Skip to main content

Androgen Receptor Signaling: A Central and Evolving Theme in Prostate Cancer Treatment

  • Living reference work entry
  • First Online:
Handbook of Oncobiology: From Basic to Clinical Sciences

Abstract

The biological function of the male hormones (androgens) is orchestrated through the activation of the androgen receptor-mediated signaling events that are central to the development and maintenance of primary male sexual and secondary male characteristics. The androgen receptor belongs to the superfamily of nuclear receptors and functions as a transcription factor. The role of androgen signaling is well established in normal growth and development of the prostate gland. The androgen signaling dysfunctions due to alterations of androgen receptor and signaling molecules both upstream and downstream of androgen receptor are critical to prostate cancer progression after androgen deprivation therapy (ADT). Therapeutic targeting of various components of this biochemical pathway has remained the mainstay in the management of the advanced disease. Unfortunately, resistance to androgen signaling targeted drugs is inevitable. To overcome these challenges, new therapeutic strategies have continued to evolve including next generation of androgen receptor and androgen biosynthesis inhibitors, as well as chemotherapy agents and cancer driver mutation-targeted therapies. This review focuses on alterations of the key components of androgen signaling, especially the androgen receptor and the current state-of-the-art therapeutic strategies targeting this pathway in the management of advanced prostate cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abida W, Cheng ML, Armenia J, Middha S, Autio KA, Vargas HA et al (2019a) Analysis of the prevalence of microsatellite instability in prostate cancer and response to immune checkpoint blockade. JAMA Oncol 5:471–478

    Article  PubMed  Google Scholar 

  • Abida W, Cyrta J, Heller G, Prandi D, Armenia J, Coleman I et al (2019b) Genomic correlates of clinical outcome in advanced prostate cancer. Proc Natl Acad Sci U S A 116:11428–11436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abreu-Martin MT, Chari A, Palladino AA, Craft NA, Sawyers CL (1999) Mitogen-activated protein kinase kinase kinase 1 activates androgen receptor-dependent transcription and apoptosis in prostate cancer. Mol Cell Biol 19:5143–5154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aggarwal RR, Schweizer MT, Nanus DM, Pantuck AJ, Heath EI, Campeau E et al (2020) A phase Ib/IIa study of the pan-BET inhibitor ZEN-3694 in combination with enzalutamide in patients with metastatic castration-resistant prostate cancer. Clin Cancer Res 26:5338–5347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Ubaidi FL, Schultz N, Egevad L, Granfors T, Loseva O, Helleday T (2013) Castration therapy results in decreased Ku70 levels in prostate cancer. Clin Cancer Res 19:1547–1556

    Article  CAS  PubMed  Google Scholar 

  • An J, Ren S, Murphy SJ, Dalangood S, Chang C, Pang et al (2015) Truncated ERG oncoproteins from TMPRSS2-ERG fusions are resistant to SPOP-mediated proteasome degradation. Mol Cell 59:904–916

    Article  CAS  PubMed  Google Scholar 

  • Antonarakis ES, Lu C, Wang H, Luber B, Nakazawa M, Roeser JC et al (2014) AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N Engl J Med 371:1028–1038

    Article  PubMed  PubMed Central  Google Scholar 

  • Antonarakis ES, Lu C, Luber B, Wang H, Chen Y, Nakazawa M et al (2015) Androgen receptor splice variant 7 and efficacy of taxane chemotherapy in patients with metastatic castration-resistant prostate cancer. JAMA Oncol 1:582–591

    Article  PubMed  PubMed Central  Google Scholar 

  • Antonarakis ES, Piulats JM, Gross-Goupil M, Goh J, Ojamaa K, Hoimes CJ et al (2020) Pembrolizumab for treatment-refractory metastatic castration-resistant prostate cancer: multicohort, open-label Phase II KEYNOTE-199 Study. J Clin Oncol 38:395–405

    Article  CAS  PubMed  Google Scholar 

  • Armstrong AJ, Halabi S, Luo J, Nanus DM, Giannakakou P, Szmulewitz RZ et al (2019) Prospective multicenter validation of androgen receptor splice variant 7 and hormone therapy resistance in high-risk castration-resistant prostate cancer: the PROPHECY Study. J Clin Oncol 37:1120–1129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arora VK, Schenkein E, Murali R, Subudhi SK, Wongvipat J, Balbas MD et al (2013) Glucocorticoid receptor confers resistance to antiandrogens by bypassing androgen receptor blockade. Cell 155:1309–1322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asangani IA, Dommeti VL, Wang X, Malik R, Cieslik M, Yang R et al (2014) Therapeutic targeting of BET bromodomain proteins in castration-resistant prostate cancer. Nature 510:278–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Auchus RJ (2004) Overview of dehydroepiandrosterone biosynthesis. Semin Reprod Med 22:281–288

    Article  CAS  PubMed  Google Scholar 

  • Azad AA, Volik SV, Wyatt AW, Haegert A, Le Bihan S, Bell RH et al (2015) Androgen receptor gene aberrations in circulating cell-free DNA: biomarkers of therapeutic resistance in castration-resistant prostate cancer. Clin Cancer Res 21:2315–2324

    Article  CAS  PubMed  Google Scholar 

  • Bakin RE, Gioeli D, Sikes RA, Bissonette EA, Weber MJ (2003) Constitutive activation of the Ras/mitogen-activated protein kinase signaling pathway promotes androgen hypersensitivity in LNCaP prostate cancer cells. Cancer Res 63:1981–1989

    CAS  PubMed  Google Scholar 

  • Balk SP, Knudsen KE (2008) AR, the cell cycle and prostate cancer. Nucl Recept Signal 6:e001

    Article  PubMed  PubMed Central  Google Scholar 

  • Beato M, Klug J (2000) Steroid hormone receptors: an update. Hum Reprod Update 6:225–236

    Article  CAS  PubMed  Google Scholar 

  • Beer TM, Armstrong AJ, Rathkopf DE, Loriot Y, Strenberg CN, Higano CS et al (2014) Enzalutamide in metastatic prostate cancer before chemotherapy. N Engl J Med 371:424–433

    Article  PubMed  PubMed Central  Google Scholar 

  • Beer TM, Kwon ED, Drake CG, Fizazi K, Logothetis C, Gravis G et al (2017) Randomized, double-blind, phase III trial of ipilimumab versus placebo in asymptomatic or minimally symptomatic patients with metastatic chemotherapy-naive castration-resistant prostate cancer. J Clin Oncol 35:40–47

    Article  CAS  PubMed  Google Scholar 

  • Beltran H, Prandi D, Mosquera JM, Benelli M, Puca L, Cyrta J et al (2016) Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer. Nat Med 22:298–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bitting RL, Armstrong AJ (2013) Targeting the PI3K/Akt/mTOR pathway in castration- resistant prostate cancer. Endocr Relat Cancer 20:R83–R99

    Article  CAS  PubMed  Google Scholar 

  • Bluemn EG, Coleman IM, Lucas JM, Coleman RT, Hernandez-Lopez S, Tharakan R et al (2017) Androgen receptor pathway-independent prostate cancer Is sustained through FGF signaling. Cancer Cell 32:474–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brumec M, Sobočan M, Takač I, Arko D (2021) Clinical implication of androgen-positive triple-negative breast cancer. Cancers 13:1642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burnstein KJ (2005) Regulation of androgen receptor levels: implications for prostate cancer progression and therapy. J Cell Biochem 95:657–669

    Article  CAS  PubMed  Google Scholar 

  • Carver BS, Chapinski C, Wongvipat J, Hieronymus H, Chen Y, Chandarlapaty S et al (2011) Reciprocal feedback regulation of PI3K and androgen receptor signaling in PTEN-deficient prostate cancer. Cancer Cell 19:575–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang KH, Sharifi N (2012) Prostate cancer – from steroid transformations to clinical translation. Nat Rev Urol 9:721–724

    Article  CAS  PubMed  Google Scholar 

  • Chang CS, Kokontis J, Liao ST (1988) Molecular cloning of human and rat complementary DNA encoding androgen receptors. Science 240:324–326

    Article  CAS  PubMed  Google Scholar 

  • Chang KH, Li R, Kuri B, Lotan Y, Roehrborn CG, Liu J et al (2013) A gain-of-function mutation in DHT synthesis in castration resistant prostate cancer. Cell 154:1074–1084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen CD, Welsbie DS, Tran C, Baek SH, Chen R, Vessella R et al (2004a) Molecular determinants of resistance to antiandrogen therapy. Nat Med 10:33–39

    Article  PubMed  Google Scholar 

  • Chen G, Shukeir N, Potti A, Sircar K, Aprikian A, Goltzman D et al (2004b) Up- regulation of Wnt-1 and beta-catenin production in patients with advanced metastatic prostate carcinoma: potential pathogenetic and prognostic implications. Cancer 101:1345–1356

    Article  CAS  PubMed  Google Scholar 

  • Chen R, Dong X, Gleave M (2018) Molecular model for neuroendocrine prostate cancer progression. BJU Int 122:560–570

    Article  PubMed  Google Scholar 

  • Chesire DR, Ewing CM, Gage WR, Isaacs WB (2002) In vitro evidence for complex modes of nuclear beta-catenin signaling during prostate growth and tumorigenesis. Oncogene 21:2679–2694

    Article  CAS  PubMed  Google Scholar 

  • Chi KN, Agarwal N, Bjartell A, Chung BH, Pereira de Santana Gomes AJ, Given R et al (2019) Apalutamide for metastatic castration sensitive prostate cancer. N Engl J Med 381:13–24

    Article  CAS  PubMed  Google Scholar 

  • Crawford ED, Schellhammer PF, McLeod DG, Moul JW, Higano CS, Shore N et al (2018) Androgen receptor targeted treatments of prostate cancer: 35 years of progress with antiandrogens. J Urol 200:956–966

    Article  CAS  PubMed  Google Scholar 

  • Cunha GR (1975) The dual origin of vaginal epithelium. Am J Anat 143:387–392

    Article  CAS  PubMed  Google Scholar 

  • Cunha GR, Vezina CM, Isaacson D, Ricke WA, Timms BG, Cao M et al (2018) Development of the human prostate. Differentiation 103:24–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies A, Nouruzi S, Ganguli D, Namekawa T, Thaper D, Linder S et al (2021) An androgen receptor switch underlies lineage infidelity in treatment-resistant prostate cancer. Nat Cell Biol 23:1023–1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis ID, Martin AJ, Stockler MR, Begbie S, Chi KN, Chowdhury S et al (2019) Enzalutamide with standard first-line therapy in metastatic prostate cancer. N Engl J Med 381:121–131

    Article  CAS  PubMed  Google Scholar 

  • de Bono JS, Logothetis CJ, Molina A, Fizazi K, North S, Chu L et al (2011) Abiraterone and increased survival in metastatic prostate cancer. N Engl J Med 364:1995–2005

    Article  PubMed  PubMed Central  Google Scholar 

  • de la Taille A, Rubin MA, Chen MW, Vacherot F, de Medina SG, Burchardt M et al (2003) Beta-catenin-related anomalies in apoptosis-resistant and hormone-refractory prostate cancer cells. Clin Cancer Res 9:1801–1807

    PubMed  Google Scholar 

  • Dehm SM, Tindall DJ (2006) Molecular regulation of androgen action in prostate cancer. J Cell Biochem 99:333–344

    Article  CAS  PubMed  Google Scholar 

  • Dehm SM, Schmidt LJ, Heemers HV, Vessella RL, Tindall DJ (2008) Splicing of a novel androgen receptor exon generates a constitutively active androgen receptor that mediates prostate cancer therapy resistance. Cancer Res 68:5469–5477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DePriest AD, Fiandalo MV, Schlanger S, Heemers F, Mohler JL, Liu S et al (2016) Regulators of androgen action resource: a one-stop shop for the comprehensive study of androgen receptor action. Database (Oxford):bav125. https://doi.org/10.1093/database/bav125

  • Desai K, McManus JF, Sharifi N (2021) Hormonal therapy for prostate cancer. Endocr Rev 42:354–373

    Article  PubMed  PubMed Central  Google Scholar 

  • Edwards J, Krishna NS, Witton CJ, Bartlett JM (2003) Gene amplifications associated with the development of hormone-resistant prostate cancer. Clin Cancer Res 9:5271–5281

    CAS  PubMed  Google Scholar 

  • Ehrmann DA (2005) Polycystic ovary syndrome. N Engl J Med 352:1223–1236

    Article  CAS  PubMed  Google Scholar 

  • Epstein JI, Amin MB, Beltran H, Lotan TL, Mosquera JM, Reuter VE et al (2014) Proposed morphologic classification of prostate cancer with neuroendocrine differentiation. Am J Surg Pathol 38:756–767

    Article  PubMed  PubMed Central  Google Scholar 

  • Estrada M, Espinosa A, Müller M, Jaimovich E (2003) Testosterone stimulates intracellular calcium release and mitogen-activated protein kinases via a G protein-coupled receptor in skeletal muscle cells. Endocrinology 144:3586–3597

    Article  CAS  PubMed  Google Scholar 

  • Farrell J, Petrovics G, McLeod DG, Srivastava S (2013) Genetic and molecular differences in prostate carcinogenesis between African American and Caucasian American men. Int. J Mol Sci 14:15510–15531

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferraldeschi R, Pezaro C, Karavasilis V, de Bono J (2013) Abiraterone and novel antiandrogens: overcoming castration resistance in prostate cancer. Annu Rev Med 64:1–13

    Article  CAS  PubMed  Google Scholar 

  • Fizazi K, Shore N, Tammela TL, Ulys A, Vjaters E, Polyakov S et al (2019a) Darolutamide in nonmetastatic, castration-resistant prostate cancer. N Engl J Med 380:1235–1246

    Article  CAS  PubMed  Google Scholar 

  • Fizazi K, Tran N, Fein L, Matsubara N, Rodriguez-Antolin A, Alekseev BY et al (2019b) Abiraterone acetate plus prednisone in patients with newly diagnosed high-risk metastatic castration sensitive prostate cancer (LATITUDE): final overall survival analysis of a randomised, double-blind, phase 3 trial. Lancet Oncol 20:686–700

    Article  CAS  PubMed  Google Scholar 

  • Ford OH 3rd, Gregory CW, Kim D, Smitherman AB, Mohler JL (2003) Androgen receptor gene amplification and protein expression in recurrent prostate cancer. J Urol 170:1817–1821

    Article  CAS  PubMed  Google Scholar 

  • Franco OE, Onishi T, Yamakawa K, Arima K, Yanagawa M, Sugimura Y et al (2003) Mitogen-activated protein kinase pathway is involved in androgen-independent PSA gene expression in LNCaP cells. Prostate 56:319–325

    Article  CAS  PubMed  Google Scholar 

  • Furusato B, Tan SH, Young D, Dobi A, Sun C, Mohamed AA et al (2010) ERG oncoprotein expression in prostate cancer: clonal progression of ERG-positive tumor cells and potential for ERG -based stratification. Prostate Cancer Prostatic Dis 13:228–237

    Google Scholar 

  • Fujita K, Nonomura N (2019) Role of androgen receptor in prostate cancer: a review. World J Mens Health 37:288–295

    Article  PubMed  Google Scholar 

  • Gaddipati JP, McLeod DG, Heidenberg HB, Sesterhenn IA, Finger MJ, Moul JW et al (1994) Frequent detection of codon 877 mutation in the androgen receptor gene in advanced prostate cancers. Cancer Res 54:2861–2864

    CAS  PubMed  Google Scholar 

  • Gan W, Dai W, Lunardi A, Li Z, Inuzuka H, Liu P et al (2015) SPOP promotes ubiquitination and degradation of the ERG oncoprotein to suppress prostate cancer progression. Mol Cell 59:917–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao X, BurrisIII HA, Vuky J, Dreicer R, Sartor O, Sternberg CN et al (2022) Phase 1/2 study of ARV-110, an androgen receptor (AR) PROTAC degrader, in metastatic castration-resistant prostate cancer (mCRPC). J Clin Oncol 40:17

    Article  Google Scholar 

  • Gioeli D, Mandell JW, Petroni GR, Frierson HF Jr, Weber MJ (1999) Activation of mitogen-activated protein kinase associated with prostate cancer progression. Cancer Res 59:279–284

    CAS  PubMed  Google Scholar 

  • Goodwin JF, Schiewer MJ, Dean JL, Schrecengost RS, de Leeuw R, Han S et al (2013) A hormone-DNA repair circuit governs the response to genotoxic insult. Cancer Discov 3:1254–1271

    Article  CAS  PubMed  Google Scholar 

  • Gottlieb B, Beitel LK, Nadarajah A, Paliouras M, Trifiro M (2012) The androgen receptor mutation database: 2012 update. Hum Mutat 33:887–894

    Article  CAS  PubMed  Google Scholar 

  • Guan X, Polesso F, Wang C, Sehrawat A, Hawkins RM, Murray SE et al (2022) Androgen receptor activity in T cells limits checkpoint blockade efficacy. Nature. 606:791–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haffner MC, Aryee MJ, Toubaji A, Esopi DM, Albadine R, Gurel B et al (2010) Androgen-induced TOP2B-mediated double-strand breaks and prostate cancer gene rearrangements. Nat Genet 42:668–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harbeck N, Gnant M (2017) Breast cancer. Lancet 389:1134–1150

    Article  PubMed  Google Scholar 

  • Hearn JWD, Sweeney CJ, Almassi N, Reichard CA, Reddy CA, Li H et al (2020) HSB3B1 genotype and clinical outcome in metastatic castration-sensitive prostate cancer. JAMA Oncol 6:e196496

    Article  PubMed  PubMed Central  Google Scholar 

  • Heemers HV, Tindall DJ (2007) Androgen receptor (AR) coregulators: a diversity of functions converging on and regulating the AR transcriptional complex. Endocr Rev 28:778–808

    Article  CAS  PubMed  Google Scholar 

  • Heinlein CA, Chang C (2002) The roles of androgen receptors and androgen-binding proteins in nongenomic androgen actions. Mol Endocrinol 16:2181–2187

    Article  CAS  PubMed  Google Scholar 

  • Hickey TE, Selth LA, Chia KM, Laven-Law G, Milioli HH, Roden D et al (2021) The androgen receptor is a tumor suppressor in estrogen receptor-positive breast cancer. Nat Med 27:310–320

    Article  CAS  PubMed  Google Scholar 

  • Hörnberg E, Ylitalo EB, Crnalic S, Antti H, Stattin P, Widmark A et al (2011) Expression of androgen receptor splice variants in prostate cancer bone metastases is associated with castration-resistance and short survival. PLoS One 6:e19059

    Article  PubMed  PubMed Central  Google Scholar 

  • Horoszewicz JS, Leong SS, Kawinski E, Karr JP, Rosenthal H, Chu TM et al (1983) LNCaP model of human prostatic carcinoma. Cancer Res 43:1809–1818

    CAS  PubMed  Google Scholar 

  • Hu R, Dunn TA, Wei S, Isharwal S, Veltri RW, Humphreys E et al (2009) Ligand-independent androgen receptor variants derived from splicing of cryptic exons signify hormone-refractory prostate cancer. Cancer Res 69:16–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huggins C, Hodges CV (1941) Studies on Prostatic Cancer I. The effect of castration, of estrogen and of androgen injection on serum phosphatases in metastatic carcinoma of the prostate. Cancer Res 1:293–297

    CAS  Google Scholar 

  • Huggins C, Stevens RE Jr, Hodges CV (1941) Studies on prostatic cancer: II. The effects of castration on advanced carcinoma of the prostate gland. Arch Surg 43:209–223

    Article  CAS  Google Scholar 

  • Isikbay M, Otto K, Kregel S, Kach J, Cai Y, Vander Griend DJ et al (2014) Glucocorticoid receptor activity contributes to resistance to androgen-targeted therapy in prostate cancer. Horm Cancer 5:72–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacob A, Raj R, Alison DB, Myint Z (2021) Androgen receptor signaling in prostate cancer and therapeutic strategies. Cancers 13:5417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jernberg E, Bergh A, Wikström P (2017) Clinical relevance of androgen receptor alterations in prostate cancer. Endocr Connect 6:R146–R161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiao J, Wang S, Qiao R, Vivanco I, Watson PA, Sawyers CL et al (2007) Murine cell lines derived from Pten null prostate cancer show the critical role of PTEN in hormone refractory prostate cancer development. Cancer Res 67:6083–6091

    Article  CAS  PubMed  Google Scholar 

  • Jividen K, Kedzierska KZ, Yang CS, Szlachta K, Ratan A, Paschal BM (2018) Genomic analysis of DNA repair genes and androgen signaling in prostate cancer. BMC Cancer 18:960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joseph JD, Lu N, Qian J, Sensintaffar J, Shao G, Brigham D et al (2013) A clinically relevant androgen receptor mutation confers resistance to second-generation antiandrogens enzalutamide and ARN-509. Cancer Discov 3:1020–1029

    Article  CAS  PubMed  Google Scholar 

  • Kaarbø M, Mikkelsen OL, Malerød L, Qu S, Lobert VH, Akgul G et al (2010) PI3K-AKT-mTOR pathway is dominant over androgen receptor signaling in prostate cancer cells. Cell Oncol 32:11–27

    PubMed  PubMed Central  Google Scholar 

  • Kanayama M, Lu C, Luo J, Antonarakis ES (2021) AR splice variants and resistance to AR targeting agents. Cancers 13:2563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koivisto P, Kononen J, Palmberg C, Tammela T, Hyytinen E, Isola J et al (1997) Androgen receptor gene amplification: a possible molecular mechanism for androgen deprivation therapy failure in prostate cancer. Cancer Res 57:314–3199

    CAS  PubMed  Google Scholar 

  • Koryakina Y, Ta HQ, Gioeli D (2014) Androgen receptor phosphorylation: biological context and functional consequences. Endocr Relat Cancer 21:T131–T145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kregel S, Wang C, Han X, Xiao L, Fernandez-Salas E, Bawa P et al (2020) Androgen receptor degraders overcome common resistance mechanisms developed during prostate cancer treatment. Neoplasia 22:111–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar-Sinha C, Tomlins SA, Chinnaiyan AM (2008) Recurrent gene fusions in prostate cancer. Nat Rev Cancer 8:497–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwegyir-Afful AK, Ramalingam S, Purushottamachar P, Ramamurthy VP, Njar VC (2015) Galeterone and VNPT55 induce proteasomal degradation of AR/AR-V7, induce significant apoptosis via cytochrome c release and suppress growth of castration resistant prostate cancer xenografts in vivo. Oncotarget 6:27440–27460

    Article  PubMed  PubMed Central  Google Scholar 

  • Labrecque MP, Coleman IM, Brown LG, True LD, Kollath L, Lakely B et al (2019) Molecular profiling stratifies diverse phenotypes of treatment-refractory metastatic castration-resistant prostate cancer. J Clin Invest 129:4492–4505

    Article  PubMed  PubMed Central  Google Scholar 

  • Lallous N, Volik SV, Awrey S, Leblanc E, Tse R, Murillo J et al (2016) Functional analysis of androgen receptor mutations that confer anti-androgen resistance identified in circulating cell-free DNA from prostate cancer patients. Genome Biol 17:10

    Article  PubMed  PubMed Central  Google Scholar 

  • Le Moigne R, Pearson P, Lauriault V, Hong NH, Virsik P, Zhou H et al (2021) Preclinical and clinical pharmacology of EPI-7386, an androgen receptor N-terminal domain inhibitor for castration-resistant prostate cancer. J Clin Oncol 39:119

    Article  Google Scholar 

  • Lee SH, Johnson D, Luong R, Sun Z (2015) Crosstalking between androgen and PI3K/AKT signaling pathways in prostate cancer cells. J Biol Chem 290:2759–2768

    Article  CAS  PubMed  Google Scholar 

  • Lempiäinen JK, Niskanen EA, Vuoti KM, Lampinen RE, Göös H, Varjosalo M et al (2017) Agonist-specific protein interactomes of glucocorticoid and androgen receptor as revealed by proximity mapping. Mol Cell Proteomics 16:1462–1474

    Article  PubMed  PubMed Central  Google Scholar 

  • Li P, Nicosia SV, Bai W (2001) Antagonism between PTEN/MMAC1/TEP-1 and androgen receptor in growth and apoptosis of prostate cancer cells. J Biol Chem 276:20444–20450

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Chan SC, Brand LJ, Hwang TH, Silverstein KA, Dehm SM (2013) Androgen receptor splice variants mediate enzalutamide resistance in castration-resistant prostate cancer cell lines. Cancer Res 73:483–489

    Article  CAS  PubMed  Google Scholar 

  • Li L, Chang W, Yang G, Ren C, Park S, Karantanos T, Karanika S et al (2014) Targeting poly(ADP-ribose) polymerase and the c-Myb-regulated DNA damage response pathway in castration-resistant prostate cancer. Sci Signal 7:ra47

    Article  PubMed  PubMed Central  Google Scholar 

  • Li H, Mohamed AA, Sharad S, Umeda E, Song Y, Young D et al (2015) Silencing of PMEPA1 accelerates the growth of prostate cancer cells through AR, NEDD4 and PTEN. Oncotarget 6:15137–15149

    Article  PubMed  PubMed Central  Google Scholar 

  • Li H, Wang Z, Xiao W, Yan L, Guan W, Hu Z et al (2018) Androgen-receptor splice variant-7-positive prostate cancer: a novel molecular subtype with markedly worse androgen-deprivation therapy outcomes in newly diagnosed patients. Mod Pathol 31:198–208

    Article  CAS  PubMed  Google Scholar 

  • Lin HK, Yeh S, Kang HY, Chang C (2001) Akt suppresses androgen-induced apoptosis by phosphorylating and inhibiting androgen receptor. Proc Natl Acad Sci U S A 98:7200–7205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin HK, Wang L, Hu YC, Altuwaijri S, Chang C (2002) Phosphorylation-dependent ubiquitylation and degradation of androgen receptor by Akt require Mdm2 E3 ligase. EMBO J 21:4037–4048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin C, Yang L, Tanasa B, Hutt K, Ju B, Ohgi K et al (2009) Nuclear receptor-induced chromosomal proximity and DNA breaks underlie specific translocations in cancer. Cell 139:1069–1083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L, Dong X (2014) Complex impacts of PI3K/AKT inhibitors to androgen receptor gene expression in prostate cancer cells. PLoS One 9:e108780

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu C, Armstrong CM, Ning S, Yang JC, Lou W, Lombard AP et al (2021) ARVib suppresses growth of advanced prostate cancer via inhibition of androgen receptor signaling. Oncogene 40:5379–5392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Q, You B, Meng J, Huang CP, Dong G, Wang R et al (2022) Targeting the androgen receptor to enhance NK cell killing efficacy in bladder cancer by modulating ADAR2/circ_0001005/PD-L1 signaling. Cancer Gene Ther. https://doi.org/10.1038/s41417-022-00506-w

  • Lu ML, Schneider MC, Zheng Y, Zhang X, Richie JP (2001) Caveolin-1 interacts with androgen receptor. A positive modulator of androgen receptor mediated transactivation. J Biol Chem 276:13442–13451

    Article  CAS  PubMed  Google Scholar 

  • Magi-Galluzzi C, Tsusuki T, Elson P, Simmerman K, LaFargue C, Esgueva R et al (2011) TMPRSS2-ERG gene fusion prevalence and class are significantly different in prostate cancer of Caucasian, African-American and Japanese patients. Prostate 71:489–497

    Article  CAS  PubMed  Google Scholar 

  • Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schutz G, Umesono K et al (1995) The nuclear receptor superfamily: the second decade. Cell 83:835–839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mani R, Tomlins SA, Callahan K, Ghosh A, Nyati M, Varambally S et al (2009) Induced chromosomal proximity and gene fusions in prostate cancer. Science 326:1230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masiello D, Chen SY, Xu Y, Verhoeven MC, Choi E, Hollenberg AN et al (2004) Recruitment of beta-catenin by wild-type or mutant androgen receptors correlates with ligand-stimulated growth of prostate cancer cells. Mol Endocrinol 18:2388–2401

    Article  CAS  PubMed  Google Scholar 

  • Maurice-Dror C, Le Moigne R, Vaishampayan U, Montgomery RB, Gordon MS, Hong NH et al (2022) A phase 1 study to assess the safety, pharmacokinetics, and anti-tumor activity of the androgen receptor n-terminal domain inhibitor epi-506 in patients with metastatic castration-resistant prostate cancer. Invest New Drugs 40:322–329

    Article  CAS  PubMed  Google Scholar 

  • McGinley KF, Tay KJ, Moul JW (2016) Prostate cancer in men of African origin. Nat Rev Urol 13:99–107

    Article  CAS  PubMed  Google Scholar 

  • Migliaccio A, Castoria G, Di Domenico M, de Falco A, Bilancio A, Lombardi M et al (2000) Steroid-induced androgen receptor-oestradiol receptor beta-Src complex triggers prostate cancer cell proliferation. EMBO J 19:5406–5417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizushima T, Miyamoto H (2019) The role of androgen receptor signaling in ovarian cancer. Cells 8:176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohler ML, Sikdar A, Ponnusamy S, Hwang DJ, He Y, Miller DD et al (2021) An overview of next-generation androgen receptor-targeted therapeutics in development for the treatment of prostate cancer. Int J Mol Sci 22:21–24

    Article  Google Scholar 

  • Moilanen AM, Riikonen R, Oksala R, Ravanti L, Aho E, Wohlfahrt G et al (2015) Discovery of ODM-201, a new-generation androgen receptor inhibitor targeting resistance mechanisms to androgen signaling-directed prostate cancer therapies. Sci Rep 5:12007

    Article  PubMed  PubMed Central  Google Scholar 

  • Montgomery RB, Mostaghel EA, Vessella R, Hess DL, Kalhorn TF, Higano CS et al (2008) Maintenance of intratumoral androgens in metastatic prostate cancer: a mechanism for castration-resistant tumor growth. Cancer Res 68:4447–4454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mostaghel EA, Marck BT, Plymate SR, Vessella RL, Balk S, Matsumoto AM et al (2011) Resistance to CYP17A1 inhibition with abiraterone in castration-resistant prostate cancer: induction of steroidogenesis and androgen receptor splice variants. Clin Cancer Res 17:5913–5925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukherjee B, Mayer D (2008) Dihydrotestosterone interacts with EGFR/MAPK signaling and modulates EGFR levels in androgen receptor-positive LNCaP prostate cancer cells. Int J Oncol 33:623–629

    CAS  PubMed  Google Scholar 

  • Narayanan S, Srinivas S, Feldman D (2016) Androgen-glucocortcoid intercations in the era of novel prostate cancer therapy. Nat Rev Urol 13:47–60

    Article  CAS  PubMed  Google Scholar 

  • Narayanan R, Coss CC, Dalton JT (2018) Development of selective androgen receptor modulators (SARMs). Mol Cell Endocrinol 465:134–142

    Article  CAS  PubMed  Google Scholar 

  • Nyquist MD, Corella A, Coleman I, De Sarkar N, Kaipainen A, Ha G et al (2020) Combined TP53 and RB1 loss promotes prostate cancer resistance to a spectrum of therapeutics and confers vulnerability to replication stress. Cell Rep 31:107669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palmberg C, Koivisto P, Kakkola L, Tammela TL, Kallioniemi OP, Visakorpi T (2000) Androgen receptor gene amplification at primary progression predicts response to combined androgen blockade as second line therapy for advanced prostate cancer. J Urol 164:1992–1995

    Article  CAS  PubMed  Google Scholar 

  • Patel V, Liaw B, Oh W (2018) The role of ketoconazole in current prostate cancer care. Nat Rev Urol 15:643–651

    Article  CAS  PubMed  Google Scholar 

  • Patriarca C, Petrella D, Campo B, Colombo P, Giunta P, Parente M et al (2003) Elevated E-cadherin and alpha/beta-catenin expression after androgen deprivation therapy in prostate adenocarcinoma. Pathol Res Pract 199:659–665

    Article  CAS  PubMed  Google Scholar 

  • Peterziel H, Mink S, Schonert A, Becker M, Klocker H, Cato AC (1999) Rapid signalling by androgen receptor in prostate cancer cells. Oncogene 18:6322–6329

    Article  CAS  PubMed  Google Scholar 

  • Petrovics G, Liu A, Shaheduzzaman S, Furusato B, Sun C, Chen Y et al (2005) Frequent overexpression of ETS related gene-1 (ERG1) in prostate cancer transcriptome. Oncogene 24:3847–3852

    Article  CAS  PubMed  Google Scholar 

  • Piha-Paul SA, Sachdev JC, Barve M, LoRusso P, Szmulewitz R, Patel SP et al (2019) First-in-human study of mivebresib (ABBV-075), an oral pan-inhibitor of bromodomain and extra terminal proteins, in patients with relapsed/refractory solid tumors. Clin Cancer Res 25:6309–6319

    Article  CAS  PubMed  Google Scholar 

  • Polakis P (2012) Wnt signaling in cancer. Cold Spring Harb Perspect Biol 4:a008052

    Article  PubMed  PubMed Central  Google Scholar 

  • Polkinghorn WR, Parker JS, Lee MX, Kass EM, Spratt DE, Iaquinta PJ et al (2013) Androgen receptor signaling regulates DNA repair in prostate cancers. Cancer Discov. 3:1245–1253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Powell IJ, Bollig-Fischer A (2013) Minireview: the molecular and genomic basis of health disparities. Mol Endocrinol 27:879–891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Powles T, Yuen KC, Gillessen S, Kadel EE 3rd, Rathkopf D, Matsubara N, Drake CG et al (2022) Atezolizumab with enzalutamide versus enzalutamide alone in metastatic castration-resistant prostate cancer: a randomized phase 3 trial. Nat Med 28:144–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puhr M, Hoefer J, Eigentler A, Ploner C, Handle F, Schaefer G et al (2018) The glucocorticoid receptor is a key player for prostate cancer cell survival and a target for improved antiandrogen therapy. Clin Cancer Res 24:927–938

    Article  CAS  PubMed  Google Scholar 

  • Pungsrinont T, Sutter MF, Ertingshausen MCCM, Lakshmana G, Kokal M, Khan AS et al (2020) Senolytic compounds control a distinct fate of androgen receptor agonist- and antagonist-induced cellular senescent LNCaP prostate cancer cells. Cell Biosci 10:59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quigley CA, De BA, Marschke KB, el-Awady MK, Wilson EM, French FS (1995) Androgen receptor defects: historical, clinical, and molecular perspectives. Endocr Rev 16:271–332

    CAS  PubMed  Google Scholar 

  • Rathkopf DE, Scher HI (2018) Apalutamide for the treatment of prostate cancer. Expert Rev Anticancer Ther 18:823–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rebbeck TR, Haas GP (2014) Temporal trends and racial disparities in global prostate cancer prevalence. Can J Urol 21:7496–7506

    PubMed  PubMed Central  Google Scholar 

  • Rehman Y, Rosenberg JE (2012) Abiraterone acetate: oral androgen biosynthesis inhibitor for treatment of castration-resistant prostate cancer. Drug Des Dev Ther 6:13–18

    Article  CAS  Google Scholar 

  • Reid AH, Attard G, Ambroisine L, Fisher G, Kovacs G, Brewer D et al (2010) Transatlantic prostate group. Molecular characterisation of ERG, ETV1 and PTEN gene loci identifies patients at low and high risk of death from prostate cancer. Br J Cancer 102:678–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ricciardelli C, Bianco-Miotto T, Jindal S, Butler LM, Leung S, McNeil CM et al (2018) The magnitude of androgen receptor positivity in breast cancer is critical for reliable prediction of disease outcome. Clin Cancer Res 24:2328–2234

    Article  CAS  PubMed  Google Scholar 

  • Richter E, Srivastava S, Dobi A (2007) Androgen receptor and prostate cancer. Prostate Cancer Prostatic Dis 10:114–118

    Article  CAS  PubMed  Google Scholar 

  • Robinson D, Van Allen EM, Wu YM, Schultz N, Lonigro RJ, Mosquera JM et al (2015) Integrative clinical genomics of advanced prostate cancer. Cell 161:1215–1228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roediger J, Hessenkemper W, Bartsch S, Manvelyan M, Huettner SS, Liehr T et al (2014) Supraphysiological androgen levels induce cellular senescence in human prostate cancer cells through the Src-Akt pathway. Mol Cancer. 13(214):2014

    Google Scholar 

  • Rosen P, Pfister D, Young D, Petrovics G, Chen Y, Cullen J et al (2012a) Differences in frequency of ERG oncoprotein expression between index tumors of Caucasian and African American patients with prostate cancer. Urology 80:749–753

    Article  PubMed  Google Scholar 

  • Rosen P, Sesterhenn IA, Brassell SA, McLeod DG, Srivastava S, Dobi A (2012b) Clinical potential of ERG oncoprotein in prostate cancer. Nat Rev Urol 9:131–137

    Article  CAS  PubMed  Google Scholar 

  • Rosner IL, Ravindranath L, Furusato B, Chen Y, Gao C, Cullen J et al (2007) Higher tumor to benign ratio of the androgen receptor mRNA expression associates with prostate cancer progression after radical prostatectomy. Urology 70:1225–1229

    Article  PubMed  Google Scholar 

  • Rossomando AJ, Payne DM, Weber MJ, Sturgill TW (1989) Evidence that pp42, a major tyrosine kinase target protein, is a mitogen-activated serine/threonine protein kinase. Proc Natl Acad Sci U S A 86:6940–6943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sadar MD (2020) Discovery of drugs that directly target the intrinsically disordered region of the androgen receptor. Expert Opin Drug Discov 15:551–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scher HI, Kelly WK (1993) Flutamide withdrawal syndrome: its impact on clinical trials in hormone-refractory prostate cancer. J Clin Oncol 11:1566–1572

    Article  CAS  PubMed  Google Scholar 

  • Scher HI, Fizazi K, Saad F, Taplin M-E, Sternberg CN, Miller et al (2012) Increased survival with enzalutamide in prostate cancer after chemotherapy. N Engl J Med 367:1187–1197

    Article  CAS  PubMed  Google Scholar 

  • Schiewer MJ, Goodwin JF, Han S, Brenner JC, Augello MA, Dean JL et al (2012) Dual roles of PARP-1 promote cancer growth and progression. Cancer Discov 2:1134–1149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sedarsky J, Degon M, Srivastava S, Dobi A (2018) Ethnicity and ERG frequency in prostate cancer. Nat Rev Urol 15:125–131

    Article  PubMed  Google Scholar 

  • Senapati D, Kumari S, Heemers HV (2020) Androgen receptor coregulation in prostate cancer. Asian J Urol 7:219–232

    Article  PubMed  Google Scholar 

  • Shang Y, Myers M, Brown M (2002) Formation of the androgen receptor transcription complex. Mol Cell 9:601–610

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Allison JP (2020) Dissecting the mechanisms of immune checkpoint therapy. Nat Rev Immunol. 20:75–76

    Article  CAS  PubMed  Google Scholar 

  • Sharma M, Chuang WW, Sun Z (2002) Phosphatidylinositol 3-kinase/Akt stimulates androgen pathway through GSK3beta inhibition and nuclear beta-catenin accumulation. J Biol Chem 277:30935–30941

    Article  CAS  PubMed  Google Scholar 

  • Simpson ER (2002) Aromatization of androgens in women: current concepts and findings. Fertil Steril 77:S6–S10

    Article  PubMed  Google Scholar 

  • Smith MR, Saad F, Rathkopf DE, Mulders PFA, de Bono JS, Small EJ et al (2017) Clinical outcomes from androgen signaling-directed therapy after treatment with abiraterone acetate and prednisone in patients with metastatic castration-resistant prostate cancer: Post hoc analysis of COU-AA-302. Eur Urol 72:10–13

    Article  CAS  PubMed  Google Scholar 

  • Smith M, Saad F, Chowdhury S, Oudard S, Hadaschik B, Graff JN et al (2021) Apalutamide and overall survival in prostate cancer. Eur Urol 79:150–158

    Article  CAS  PubMed  Google Scholar 

  • Sommer U, Ebersbach C, Beier AK, Baretton GB, Thomas C, Borkowetz A, Erb HHH (2022) Influence of androgen deprivation therapy on the PD-L1 expression and immune activity in prostate cancer tissue. Front Mol Biosci 9:878353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song LN, Herrell R, Byers S, Shah S, Wilson EM, Gelmann EP (2003) Beta-catenin binds to the activation function 2 region of the androgen receptor and modulates the effects of the N-terminal domain and TIF2 on ligand-dependent transcription. Mol Cell Biol 23:1674–1687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sternberg CN, Fizazi K, Saad F, Shore ND, De Giorgi U, Penson DF et al (2020) Enzalutamide and survival in nonmetastatic, castration-resistant prostate cancer. N Eng J Med 382:2197–2206

    Article  CAS  Google Scholar 

  • Sun C, Shi Y, Xu LL, Nageswararao C, Davis LD, Segawa T et al (2006) Androgen receptor mutation (T877A) promotes prostate cancer cell growth and cell survival. Oncogene 25:3905–3913

    Article  CAS  PubMed  Google Scholar 

  • Suzuki H, Sato N, Watabe Y, Masai M, Seino S, Simazaki J (1993) Androgen receptor gene mutation in human prostate cancer. J Steroid Biochem Mol Biol 46:759–765

    Article  CAS  PubMed  Google Scholar 

  • Suzuki H, Akakura K, Komiya A, Aida S, Akimoto S, Shimazaki J (1996) Codon 877 mutation in the androgen receptor gene in advanced prostate cancer: relation to antiandrogen withdrawal syndrome. Prostate 29:153–158

    Article  CAS  PubMed  Google Scholar 

  • Tan SH, Petrovics G, Srivastava S (2018) Prostate cancer genomics: recent advances and the prevailing underrepresentation from racial and ethnic minorities. Int J Mol Sci 19:1255

    Article  PubMed  PubMed Central  Google Scholar 

  • Taplin ME, Bubley GJ, Shuster TD, Frantz ME, Spooner AE, Ogata GK et al (1995) Mutation of the androgen-receptor gene in metastatic androgen-independent prostate cancer. N Engl J Med 332:1393–1398

    Article  CAS  PubMed  Google Scholar 

  • Taplin ME, Bubley GJ, Ko YJ, Small EJ, Upton M, Rajeshkumar B et al (1999) Selection for androgen receptor mutations in prostate cancers treated with androgen antagonist. Cancer Res 59:2511–2515

    CAS  PubMed  Google Scholar 

  • Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS et al (2010) Integrative genomic profiling of human prostate cancer. Cancer Cell 18:11–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terakawa N, Inoue M, Shimizu I, Ikegami H, Mizutani T, Sakata M et al (1988) Preliminary report on the use of danazol in the treatment of endometrial adenomatous hyperplasia. Cancer 62:2618–2621

    Article  CAS  PubMed  Google Scholar 

  • Terry S, Maillé P, Baaddi H, Kheuang L, Soyeux P, Nicolaiew N et al (2013) Cross modulation between the androgen receptor axis and protocadherin-PC in mediating neuroendocrine transdifferentiation and therapeutic resistance of prostate cancer. Neoplasia 15:761–772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Titus MA, Schell MJ, Lih FB, Tomer KB, Mohler JL (2005) Testosterone and dihydrotestosterone tissue levels in recurrent prostate cancer. Clin Cancer Res 11:4653–4657

    Article  CAS  PubMed  Google Scholar 

  • Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW et al (2005) Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310:644–648

    Article  CAS  PubMed  Google Scholar 

  • Tomlins SA, Bjartell A, Chinnaiyan AM, Jenster G, Nam RK, Rubin MA et al (2009) ETS gene fusions in prostate cancer: from discovery to clinical practice. Eur Urol 56:275–286

    Article  CAS  PubMed  Google Scholar 

  • Traina TA, Miller K, Yardley DA, Eakle J, Schwartzberg LS, O’Shaughnessy J et al (2018) Enzalutamide for the treatment of androgen receptor-expressing triple-negative breast cancer. J Clin Oncol 36:884–890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tran C, Ouk S, Clegg NJ, Chen Y, Watson PA, Arora V et al (2009) Development of a second-generation anti-androgen for treatment of advanced prostate cancer. Science 324:787–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trapman J, Klaassen P, Kuiper GG, van der Korput JA, Faber PW, van Rooij HC et al (1988) Cloning, structure and expression of a cDNA encoding the human androgen receptor. Biochem Biophys Res Commun 153:241–248

    Article  CAS  PubMed  Google Scholar 

  • Truica CI, Byers S, Gelmann EP (2000) Beta-catenin affects androgen receptor transcriptional activity and ligand specificity. Cancer Res 60:4709–4713

    CAS  PubMed  Google Scholar 

  • Ueda T, Bruchovsky N, Sadar MD (2002) Activation of the androgen receptor N-terminal domain by interleukin-6 via MAPK and STAT3 signal transduction pathways. J Biol Chem 277:7076–7085

    Article  CAS  PubMed  Google Scholar 

  • van de Wijngaart DJ, Molier M, Lusher SJ, Hersmus R, Jenster G, Trapman J et al (2010) Systematic structure-function analysis of androgen receptor Leu701 mutants explains the properties of the prostate cancer mutant L701H. J Biol Chem 285:5097–5105

    Article  PubMed  Google Scholar 

  • Veldscholte J, Ris-Stalpers C, Kuiper GG, Jenster G, Berrevoets C, Claassen E et al (1990) A mutation in the ligand binding domain of the androgen receptor of human LNCaP cells affects steroid binding characteristics and response to anti-androgens. Biochem Biophys Res Commun 173:534–540

    Article  CAS  PubMed  Google Scholar 

  • Vellano CP, White MG, Andrews MC, Chelvanambi M, Witt RG, Daniele JR et al (2022) Androgen receptor blockade promotes response to BRAF/MEK-targeted therapy. Nature 606:797–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verras M, Sun Z (2006) Roles and regulation of Wnt signaling and beta-catenin in prostate cancer. Cancer Lett 237:22–32

    Article  CAS  PubMed  Google Scholar 

  • Vickman RE, Franco OE, Moline DC, Vander Griend DJ, Thumbikat P, Hayward SW (2020) The role of the androgen receptor in prostate development and benign prostatic hyperplasia: a review. Asian J Urol 7:191–202

    Article  PubMed  Google Scholar 

  • Visakorpi T, Hyytinen E, Koivisto P, Tanner M, Keinänen R, Palmberg C et al (1995) In vivo amplification of the androgen receptor gene and progression of human prostate cancer. Nat Genet 9:401–406

    Article  CAS  PubMed  Google Scholar 

  • Vivanco I, Sawyers CL (2002) The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer 2:489–501

    Article  CAS  PubMed  Google Scholar 

  • Waks AG, Winer EP (2019) Breast cancer treatment: a review. JAMA 321:288–300

    Article  CAS  PubMed  Google Scholar 

  • Waltering KK, Urbanucci A, Visakorpi T (2012) Androgen receptor (AR) aberrations in castration-resistant prostate cancer. Mol Cell Endocrinol 360:38–43

    Article  CAS  PubMed  Google Scholar 

  • Walters KA, Simanainen U, Handlesman DJ (2010) Molecular insights into androgen actions in male and female reproductive function from androgen receptor knockout models. Human Rep Update 16:543–558

    Article  CAS  Google Scholar 

  • Wan X, Liu J, Lu JF, Tzelepi V, Yang J, Starbuck MW et al (2012) Activation of β-catenin signaling in androgen receptor-negative prostate cancer cells. Clin Cancer Res 18:726–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang G, Wang J, Sadar MD (2008) Crosstalk between the androgen receptor and beta- catenin in castrate-resistant prostate cancer. Cancer Res. 68:9918–9927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weinstein-Oppenheimer CR, Blalock WL, Steelman LS, Chang F, McCubrey JA (2000) The Raf signal transduction cascade as a target for chemotherapeutic intervention in growth factor-responsive tumors. Pharmacol Ther 88:229–279

    Article  CAS  PubMed  Google Scholar 

  • Welti J, Sharp A, Yuan W, Dolling D, Rodrigues DN, Figueiredo I et al (2018) Targeting bromodomain and extra-terminal (BET) family proteins in castration-resistant prostate cancer (CRPC). Clin Cancer Res 24:3149–3162

    Article  CAS  PubMed  Google Scholar 

  • Wen Y, Hu MC, Makino K, Spohn B, Bartholomeusz G, Yan DH et al (2000) HER-2/neu promotes androgen-independent survival and growth of prostate cancer cells through the Akt pathway. Cancer Res 60:6841–6485

    CAS  PubMed  Google Scholar 

  • Wise SC, Burmeister LA, Zhou XF, Bubulya A, Oberfield JL, Birrer MJ et al (1998) Identification of domains of c-Jun mediating androgen receptor transactivation. Oncogene. 16:2001–2009

    Article  CAS  PubMed  Google Scholar 

  • Wo JY, Zietman AL (2008) Why does androgen deprivation enhance the results of radiation therapy? Urol Oncol 26:522–529

    Article  CAS  PubMed  Google Scholar 

  • Wright ME, Tsai MJ, Aebersold R (2003) Androgen receptor represses the neuroendocrine transdifferentiation process in prostate cancer cells. Mol Endocrinol 17:1726–1737

    Article  CAS  PubMed  Google Scholar 

  • Xie N, Cheng H, Lin D, Liu L, Yang O, Jia L et al (2015) The expression of glucocorticoid receptor is negatively regulated by active androgen receptor signaling in prostate tumors. Int J Cancer 136:E27–E38

    Article  CAS  PubMed  Google Scholar 

  • Xin L, Teitell MA, Lawson DA, Kwon A, Mellinghoff IK, Witte ON (2006) Progression of prostate cancer by synergy of AKT with genotropic and nongenotropic actions of the androgen receptor. Proc Natl Acad Sci U S A 103:7789–7794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang SH, Yates PR, Whitmarsh AJ, Davis RJ, Sharrocks AD (1998) The Elk-1 ETS-domain transcription factor contains a mitogen-activated protein kinase targeting motif. Mol Cell Biol 18:710–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang F, Li X, Sharma M, Sasaki CY, Longo DL, Lim B et al (2002) Linking beta- catenin to androgen-signaling pathway. J Biol Chem 277:11336–11344

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Lin HK, Altuwaijri S, Xie S, Wang L, Chang C (2003a) APPL suppresses androgen receptor transactivation via potentiating Akt activity. J Biol Chem 278:16820–16827

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Wang L, Lin HK, Kan PY, Xie S, Tsai MY et al (2003b) Interleukin-6 differentially regulates androgen receptor transactivation via PI3K-Akt, STAT3, and MAPK, three distinct signal pathways in prostate cancer cells. Biochem Biophys Res Commun 305:462–469

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Xie S, Jamaluddin MS, Altuwaijri S, Ni J, Kim E et al (2005) Induction of androgen receptor expression by phosphatidylinositol 3-kinase/Akt downstream substrate, FOXO3a, and their roles in apoptosis of LNCaP prostate cancer cells. J Biol Chem. 280:33558–33565

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Chen MW, Terry S, Vacherot F, Bemis DL, Capodice J et al (2006) Complex regulation of human androgen receptor expression by Wnt signaling in prostate cancer cells. Oncogene. 25:3436–3444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeh S, Lin HK, Kang HY, Thin TH, Lin MF, Chang C (1999) From HER2/Neu signal cascade to androgen receptor and its coactivators: a novel pathway by induction of androgen target genes through MAP kinase in prostate cancer cells. Proc Natl Acad Sci U S A 96:5458–5463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida T, Kinoshita H, Segawa T, Nakamura E, Inoue T, Shimizu Y et al (2005) Antiandrogen bicalutamide promotes tumor growth in a novel androgen-dependent prostate cancer xenograft model derived from a bicalutamide-treated patient. Cancer Res 65:9611–9616

    Article  CAS  PubMed  Google Scholar 

  • Yu Z, Cai C, Gao S, Simon NI, Shen HC, Balk SP (2014) Galeterone prevents androgen receptor binding to chromatin and enhances degradation of mutant androgen receptor. Clin Cancer Res 20:4075–4085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao XY, Malloy PJ, Krishnan AV, Swami S, Navone NM, Peehl DM et al (2000) Glucocorticoids can promote androgen-independent growth of prostate cancer cells through a mutated androgen receptor. Nat Med. 6:703–706

    Article  CAS  PubMed  Google Scholar 

  • Zhu Q, Youn H, Tang J, Tawfik O, Dennis K, Terranova PF et al (2008) Phosphoinositide 3-OH kinase p85alpha and p110beta are essential for androgen receptor transactivation and tumor progression in prostate cancers. Oncogene. 27:4569–4579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Partha P. Banerjee or Shiv Srivastava .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Banerjee, P.P., Srivastava, S. (2023). Androgen Receptor Signaling: A Central and Evolving Theme in Prostate Cancer Treatment. In: Sobti, R.C., Ganguly, N.K., Kumar, R. (eds) Handbook of Oncobiology: From Basic to Clinical Sciences. Springer, Singapore. https://doi.org/10.1007/978-981-99-2196-6_24-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-2196-6_24-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-2196-6

  • Online ISBN: 978-981-99-2196-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics