:231–9.

    Article  CAS  Google Scholar 

  120. Mamot C, Ritschard R, Wicki A, Stehle G, Dieterle T, Bubendorf L, Hilker C, Deuster S, Herrmann R, Rochlitz C. Tolerability, safety, pharmacokinetics, and efficacy of doxorubicin-loaded anti-EGFR immunoliposomes in advanced solid tumours: a phase 1 dose-escalation study. Lancet Oncol. 2012;13(12):1234–41.

    Article  CAS  Google Scholar 

  121. Damelin M, Bankovich A, Bernstein J, Lucas J, Chen L, Williams S, Park A, Aguilar J, Ernstoff E, Charati M, Dushin R, Aujay M, Lee C, Ramoth H, Milton M, Hampl J, Lazetic S, Pulito V, Rosfjord E, Sun Y, King L, Barletta F, Betts A, Guffroy M, Falahatpisheh H, O'Donnell CJ, Stull R, Pysz M, Escarpe P, Liu D, Foord O, Gerber HP, Sapra P, Dylla SJ. A PTK7-targeted antibody-drug conjugate reduces tumor-initiating cells and induces sustained tumor regressions. Sci Transl Med. 2017;9(372):eaag2611.

    Article  Google Scholar 

  122. Fang RH, Gao W, Zhang L. Targeting drugs to tumours using cell membrane-coated nanoparticles. Nat Rev Clin Oncol. 2023;20(1):33–48.

    Article  Google Scholar 

  123. Zhang S, Cao C, Lv X, Dai H, Zhong Z, Liang C, Wang W, Huang W, Song X, Dong X. A H2O2 self-sufficient nanoplatform with domino effects for thermal-responsive enhanced chemodynamic therapy. Chem Sci. 2020;11(7):1926–34.

    Article  CAS  Google Scholar 

  124. He P-P, Du X, Cheng Y, Gao Q, Liu C, Wang X, Wei Y, Yu Q, Guo W. Thermal-responsive MXene-DNA hydrogel for near-infrared light triggered localized photothermal-chemo synergistic cancer therapy. Small. 2022;18(40):2200263.

    Article  CAS  Google Scholar 

  125. Yang H, Ding Y, Tong Z, Qian X, Xu H, Lin F, Sheng G, Hong L, Wang W, Mao Z. pH-responsive hybrid platelet membrane-coated nanobomb with deep tumor penetration ability and enhanced cancer thermal/chemodynamic therapy. Theranostics. 2022;12(9):4250–68.

    Article  CAS  Google Scholar 

  126. Sun M, Yue T, Wang C, Fan Z, Gazit E, Du J. Ultrasound-responsive peptide nanogels to balance conflicting requirements for deep tumor penetration and prolonged blood circulation. ACS Nano. 2022;16(6):9183–94.

    Article  CAS  Google Scholar 

  127. Fliervoet LAL, Mastrobattista E. Drug delivery with living cells. Adv Drug Deliv Rev. 2016;106:63–72.

    Article  CAS  Google Scholar 

  128. Wang S, Wang Z, Li Z, Zhang X, Zhang H, Zhang T, Meng X, Sheng F, Hou Y. Amelioration of systemic antitumor immune responses in cocktail therapy by immunomodulatory nanozymes. Sci Adv. 2022;8(21):eabn3883.

    Article  CAS  Google Scholar 

  129. Lavrador P, Esteves MR, Gaspar VM, Mano JF. Stimuli-responsive nanocomposite hydrogels for biomedical applications. Adv Funct Mater. 2021;31(8):2005941.

    Article  CAS  Google Scholar 

  130. Moore MN, Sforzini S, Viarengo A, Barranger A. Antagonistic cytoprotective effects of c60 fullerene nanoparticles in simultaneous exposure to benzo[a]pyrene in a molluscan animal model. Sci Total Environ. 2021;755:142355.

    Article  CAS  Google Scholar 

  131. Varlamova EG, Gudkov SV, Plotnikov EY, Turovsky EA. Size-dependent cytoprotective effects of selenium nanoparticles during oxygen-glucose deprivation in brain cortical cells. Int J Mol Sci. 2022;23(13):7464.

    Article  CAS  Google Scholar 

  132. Kostyuk SV, Proskurnina EV, Savinova EA, Ershova ES, Kraevaya OA, Kameneva LV, Umryukhin PE, Dolgikh OA, Kutsev SI, Troshin PA, Veiko NN. Effects of functionalized fullerenes on ROS homeostasis determine their cytoprotective or cytotoxic properties. Nano. 2020;10(7):1405.

    CAS  Google Scholar 

  133. Li W, Liu Z, Liu C, Guan Y, Ren J, Qu X. Manganese dioxide nanozymes as responsive cytoprotective shells for individual living cell encapsulation. Angew Chem Int Ed. 2017;56(44):13661–5.

    Article  CAS  Google Scholar 

  134. Singh R, Singh S. Redox-dependent catalase mimetic cerium oxide-based nanozyme protect human hepatic cells from 3-AT induced acatalasemia. Colloids Surf B Biointerfaces. 2019;175:625–35.

    Article  CAS  Google Scholar 

  135. Wang H, Cui Z, Wang X, Sun S, Zhang D, Fu C. Therapeutic applications of nanozymes in chronic inflammatory diseases. Biomed Res Int. 2021;2021:9980127.

    Google Scholar 

  136. Zhang D-Y, Liu H, Li C, Younis MR, Lei S, Yang C, Lin J, Li Z, Huang P. Ceria nanozymes with preferential renal uptake for acute kidney injury alleviation. ACS Appl Mater Interfaces. 2020;12(51):56830–8.

    Article  CAS  Google Scholar 

  137. Meng L, Feng J, Gao J, Zhang Y, Mo W, Zhao X, Wei H, Guo H. Reactive oxygen species- and cell-free DNA-scavenging Mn3O4 nanozymes for acute kidney injury therapy. ACS Appl Mater Interfaces. 2022;14(45):50649–63.

    Article  CAS  Google Scholar 

  138. Zhang Y, Yang H, Wei D, Zhang X, Wang J, Wu X, Chang J. Mitochondria-targeted nanoparticles in treatment of neurodegenerative diseases. Exp Dermatol. 2021;1(3):20210115.

    Google Scholar 

  139. Eleftheriadou D, Kesidou D, Moura F, Felli E, Song W. Redox-responsive nanobiomaterials-based therapeutics for neurodegenerative diseases. Small. 2020;16(43):1907308.

    Article  CAS  Google Scholar 

  140. Blesa J, Trigo-Damas I, Quiroga-Varela A, Jackson-Lewis VR. Oxidative stress and Parkinson’s disease. Front Neuroanat. 2015;9:91.

    Article  Google Scholar 

  141. Wang X, Wang W, Li L, Perry G, Lee H-G, Zhu X. Oxidative stress and mitochondrial dysfunction in Alzheimer’s disease. BBA Mol Basis Dis. 2014;1842(8):1240–7.

    Article  CAS  Google Scholar 

  142. Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature. 2006;443(7113):787–95.

    Article  CAS  Google Scholar 

  143. Wang XK, Michaelis EK. Selective neuronal vulnerability to oxidative stress in the brain. Front Aging Neurosci. 2010;2:12.

    Google Scholar 

  144. Yu D, Ma M, Liu Z, Pi Z, Du X, Ren J, Qu X. MOF-encapsulated nanozyme enhanced siRNA combo: control neural stem cell differentiation and ameliorate cognitive impairments in Alzheimer’s disease model. Biomaterials. 2020;255:120160.

    Article  CAS  Google Scholar 

  145. Guan Y, Li M, Dong K, Gao N, Ren J, Zheng Y, Qu X. Ceria/POMs hybrid nanoparticles as a mimicking metallopeptidase for treatment of neurotoxicity of amyloid-β peptide. Biomaterials. 2016;98:92–102.

    Article  CAS  Google Scholar 

  146. Tramontin N, da Silva S, Arruda R, Ugioni KS, Canteiro PB, de Bem Silveira G, Mendes C, Silveira PCL, Muller AP. Gold nanoparticles treatment reverses brain damage in Alzheimer’s disease model. Mol Neurobiol. 2020;57(2):926–36.

    Article  Google Scholar 

  147. Ai Tran HN, Sousa F, Moda F, Mandal S, Chanana M, Vimercati C, Morbin M, Krol S, Tagliavini F, Legname G. A novel class of potential prion drugs: preliminary in vitro and in vivo data for multilayer coated gold nanoparticles. Nanoscale. 2010;2(12):2724–32.

    Article  Google Scholar 

  148. Rajendran NK, Kumar SSD, Houreld NN, Abrahamse H. A review on nanoparticle based treatment for wound healing. J Drug Deliv Sci Technol. 2018;44:421–30.

    Article  CAS  Google Scholar 

  149. Gao W, Zhang Y, Zhang Q, Zhang L. Nanoparticle-hydrogel: a hybrid biomaterial system for localized drug delivery. Ann Biomed Eng. 2016;44(6):2049–61.

    Article  Google Scholar 

  150. Mao L, Wang L, Zhang M, Ullah MW, Liu L, Zhao W, Li Y, Ahmed AAQ, Cheng H, Shi Z, Yang G. In situ synthesized selenium nanoparticles-decorated bacterial cellulose/gelatin hydrogel with enhanced antibacterial, antioxidant, and anti-inflammatory capabilities for facilitating skin wound healing. Adv Healthc Mater. 2021;10(14):2100402.

    Article  CAS  Google Scholar 

  151. Xu Z, Liu Y, Ma R, Chen J, Qiu J, Du S, Li C, Wu Z, Yang X, Chen Z, Chen T. Thermosensitive hydrogel incorporating Prussian blue nanoparticles promotes diabetic wound healing via ROS scavenging and mitochondrial function restoration. ACS Appl Mater Interfaces. 2022;14(12):14059–71.

    Article  CAS  Google Scholar 

  152. Quick KL, Ali SS, Arch R, Xiong C, Wozniak D, Dugan LL. A carboxyfullerene SOD mimetic improves cognition and extends the lifespan of mice. Neurobiol Aging. 2008;29(1):117–28.

    Article  CAS  Google Scholar 

  153. Zhang Y, Wang Z, Li X, Wang L, Yin M, Wang L, Chen N, Fan C, Song H. Dietary iron oxide nanoparticles delay aging and ameliorate neurodegeneration in Drosophila. Adv Mater. 2016;28(7):1387–93.

    Article  CAS  Google Scholar 

  154. Sallmyr A, Fan J, Datta K, Kim KT, Grosu D, Shapiro P, Small D, Rassool F. Internal tandem duplication of FLT3 (FLT3/ITD) induces increased ROS production, DNA damage, and misrepair: implications for poor prognosis in AML. Blood. 2008;111(6):3173–82.

    Article  CAS  Google Scholar 

  155. Naughton R, Quiney C, Turner SD, Cotter TG. Bcr-Abl-mediated redox regulation of the PI3K/AKT pathway. Leukemia. 2009;23(8):1432–40.

    Article  CAS  Google Scholar 

  156. Dickinson BC, Chang CJ. Chemistry and biology of reactive oxygen species in signaling or stress responses. Nat Chem Biol. 2011;7(8):504–11.

    Article  CAS  Google Scholar 

  157. Zhou F, Shen Q, Claret FX. Novel roles of reactive oxygen species in the pathogenesis of acute myeloid leukemia. J Leukoc Biol. 2013;94(3):423–9.

    Article  CAS  Google Scholar 

  158. Liang M, Yan X. Nanozymes: from new concepts, mechanisms, and standards to applications. Acc Chem Res. 2019;52(8):2190–200.

    Article  CAS  Google Scholar 

  159. Zhang R, Yan X, Fan K. Nanozymes inspired by natural enzymes. Acc Mater Res. 2021;2(7):534–47.

    Article  CAS  Google Scholar 

  160. Nanotechnologies—measurement method for peroxidase-like activity of iron oxide nanoparticles. https://openstd.samr.gov.cn/bzgk/gb/newGbInfo?hcno=175A81A0DB4DEF94204E317888570758.

  161. Jiang B, Duan D, Gao L, Zhou M, Fan K, Tang Y, Xi J, Bi Y, Tong Z, Gao GF, Xie N, Tang A, Nie G, Liang M, Yan X. Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes. Nat Protoc. 2018;13(7):1506–20.

    Article  CAS  Google Scholar 

  162. Dong H, Wang G, Feng K, Wu X, Fan Y, Zhang W, Ma M, Gu N, Zhang Y. Reference material of Prussian blue nanozymes for their peroxidase-like activity. Analyst. 2022;147(24):5633–42.

    Article  CAS  Google Scholar 

  163. Wu Y, Xu W, Jiao L, Tang Y, Chen Y, Gu W, Zhu C. Defect engineering in nanozymes. Mater Today. 2022;52:327–47.

    Article  CAS  Google Scholar 

  164. Ai Y, Hu Z-N, Liang X, Sun H-B, Xin H, Liang Q. Recent advances in nanozymes: from matters to bioapplications. Adv Funct Mater. 2022;32(14):2110432.

    Article  CAS  Google Scholar 

  165. Au-Ag-Cu2O NG with PTT anti drug-resistant microbial keratitis. https://www.clinicaltrials.gov/ct2/show/NCT05268718.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Gu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, M. et al. (2023). Nanozymes for Antioxidant Therapy. In: Wei, H., Li, G., Li, J. (eds) Biomedical Nanozymes. Springer, Singapore. https://doi.org/10.1007/978-981-99-3338-9_5

Download citation

Publish with us

Policies and ethics