Skip to main content

Abstract

Like the liver’s major metabolic organ, pulmonary airways contain many potential metabolizing enzymes and metabolic pathways. Notably, the pulmonary metabolic network is of primary importance while exploring the inhalation route of drug delivery. The prodrug-based drug delivery system is an approach where metabolizing enzymes and metabolic pathways play a crucial role. Prodrug systems contain unique drug delivery benefits, such as enzyme-driven drug release, high drug payload, real-time controlled release properties, efficient targeting, and reduced adverse effects. Considering the lung metabolic network and typical unidirectional airway flow pattern, few dynamic formulators designed prodrug therapies to treat chronic pulmonary diseases. This chapter gives a detailed account of pulmonary metabolizing cells and enzymes, prodrug designing, and emerging prodrug integrated nanomedicine. Subsequently, this chapter touches on recent progress in prodrug-based pulmonary drug delivery systems, emphasizing biophysical properties, aerodynamic behavior, and pharmacological outcome. Moreover, the chapter also contains a devoted section regarding future experiments and critical challenges. Briefly, this chapter is a comprehensive account of inhalable prodrugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Markovic M, Ben-Shabat S, Dahan A. Prodrugs for improved drug delivery: lessons learned from recently developed and marketed products. Pharmaceutics. 2020;12(11):1031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Redasani VK, Bari SB. Prodrug design: perspectives, approaches and applications in medicinal chemistry. Academic Press; 2015.

    Google Scholar 

  3. Stella VJ, Nti-Addae KW. Prodrug strategies to overcome poor water solubility. Adv Drug Deliv Rev. 2007;59(7):677–94.

    Article  CAS  PubMed  Google Scholar 

  4. Piskáčková HB, Jansová H, Kubeš J, Karabanovich G, Váňová N, Kollárová-Brázdová P, Melnikova I, Jirkovská A, Lenčová-Popelová O, Chládek J, Roh J. Development of water-soluble prodrugs of the bisdioxopiperazine topoisomerase IIβ inhibitor ICRF-193 as potential cardioprotective agents against anthracycline cardiotoxicity. Sci Rep. 2021;11(1):1–4.

    Google Scholar 

  5. Peterson LW, McKenna CE. Prodrug approaches to improving the oral absorption of antiviral nucleotide analogues. Expert Opin Drug Deliv. 2009;6(4):405–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Aungst BJ, Matz N. Prodrugs to reduce presystemic metabolism. In: Stella VJ, Borchardt RT, Hageman MJ, Oliyai R, Maag H, Tilley JW, editors. Prodrugs. biotechnology: pharmaceutical aspects, vol V. New York, NY: Springer; 2007. p. 339–55.

    Chapter  Google Scholar 

  7. N'Da DD. Prodrug strategies for enhancing the percutaneous absorption of drugs. Molecules. 2014;19(12):20780–807.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wu S, Wang L, Huang X, Cao M, Hu J, Li H, Zhang H, Sun X, Meng QH, Hofstetter WL, Roth JA, Swisher SG, Fang B. Prodrug oncrasin-266 improves the stability, pharmacokinetics, and safety of NSC-743380. Bioorg Med Chem. 2014;22(19):5234–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lin M, Guo W, Zhang Z, Zhou Y, Chen J, Wang T, Zhong X, Lu Y, Yang Q, Wei Q, Han M, Xu D, Gao J. Reduced toxicity of liposomal nitrogen mustard prodrug formulation activated by an intracellular ROS feedback mechanism in hematological neoplasm models. Mol Pharm. 2020;17(2):499–506.

    CAS  PubMed  Google Scholar 

  10. Qandil AM. Prodrugs of non-steroidal anti-inflammatory drugs (NSAIDs), more than meets the eye: a critical review. Int J Mol Sci. 2012;13(12):17244–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rautio J, Laine K, Gynther M, Savolainen J. Prodrug approaches for CNS delivery. AAPS J. 2008;10(1):92–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li S, Shan X, Wang Y, Chen Q, Sun J, He Z, Sun B, Luo C. Dimeric prodrug-based nanomedicines for cancer therapy. J Control Release. 2020;326:510–22.

    Article  CAS  PubMed  Google Scholar 

  13. Ates-Alagoz Z, Adejare A. Prodrugs. In Remington 2021 (pp. 169-186). Academic Press.

    Google Scholar 

  14. Karaman R. Prodrugs design based on inter- and intramolecular chemical processes. Chem Biol Drug Des. 2013;82(6):643–68.

    Article  CAS  PubMed  Google Scholar 

  15. Choudhary D, Goykar H, Kalyane D, Sreeharsha N, Tekade RK. Prodrug design for improving the biopharmaceutical properties of therapeutic drugs. In The Future of Pharmaceutical Product Development and Research 2020 (pp. 179-226). Academic Press.

    Google Scholar 

  16. Silverman RB, Lawton GR, Ralay Ranaivo H, Chico LK, Seo J, Watterson DM. Effect of potential amine prodrugs of selective neuronal nitric oxide synthase inhibitors on blood-brain barrier penetration. Bioorg Med Chem. 2009;17(21):7593–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Majumdar S, Spaeth MM, Sivendran S, Juntunen J, Thomas JD, Sloan KB. α-(1H-Imidazol-1-yl) alkyl (IMIDA) carboxylic acid esters as prodrugs of carboxylic acid containing drugs. Tetrahedron Lett. 2007;48(26):4609–11.

    Article  CAS  Google Scholar 

  18. Jensen E, Bundgaard H. Peptide esters as water-soluble prodrugs for hydroxyl containing agents: chemical stability and enzymatic hydrolysis of benzyl esters of glycine, diglycine and triglycine. Int J Pharm. 1991;71(1-2):117–25.

    Article  CAS  Google Scholar 

  19. Subbaiah MA, Ramar T, Subramani L, Desai SD, Sinha S, Mandlekar S, Jenkins SM, Krystal MR, Subramanian M, Sridhar S, Padmanabhan S. (Carbonyl) oxyalkyl linker-based amino acid prodrugs of the HIV-1 protease inhibitor atazanavir that enhance oral bioavailability and plasma trough concentration. Eur J Med Chem. 2020;207:112749.

    Article  CAS  PubMed  Google Scholar 

  20. Wiemer AJ, Wiemer DF. Prodrugs of phosphonates and phosphates: crossing the membrane barrier. Top Curr Chem. 2015;360:115–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Guarino VR, Olson RE, Everlof JG, Wang N, McDonald I, Haskell R, Clarke W, Lentz KA. An amide-based sulfenamide prodrug of gamma secretase inhibitor BMS-708163 delivers parent drug from an oral conventional solid dosage form in male beagle dog. Bioorg Med Chem Lett. 2020;30(3):126856.

    Article  CAS  PubMed  Google Scholar 

  22. Huang B, Liu X, Tian Y, Kang D, Zhou Z, Daelemans D, De Clercq E, Pannecouque C, Zhan P, Liu X. First discovery of a potential carbonate prodrug of NNRTI drug candidate RDEA427 with submicromolar inhibitory activity against HIV-1 K103N/Y181C double mutant strain. Bioorg Med Chem Lett. 2018;28(8):1348–51.

    Article  CAS  PubMed  Google Scholar 

  23. Qin C, Chu Y, Feng W, Fromont C, He S, Ali J, Lee JB, Zgair A, Berton M, Bettonte S, Liu R. Targeted delivery of lopinavir to HIV reservoirs in the mesenteric lymphatic system by lipophilic ester prodrug approach. J Control Release. 2021;329:1077–89.

    Article  CAS  PubMed  Google Scholar 

  24. Xu X, Lv Y, Tang K, Song B, Jiang Q, Sun L, He Z, Zhang T. The simultaneous determination of naringenin and its valine carbamate prodrug in rat plasma using supercritical fluid chromatography -tandem mass spectrometric method. J Pharm Biomed Anal. 2021;195:113848.

    Article  CAS  PubMed  Google Scholar 

  25. Fu L, Jiang Z, Cai Z, Liu X, He H, Yang Y. Water-soluble phosphate prodrugs of pleuromutilin analogues with potent in vivo antibacterial activity against Gram-positive pathogens. Bioorg Med Chem Lett. 2009;19(18):5407–10.

    Article  CAS  PubMed  Google Scholar 

  26. Li S, Li X, Lu Y, Hou M, Xu Z, Li B. A thiol-responsive and self-immolative podophyllotoxin prodrug for cancer therapy. Tetrahedron Lett. 2021;71:153044.

    Article  CAS  Google Scholar 

  27. Zhao YJ, Wei W, Su ZG, Ma GH. Poly (ethylene glycol) prodrug for anthracyclines via N-Mannich base linker: design, synthesis and biological evaluation. Int J Pharm. 2009;379(1):90–9.

    Article  CAS  PubMed  Google Scholar 

  28. Kapoor M, Cheryala N, Rautiola D, Georg GI, Cloyd JC, Siegel RA. Chirally pure prodrugs and their converting enzymes lead to high supersaturation and rapid transcellular permeation of benzodiazepines. J Pharm Sci. 2016;105(8):2365–71.

    Article  CAS  PubMed  Google Scholar 

  29. Mistry IN, Thomas M, Calder EDD, Conway SJ, Hammond EM. Clinical advances of hypoxia-activated prodrugs in combination with radiation therapy. Int J Radiat Oncol Biol Phys. 2017;98(5):1183–96.

    Article  CAS  PubMed  Google Scholar 

  30. Li Y, Yang M, Zhao Y, Li L, Xu W. Preparation and in vitro evaluation of amphiphilic paclitaxel small molecule prodrugs and enhancement of oral absorption. Eur J Med Chem. 2021;215:113276.

    Article  CAS  PubMed  Google Scholar 

  31. Meng Q, Hu H, Zhou L, Zhang Y, Yu B, Shen Y, Cong H. Logical design and application of prodrug platforms. Polymer Chem. 2019;10(3):306–24.

    Article  CAS  Google Scholar 

  32. Yin W, Ke W, Lu N, Wang Y, Japir AA, Mohammed F, Wang Y, Pan Y, Ge Z. Glutathione and reactive oxygen species dual-responsive block copolymer prodrugs for boosting tumor site-specific drug release and enhanced antitumor efficacy. Biomacromolecules. 2020;21(2):921–9.

    Article  CAS  PubMed  Google Scholar 

  33. Deng Z, Liu S. Controlled drug delivery with nanoassemblies of redox-responsive prodrug and polyprodrug amphiphiles. J Control Release. 2020;326:276–96.

    Article  CAS  PubMed  Google Scholar 

  34. Guan J, Wu Y, Wang H, Zeng H, Li Z, Yang X. DiR loaded tumor targeting theranostic cisplatin-icodextrin prodrug nanoparticle for imaging guided chemo-photothermal cancer therapy. Nanoscale. 2021;13(46):19399–411.

    Article  CAS  PubMed  Google Scholar 

  35. Yan D, Xu X, Ren C, Chen C, Luo J, Han C, Kong L. DT-diaphorase triggered theranostic nanoparticles induce the self-burst of reactive oxygen species for tumor diagnosis and treatment. Acta Biomaterialia. 2021;125:267–79.

    Article  CAS  PubMed  Google Scholar 

  36. Chen KJ, Plaunt AJ, Leifer FG, Kang JY, Cipolla D. Recent advances in prodrug-based nanoparticle therapeutics. Eur J Pharm Biopharm. 2021;165:219–43.

    Article  CAS  PubMed  Google Scholar 

  37. Xie A, Hanif S, Ouyang J, Tang Z, Kong N, Kim NY, Qi B, Patel D, Shi B, Tao W. Stimuli-responsive prodrug-based cancer nanomedicine. EBioMedicine. 2020;56:102821.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wang Z, Chen J, Little N, Lu J. Self-assembling prodrug nanotherapeutics for synergistic tumor targeted drug delivery. Acta Biomater. 2020;111:20–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Luo C, Sun J, Sun B, He Z. Prodrug-based nanoparticulate drug delivery strategies for cancer therapy. Trends Pharmacol Sci. 2014;35(11):556–66.

    Article  CAS  PubMed  Google Scholar 

  40. Wang W, Fan J, Zhu G, Wang J, Qian Y, Li H, Ju J, Shan L. Targeted prodrug-based self-assembled nanoparticles for cancer therapy. Int J Nanomed. 2020;15:2921–33.

    Article  CAS  Google Scholar 

  41. Bai Y, Liu CP, Song X, et al. Photo- and pH- dual-responsive b-cyclodextrin-based supramolecular prodrug complex self-assemblies for programmed drug delivery. Chem Asian J. 2018;13(24):3903–11.

    Article  CAS  PubMed  Google Scholar 

  42. Peng M, Qin S, Jia H, Zheng D, Rong L, Zhang X. Self-delivery of a peptide-based prodrug for tumor-targeting therapy. Nano Res. 2016;9(3):663–73.

    Article  CAS  Google Scholar 

  43. Caron J, Maksimenko A, Wack S, et al. Improving the antitumor activity of squalenoyl-paclitaxel conjugate nanoassemblies by manipulating the linker between paclitaxel and squalene. Adv Healthc Mater. 2013;2(1):172–85.

    Article  CAS  PubMed  Google Scholar 

  44. Yue Z, Wang H, Li Y, et al. Coordination-driven self-assembly of a Pt(IV) prodrug-conjugated supramolecular hexagon. Chem Commun. 2018;54(7):731–4.

    Article  CAS  Google Scholar 

  45. Cheetham AG, Chakroun RW, Ma W, Cui H. Self-assembling prodrugs. Chem Soc Rev. 2017;46(21):6638–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Teng W, Jia F, Han H, et al. Polyamino acid-based gemcitabine nanocarriers for targeted intracellular drug delivery. Polym Chem. 2017;8(16):2490–8.

    Article  CAS  Google Scholar 

  47. Wang Q, Guan J, Wan J, Li Z. Disulfide based prodrugs for cancer therapy. RSC Adv. 2020;10(41):24397–409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang Y, Cui H, Zhang R, Zhang H, Huang W. Nanoparticulation of prodrug into medicines for cancer therapy. Adv Sci (Weinh). 2021;8(18):e2101454.

    Article  PubMed  Google Scholar 

  49. Mahato R, Tai W, Cheng K. Prodrugs for improving tumor targetability and efficiency. Adv Drug Deliv Rev. 2011;63(8):659–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhao G, Ren R, Wei X, Jia Z, Chen N, Sun Y, Zhao Z, Lele SM, Zhong HA, Goldring MB, Goldring SR, Wang D. Thermoresponsive polymeric dexamethasone prodrug for arthritis pain. J Control Release. 2021;339:484–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Stephenson AA, Cao S, Taggart DJ, Vyavahare VP, Suo Z. Design, synthesis, and evaluation of liver-specific gemcitabine prodrugs for potential treatment of hepatitis C virus infection and hepatocellular carcinoma. Eur J Med Chem. 2021;213:113135.

    Article  CAS  PubMed  Google Scholar 

  52. Hillaireau H, Dereuddre-Bosquet N, Skanji R, Bekkara-Aounallah F, Caron J, Lepêtre S, Argote S, Bauduin L, Yousfi R, Rogez-Kreuz C, Desmaële D, Rousseau B, Gref R, Andrieux K, Clayette P, Couvreur P. Anti-HIV efficacy and biodistribution of nucleoside reverse transcriptase inhibitors delivered as squalenoylated prodrug nanoassemblies. Biomaterials. 2013;34(20):4831–8.

    Article  CAS  PubMed  Google Scholar 

  53. Dholkawala F, Voshavar C, Dutta AK. Synthesis and characterization of brain penetrant prodrug of neuroprotective D-264: potential therapeutic application in the treatment of Parkinson's disease. Eur J Pharm Biopharm. 2016;103:62–70.

    Article  CAS  PubMed  Google Scholar 

  54. Wei Z, Xin G, Wang H, Zheng H, Ji C, Gu J, Ma L, Qin C, Xing Z, Niu H, Huang W. The diosgenin prodrug nanoparticles with pH-responsive as a drug delivery system uniquely prevents thrombosis without increased bleeding risk. Nanomedicine. 2018;14(3):673–84.

    Article  CAS  PubMed  Google Scholar 

  55. Corboz MR, Zhang J, LaSala D, DiPetrillo K, Li Z, Malinin V, Brower J, Kuehl PJ, Barrett TE, Perkins WR, Chapman RW. Therapeutic administration of inhaled INS1009, a treprostinil prodrug formulation, inhibits bleomycin-induced pulmonary fibrosis in rats. Pulm Pharmacol Ther. 2018;49:95–103.

    Article  CAS  PubMed  Google Scholar 

  56. Quagliariello V, Gennari A, Jain SA, Rosso F, Iaffaioli RV, Barbarisi A, Barbarisi M, Tirelli N. Double-responsive hyaluronic acid-based prodrugs for efficient tumour targeting. Mater Sci Eng: C. 2021;131:112475.

    Article  CAS  Google Scholar 

  57. Jackson M. An antitubercular prodrug leaves Mycobacterium tuberculosis facing a difficult choice, poisoning or starvation? Cell Chem Biol. 2021;28(8):1101–3.

    Article  CAS  PubMed  Google Scholar 

  58. Voak AA, Gobalakrishnapillai V, Seifert K, Balczo E, Hu L, Hall BS, Wilkinson SR. An essential type I nitroreductase from Leishmania major can be used to activate leishmanicidal prodrugs. J Biol Chem. 2013;288(40):28466–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wolfe AR, Neitz RJ, Burlingame M, Suzuki BM, Lim KC, Scheideler M, Nelson DL, Benet LZ, Caffrey CR. TPT sulfonate, a single, oral dose schistosomicidal prodrug: in vivo efficacy, disposition and metabolic profiling. Int J Parasitol Drugs Drug Resist. 2018;8(3):571–86.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Thuita JK, Karanja SM, Wenzler T, Mdachi RE, Ngotho JM, Kagira JM, Tidwell R, Brun R. Efficacy of the diamidine DB75 and its prodrug DB289, against murine models of human African trypanosomiasis. Acta Trop. 2008;108(1):6–10.

    Article  CAS  PubMed  Google Scholar 

  61. Oseghale AR, Zhu X, Li B, Peterson KR, Nudelman A, Rephaeli A, Xu H, Pace BS. Conjugate prodrug AN-233 induces fetal hemoglobin expression in sickle erythroid progenitors and β-YAC transgenic mice. Blood Cells Mol Dis. 2019;79:102345.

    Article  CAS  PubMed  Google Scholar 

  62. Serafim EO, Silva AT, Moreno Ade H, Vizioli Ede O, Ferreira EI, Peccinini RG, Ribeiro ML, Chung MC. Pharmacokinetics of hydroxymethylnitrofurazone, a promising new prodrug for Chagas' disease treatment. Antimicrob Agents Chemother. 2013;57(12):6106–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Chung MC, Ferreira EI, Santos JL, Giarolla J, Rando DG, Almeida AE, Bosquesi PL, Menegon RF, Blau L. Prodrugs for the treatment of neglected diseases. Molecules. 2007;13(3):616–77.

    Article  PubMed  Google Scholar 

  64. Kour J, Kumari N, Sapra B. Ocular prodrugs: attributes and challenges. Asian J Pharm Sci. 2021;16(2):175–91.

    Article  PubMed  Google Scholar 

  65. Bonina FP, Puglia C, Barbuzzi T, de Caprariis P, Palagiano F, Rimoli MG, Saija A. In vitro and in vivo evaluation of polyoxyethylene esters as dermal prodrugs of ketoprofen, naproxen and diclofenac. Eur J Pharm Sci. 2001;14(2):123–34.

    Article  CAS  PubMed  Google Scholar 

  66. Srinivasan S, Roy D, Chavas TEJ, Vlaskin V, Ho DK, Pottenger A, et al. Liver-targeted polymeric prodrugs of 8-aminoquinolines for malaria radical cure. J Control Release. 2021;331:213–27.

    Article  CAS  PubMed  Google Scholar 

  67. Xiang H, Zhang Q, Han Y, Yang L, Zhang Y, Liu Q, Zhang Z, Zhang L. Novel brain-targeting 3-n-butylphthalide prodrugs for ischemic stroke treatment. J Control Release. 2021;335:498–514.

    Article  CAS  PubMed  Google Scholar 

  68. Chavas TEJ, Su FY, Srinivasan S, Roy D, Lee B, Lovelace-Macon L, et al. A macrophage-targeted platform for extending drug dosing with polymer prodrugs for pulmonary infection prophylaxis. J Control Release. 2021;330:284–92.

    Article  CAS  PubMed  Google Scholar 

  69. Jornada DH, dos Santos Fernandes GF, Chiba DE, de Melo TR, dos Santos JL, Chung MC. The prodrug approach: a successful tool for improving drug solubility. Molecules. 2015;21(1):42.

    Article  PubMed  PubMed Central  Google Scholar 

  70. da Silva Santos S, Igne Ferreira E, Giarolla J. Dendrimer prodrugs. Molecules. 2016;21(6):686.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Najjar A, Najjar A, Karaman R. Newly developed prodrugs and prodrugs in development; an insight of the recent years. Molecules. 2020;25(4):884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tendolkar MS, Tyagi R, Handa A. Review of advances in diagnosis and treatment of pulmonary tuberculosis. Indian J Tuberc. 2021;68(4):510–5.

    Article  PubMed  Google Scholar 

  73. Chapman RW, Corboz MR, Malinin VS, Plaunt AJ, Konicek DM, Li Z, Perkins WR. An overview of the biology of a long-acting inhaled treprostinil prodrug. Pulm Pharmacol Ther. 2020;65:102002.

    Article  CAS  PubMed  Google Scholar 

  74. Rubin K, Ewing P, Bäckström E, Abrahamsson A, Bonn B, Kamata S, Grime K. Pulmonary metabolism of substrates for key drug-metabolizing enzymes by human alveolar type II cells, human and rat lung microsomes, and the isolated perfused rat lung model. Pharmaceutics. 2020;12(2):117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Enlo-Scott Z, Bäckström E, Mudway I, Forbes B. Drug metabolism in the lungs: opportunities for optimising inhaled medicines. Expert Opin Drug Metab Toxicol. 2021;17(5):611–25.

    Article  CAS  PubMed  Google Scholar 

  76. Jamaludin J, Marlin N, Wood H, et al. Evaluating the impact of genotype on the relationship between impaired lung growth and chronic exposure to traffic derived pollutants. Eur Respir J. 2013;42(Suppl 57):P3623.

    Google Scholar 

  77. Tekpli X, Zienolddiny S, Skaug V, et al. DNA methylation of the CYP1A1 enhancer is associated with smoking-induced genetic alterations in human lung. Int J Cancer. 2012;131(7):1509–16.

    Article  CAS  PubMed  Google Scholar 

  78. Gundert-Remy U, Bernauer U, Blömeke B, et al. Extrahepatic metabolism at the body’s internal–external interfaces. Drug Metab Rev. 2014;46(3):291–324.

    Article  CAS  PubMed  Google Scholar 

  79. Zeldin DC, Foley J, Ma J, et al. CYP2J subfamily P450s in the lung: expression, localization, and potential functional significance. Mol Pharmacol. 1996;50(5):1111–7.

    CAS  PubMed  Google Scholar 

  80. Oesch F, Fabian E, Landsiedel R. Xenobiotica-metabolizing enzymes in the lung of experimental animals, man and in human lung models. Arch Toxicol. 2019;93(12):3419–89.

    Article  CAS  PubMed  Google Scholar 

  81. Winkler J, Hochhaus G, Derendorf H. How the lung handles drugs: pharmacokinetics and pharmacodynamics of inhaled corticosteroids. Proc Am Thorac Soc. 2004;1(4):356–63.

    Article  CAS  PubMed  Google Scholar 

  82. Mukker JK, Singh RSP, Derendorf H. Ciclesonide: a pro-soft drug approach for mitigation of side effects of inhaled corticosteroids. J Pharm Sci. 2016;105(9):2509–14.

    Article  CAS  PubMed  Google Scholar 

  83. Nave R, Meyer W, Fuhst R, et al. Formation of fatty acid conjugates of ciclesonide active metabolite in the rat lung after 4-week inhalation of ciclesonide. Pulm Pharmacol Ther. 2005;18(6):390–6.

    Article  CAS  PubMed  Google Scholar 

  84. Wieslander E, Delander E-L, Järkelid L, et al. Pharmacologic importance of the reversible fatty acid conjugation of budesonide studied in a rat cell line in vitro. Am J Respir Cell Mol Biol. 1998;19(3):477–84.

    Article  CAS  PubMed  Google Scholar 

  85. Borchard G, Cassará ML, Roemelé PE, et al. Transport and local metabolism of budesonide and fluticasone propionate in a human bronchial epithelial cell line (Calu-3). J Pharm Sci. 2002;91(6):1561–7.58

    Article  CAS  PubMed  Google Scholar 

  86. Chen H, Wang X, Gou S. A cisplatin-based platinum (IV) prodrug containing a glutathione s-transferase inhibitor to reverse cisplatin-resistance in non-small cell lung cancer. J Inorganic Biochem. 2019;193:133–42.

    Article  CAS  Google Scholar 

  87. Ma S, Li X, Ran M, Ji M, Gou J, Yin T, He H, Wang Y, Zhang Y, Tang X. Fabricating nanoparticles co-loaded with survivin siRNA and Pt(IV) prodrug for the treatment of platinum-resistant lung cancer. Int J Pharm. 2021;601:120577. https://doi.org/10.1016/j.ijpharm.2021.120577.

    Article  CAS  PubMed  Google Scholar 

  88. Huo Q, Liang Y, Lu W, Peng X, Du C, Sun Y, Han S, Cao J, Sun Y, He B. Integrated metalloproteinase, pH and glutathione responsive prodrug-based nanomedicine for efficient target chemotherapy. J Biomed Nanotechnol. 2019;15(8):1673–87.

    Article  CAS  PubMed  Google Scholar 

  89. Wojtkowiak JW, Verduzco D, Schramm KJ, Gillies RJ. Drug resistance and cellular adaptation to tumor acidic pH microenvironment. Mol Pharm. 2011;8(6):2032–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ling X, Tu J, Wang J, Shajii A, Kong N, Feng C, Zhang Y, Yu M, Xie T, Bharwani Z, Aljaeid BM. Glutathione-responsive prodrug nanoparticles for effective drug delivery and cancer therapy. Acs Nano. 2018;13(1):357–70.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Schiller JH, Harrington D, Belani CP, Langer C, Sandler A, Krook J, Zhu J, Johnson DH. Comparison of four chemotherapy regimens for advanced non–small-cell lung cancer. N Engl J Med. 2002;346(2):92–8.

    Article  CAS  PubMed  Google Scholar 

  92. Ohe Y, Ohashi Y, Kubota K, Tamura T, Nakagawa K, Negoro S, et al. Randomized phase III study of cisplatin plus irinotecan versus carboplatin plus paclitaxel, cisplatin plus gemcitabine, and cisplatin plus vinorelbine for advanced non-small-cell lung cancer: Four-Arm Cooperative Study in Japan. Ann Oncol. 2007;18(2):317–23.

    Article  CAS  PubMed  Google Scholar 

  93. Wang B, Hu W, Yan H, Chen G, Zhang Y, Mao J, Wang L. Lung cancer chemotherapy using nanoparticles: enhanced target ability of redox-responsive and pH-sensitive cisplatin prodrug and paclitaxel. Biomed Pharmacother. 2021;136:111249.

    Article  CAS  PubMed  Google Scholar 

  94. Yang T, Yu S, Liu L, Sun Y, Lan Y, Ma X, Zhu R, Li L, Hou Y, Liu Y. Dual polymeric prodrug co-assembled nanoparticles with precise ratiometric co-delivery of cisplatin and metformin for lung cancer chemo immunotherapy. Biomater Sci. 2020;8(20):5698–714.

    Article  CAS  PubMed  Google Scholar 

  95. Swamy MK, Vasamsetti BM. Taxol: occurrence, chemistry, and understanding its molecular mechanisms. In Paclitaxel 2022 Jan 1 (pp. 29–45). Academic Press.

    Google Scholar 

  96. Isah T. Anticancer alkaloids from trees: development into drugs. Pharmacogn Rev. 2016;10(20):90–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Khalifa AM, Elsheikh MA, Khalifa AM, Elnaggar YSR. Current strategies for different paclitaxel-loaded Nano-delivery Systems towards therapeutic applications for ovarian carcinoma: a review article. J Control Release. 2019;311-312:125–37.

    Article  PubMed  Google Scholar 

  98. Zhao B, Gu Z, Zhang Y, Li Z, Cheng L, Li C, Hong Y. Starch-based carriers of paclitaxel: a systematic review of carriers, interactions, and mechanisms. Carbohydr Polym. 2022;119628

    Google Scholar 

  99. Sohn JS, Jin JI, Hess M, Jo BW. Polymer prodrug approaches applied to paclitaxel. Polymer Chem. 2010;1(6):778–92.

    Article  CAS  Google Scholar 

  100. Raza F, Zafar H, Khan MW, Ullah A, Khan A, Baseer A, Fareed R, Muhammad S. Recent advances in targeted delivery of paclitaxel nanomedicine for cancer therapy. Mater Adv. 2022;

    Google Scholar 

  101. Wang G, Wang Z, Li C, Duan G, Wang K, Li Q, Tao T. RGD peptide-modified, paclitaxel prodrug-based, dual-drugs loaded, and redox-sensitive lipid-polymer nanoparticles for the enhanced lung cancer therapy. Biomed Pharmacother. 2018;106:275–84.

    Article  CAS  PubMed  Google Scholar 

  102. Xu C, Sun Y, Qi Y, Yu Y, He Y, Hu M, et al. Selective self-induced stimulus amplification prodrug platform for inhibiting multidrug resistance and lung metastasis. J Control Release. 2018;284:224–39.

    Article  CAS  PubMed  Google Scholar 

  103. Fan X, Lin X, Ruan Q, Wang J, Yang Y, Sheng M, Zhou W, Kai G, Hao X. Research progress on the biosynthesis and metabolic engineering of the anti-cancer drug camptothecin in Camptotheca acuminate. Ind Crops Prod. 2022;186:115270.

    Article  CAS  Google Scholar 

  104. Botella P, Rivero-Buceta E. Safe approaches for camptothecin delivery: structural analogues and nanomedicines. J Control Release. 2017;247:28–54.

    Article  CAS  PubMed  Google Scholar 

  105. Bondì ML, Di Gesù R, Craparo EF. Lipid nanoparticles for drug targeting to the brain. In Methods in enzymology 2012 Jan 1 (Vol. 508, pp. 229–251). Academic Press.

    Google Scholar 

  106. Yurkovetskiy AV, Fram RJ. XMT-1001, a novel polymeric camptothecin pro-drug in clinical development for patients with advanced cancer. Adv Drug Deliv Rev. 2009;61(13):1193–202.

    Article  CAS  PubMed  Google Scholar 

  107. Bala V, Rao S, Boyd BJ, Prestidge CA. Prodrug and nanomedicine approaches for the delivery of the camptothecin analogue SN38. J Control Release. 2013;172(1):48–61.

    Article  CAS  PubMed  Google Scholar 

  108. Li F, Huang Z, Chen H, Yan L, Li J, Su Y, Zhang Q, Huang Z, Zheng Y. Redox-sensitive lipophilic prodrugs: delivering unstable chemotherapeutant for improved cancer therapy. Drug Deliv. 2019;26(1):1068–79. https://doi.org/10.1080/10717544.2019.1678696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Deshmukh M, Chao P, Kutscher HL, Gao D, Sinko PJ. A series of alpha-amino acid ester prodrugs of camptothecin: in vitro hydrolysis and A549 human lung carcinoma cell cytotoxicity. J Med Chem. 2010;53(3):1038–47. https://doi.org/10.1021/jm901029n.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ashrafizadeh M, Mirzaei S, Gholami MH, Hashemi F, Zabolian A, Raei M, et al. Hyaluronic acid-based nanoplatforms for Doxorubicin: a review of stimuli-responsive carriers, co-delivery and resistance suppression. Carbohydr Polym. 2021;272:118491.

    Article  CAS  PubMed  Google Scholar 

  111. Sritharan S, Sivalingam N. A comprehensive review on time-tested anticancer drug doxorubicin. Life Sci. 2021;278:119527.

    Article  CAS  PubMed  Google Scholar 

  112. Liu J, He J, Zhang M, Xu G, Ni P. A synergistic polyphosphoester-based co-delivery system of the anticancer drug doxorubicin and the tumor suppressor gene p53 for lung cancer therapy. J Mater Chem B. 2018;6(20):3262–73.

    Article  CAS  PubMed  Google Scholar 

  113. Hong Y, Che S, Hui B, Yang Y, Wang X, Zhang X, Qiang Y, Ma H. Lung cancer therapy using doxorubicin and curcumin combination: targeted prodrug based, pH sensitive nanomedicine. Biomed Pharmacother. 2019;112:108614.

    Article  CAS  PubMed  Google Scholar 

  114. Alhajj N, O'Reilly NJ, Cathcart H. Developing ciprofloxacin dry powder for inhalation: a story of challenges and rational design in the treatment of cystic fibrosis lung infection. Int J Pharm. 2021:121388.

    Google Scholar 

  115. Nwabuife JC, Omolo CA, Govender T. Nano delivery systems to the rescue of ciprofloxacin against resistant bacteria “E. coli; P. aeruginosa; Saureus; and MRSA” and their infections. J Control Release. 2022;349:338–53.

    Article  CAS  PubMed  Google Scholar 

  116. Chen J, Su FY, Das D, Srinivasan S, Son HN, Lee B, Radella F 2nd, Whittington D, Monroe-Jones T, West TE, Convertine AJ, Skerrett SJ, Stayton PS, Ratner DM. Glycan targeted polymeric antibiotic prodrugs for alveolar macrophage infections. Biomaterials. 2019;195:38–50.

    Article  CAS  PubMed  Google Scholar 

  117. Su FY, Srinivasan S, Lee B, Chen J, Convertine AJ, West TE, Ratner DM, Skerrett SJ, Stayton PS. Macrophage-targeted drugamers with enzyme-cleavable linkers deliver high intracellular drug dosing and sustained drug pharmacokinetics against alveolar pulmonary infections. J Control Release. 2018;287:1–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Dowling PM. Chloramphenicol, thiamphenicol, and florfenicol. Antimicrobial Ther Vet Med. 2013:269–77.

    Google Scholar 

  119. Nurbaeti SN, Brillault J, Tewes F, Olivier JC. Sustained-release microparticle dry powders of chloramphenicol palmitate or thiamphenicol palmitate prodrugs for lung delivery as aerosols. Eur J Pharm Sci. 2019;138:105028.

    Article  CAS  PubMed  Google Scholar 

  120. Thai AA, Solomon BJ, Sequist LV, Gainor JF, Heist RS. Lung cancer. Lancet. 2021;398(10299):535–54.

    Article  PubMed  Google Scholar 

  121. Duruisseaux M, Esteller M. Lung cancer epigenetics: from knowledge to applications. In Seminars in cancer biology 2018 (Vol. 51, pp. 116–128). Academic Press.

    Google Scholar 

  122. Yin X, Li Y, Wang H, Jia T, Wang E, Luo Y, Wei Y, Qin Z, Ma X. Small cell lung cancer transformation: from pathogenesis to treatment. In Seminars in Cancer Biology 2022. Academic Press.

    Google Scholar 

  123. Yin X, Liao H, Yun H, Lin N, Li S, Xiang Y, Ma X. Artificial intelligence-based prediction of clinical outcome in immunotherapy and targeted therapy of lung cancer. In Seminars in cancer biology 2022. Academic Press.

    Google Scholar 

  124. Radi M, Adema AD, Daft JR, Cho JH, Hoebe EK, Alexander LE, Peters GJ, Chu CK. In vitro optimization of non-small cell lung cancer activity with troxacitabine, L-1,3-dioxolane-cytidine, prodrugs. J Med Chem. 2007;50(9):2249–53.

    Article  CAS  PubMed  Google Scholar 

  125. Kim EJ, Bhuniya S, Lee H, Kim HM, Cheong C, Maiti S, Hong KS, Kim JS. An activatable prodrug for the treatment of metastatic tumors. J Am Chem Soc. 2014;136(39):13888–94.

    Article  CAS  PubMed  Google Scholar 

  126. Suthar SK, Lee HB, Sharma M. The synthesis of non-steroidal anti-inflammatory drug (NSAID)–lantadene prodrugs as novel lung adenocarcinoma inhibitors via the inhibition of cyclooxygenase-2 (COX-2), cyclin D1 and TNF-α-induced NF-κB activation. RSC Adv. 2014;4(37):19283–93.

    Article  CAS  Google Scholar 

  127. Wang W, Li C, Zhang J, Dong A, Kong D. Correction: Tailor-made gemcitabine prodrug nanoparticles from well-defined drug–polymer amphiphiles prepared by controlled living radical polymerization for cancer chemotherapy. J Mater Chem B. 2015;3(10):2229.

    Article  CAS  PubMed  Google Scholar 

  128. Chen F, Zhang F, Shao D, Zhang W, Zheng L, Wang W, Yang W, Wang Z, Chen J, Dong WF, Xiao F. Bioreducible and traceable Ru (III) prodrug-loaded mesoporous silica nanoparticles for sequentially targeted non-small cell lung cancer chemotherapy. Appl Mater Today. 2020;19:100558.

    Article  Google Scholar 

  129. Zhang TY, Huang B, Wu HB, Wu JH, Li LM, Li YX, Hu YL, Han M, Shen YQ, Tabata Y, Gao JQ. Synergistic effects of co-administration of suicide gene expressing mesenchymal stem cells and prodrug-encapsulated liposome on aggressive lung melanoma metastases in mice. J Control Release. 2015;209:260–71.

    Article  CAS  PubMed  Google Scholar 

  130. Ma X, Huang X, Moore Z, Huang G, Kilgore JA, Wang Y, Hammer S, Williams NS, Boothman DA, Gao J. Esterase-activatable β-lapachone prodrug micelles for NQO1-targeted lung cancer therapy. J Control Release. 2015;200:201–11.

    Article  CAS  PubMed  Google Scholar 

  131. Boehle AS, Sipos B, Kliche U, Kalthoff H, Dohrmann P. Combretastatin A-4 prodrug inhibits the growth of human non-small cell lung cancer in a murine xenotransplant model. Ann Thorac Surg. 2001;71(5):1657–65.

    Article  CAS  PubMed  Google Scholar 

  132. Kurdow R, Boehle AS, Haye S, Boenicke L, Schniewind B, Dohrmann P, Kalthoff H. Ganciclovir prodrug therapy is effective in a murine xenotransplant model of human lung cancer. Ann Thorac Surg. 2002;73(3):905–10.

    Article  PubMed  Google Scholar 

  133. Chapman RW, Li Z, Corboz MR, Gauani H, Plaunt AJ, Konicek DM, Leifer FG, Laurent CE, Yin H, Salvail D, Dziak C, Perkins WR, Malinin V. Inhaled hexadecyl-treprostinil provides pulmonary vasodilator activity at significantly lower plasma concentrations than infused treprostinil. Pulm Pharmacol Ther. 2018;49:104–11.

    Article  CAS  PubMed  Google Scholar 

  134. Waters RC, Hochhaus G. Characterization of a dextran-budesonide prodrug for inhalation therapy. Eur J Pharm Sci. 2019;129:58–67.

    Article  CAS  PubMed  Google Scholar 

  135. Campa CC, Silva RL, Margaria JP, Pirali T, Mattos MS, Kraemer LR, et al. Inhalation of the prodrug PI3K inhibitor CL27c improves lung function in asthma and fibrosis. Nat Commun. 2018;9(1):5232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Safety, Tolerability and Pharmacokinetics of Inhaled Laninamivir Octanoate TwinCaps® DPI in Adults With Chronic Asthma. NCT02022761 https://clinicaltrials.gov/ct2/show/NCT02022761?term=Laninamivir+Octanoate&draw=2&rank=1

  137. Efficacy and Safety Study of Laninamivir Octanoate TwinCaps® Dry Powder Inhaler in Adults With Influenza (Igloo). NCT01793883 https://clinicaltrials.gov/ct2/show/NCT01793883?term=Laninamivir+Octanoate&draw=2&rank=3

  138. Jadhav P, Patil P, Bhagwat D, Gaikwad V, Mehta PP. Recent advances in orthogonal analytical techniques for microstructural understanding of inhalable particles: present status and future perspective. J Drug Deliv Sci Technol. 2022:103089.

    Google Scholar 

  139. Mehta PP. Dry powder inhalers: a brief overview of the drug detachment techniques. Ther Deliv. 2020;11(3):139–43.

    Article  CAS  PubMed  Google Scholar 

  140. Mehta PP. Dry powder inhalers: a concise summary of the electronic monitoring devices. Ther Deliv. 2021;12(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  141. Mehta PP, Dhapte-Pawar VS. Novel and evolving therapies for COVID-19 related pulmonary complications. Am J Med Sci. 2021;361(5):557–66.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Kumar R, Mehta P, Shankar KR, Rajora MA, Mishra YK, Mostafavi E, Kaushik A. Nanotechnology-assisted metered-dose inhalers (MDIs) for high-performance pulmonary drug delivery applications. Pharm Res. 2022;1-25

    Google Scholar 

  143. Mehta PP, Dhapte-Pawar V. Role of surfactants in pulmonary drug delivery. In Green sustainable process for chemical and environmental engineering and science 2022 (pp. 559-577). Academic Press.

    Google Scholar 

  144. Mehta PP, Dhapte-Pawar VS. Repurposing drug molecules for new pulmonary therapeutic interventions. Drug Deliv Transl Res. 2021;11(5):1829–48.

    Article  PubMed  Google Scholar 

  145. Mehta PP. Dry powder inhalers: upcoming platform technologies for formulation development. Ther Deliv. 2019;10(9):551–4.

    Article  CAS  PubMed  Google Scholar 

  146. Mehta PP, Pawar AP, Mahadik KR, Kadam SS, Dhapte-Pawar V. Dry powder coating techniques and role of force controlling agents in aerosol. Polymer coatings: technology and applications. 2020:41-74.

    Google Scholar 

  147. Mehta PP, Ghoshal D, Pawar AP, Kadam SS, Dhapte-Pawar VS. Recent advances in inhalable liposomes for treatment of pulmonary diseases: concept to clinical stance. J Drug Deliv Sci Technol. 2020;56:101509.

    Article  CAS  Google Scholar 

  148. Mehta PP, Kadam SS, Pawar AP. Exploring the impact of extrinsic lactose fines, a USP modified sampling device and modified centrifuge tube on the delivered dose uniformity and drug detachment performance of a fluticasone propionate dry powder inhaler. J Drug Deliv Sci Technol. 2020;57:101681.

    Article  CAS  Google Scholar 

  149. Mehta PP, Kadam SS, Pawar AP. Effect of USP induction ports and modified glass sampling apparatus on aerosolization performance of lactose carrier-based fluticasone propionate dry powder inhaler. J Drug Deliv Sci Technol. 2020;58:101794.

    Article  CAS  Google Scholar 

  150. Mehta P, Bothiraja C, Kadam S, Pawar A. Probing the influence of lactose fines, a USP modified induction port and modified DDU apparatus on the aerodynamic behavior of a fluticasone propionate dry powder inhaler. N J Chem. 2019;43(44):17327–39.

    Article  CAS  Google Scholar 

  151. Mehta PP, Kadam SS, Pawar AP. Influence of modified induction port, modified DUSA assembly and device air-inlet geometry on the aerosolization pattern of a dry powder inhaler. J Drug Deliv Sci Technol. 2020;55:101416.

    Article  CAS  Google Scholar 

  152. Mehta P. Imagine the superiority of dry powder inhalers from carrier engineering. J Drug Deliv. 2018;2018

    Google Scholar 

  153. Mehta P. Multi-dose dry powder inhaler: advance technology for drug delivery to airways. Indian Drugs. 2018;56(11):68–71.

    Google Scholar 

  154. Mehta P, Bothiraja C, Kadam S, Pawar A. Effect of USP induction ports, glass sampling apparatus, and inhaler device resistance on aerodynamic patterns of fluticasone propionate–loaded engineered mannitol microparticles. AAPS Pharm Sci Tech. 2019;20(5):1–3.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piyush Pradeep Mehta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mehta, P.P., Dhapte-Pawar, V. (2023). Inhalable Prodrugs for Pulmonary Therapeutics. In: Mehta, P.P., Dhapte -Pawar, V. (eds) Pulmonary Drug Delivery Systems: Material and Technological Advances. Springer, Singapore. https://doi.org/10.1007/978-981-99-1923-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-1923-9_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-1922-2

  • Online ISBN: 978-981-99-1923-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics