Skip to main content

Understanding Bone Structures

  • Chapter
  • First Online:
Bone Remodeling and Osseointegration of Implants

Part of the book series: Tissue Repair and Reconstruction ((TRR))

Abstract

The process of bone healing is well-coordinated and complex. Once a fracture occurs, bone begins healing indirectly through the formation of callus or directly through bone union. It has been suggested that there is a necessity to quantitatively and non-invasively estimate the quality and strength of fracture callus during bone healing in an effort to determine the effectiveness of certain treatments. Forces applied during mastication or developed during functional movements will be transferred from the prosthesis to the supporting implants, and this in turn will generate stresses within the surrounding bone tissues. The interface between the implant and bone tissue during mandibular movement is of great concern to the osseointegration process as the mechanical environment of the mandible may be altered by the presence of dental implants. This may also result in the remodeling and adaptation of the surrounding cortical and cancellous bone tissues. As a result, it is imperative that the effect of bone remodeling and its influence on the longevity of implants and prostheses be thoroughly examined in order to improve its performance and reliability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lefevre E, Baron C, Gineyts E et al (2020) Ultrasounds could be considered as a future tool for probing growing bone properties. Sci Rep 10:15698. https://doi.org/10.1038/s41598-020-72776-z

    Article  Google Scholar 

  2. Knets IV (2002) Peculiarities of the structure and mechanical properties of biological tissues. Meccanica 2002:375–384

    Article  MATH  Google Scholar 

  3. Knets IV (1987) Variation of the properties of bone with anatomical site. Lecture at the CISM course on bone mechanics, Udine

    Google Scholar 

  4. Binderman I, Shimshoni Z, Somjen D (1984) Biochemical pathways involved in the translation of physical stimulus to biological message. Calcif Tissue Int 36:s82–s85

    Article  Google Scholar 

  5. Rodan GA, Bourrent LA, Harvey A et al (1975) 3’ 5’ cyclic AMP and 3’ 5’ cyclic GMP: mediators of the mechanical effects on bone remodelling. Science 189:467–469

    Article  Google Scholar 

  6. Frasca P, Harper RA, Katz JL (1981) Scanning electron microscopy studies of collagen, mineral, and ground substance in human cortical bone. Scan Electn Microsc 3:339–346

    Google Scholar 

  7. Pernelle K, Imbert L, Bosser C et al (2017) Microscale mechanical and mineral heterogeneity of human cortical bone governs osteoclast activity. Bone 94:42–49

    Article  Google Scholar 

  8. Currey JD (1988) The effect of porosity and mineral content on the Young’s modulus of elasticity of compact bone. J Biomech 21:131–139

    Article  Google Scholar 

  9. Currey JD (1975) The effects of strain rate, reconstruction, and mineral content on some mechanical properties of bovine bone. J Biomech 8:81–86

    Article  Google Scholar 

  10. Currey JD (1969) The mechanical consequences of variation in the mineral content of bone. J Biomech 2:1–11

    Article  Google Scholar 

  11. Amprino R (1958) Investigations on some physical properties of bone tissue. Acta Anat 34:161–186

    Article  Google Scholar 

  12. Evans GP, Behiri JC, Currey JD et al (1990) Microhardness and Young’s modulus in cortical bone exhibiting a wide range of mineral fractions, and in a bone analogue. J Mat Sci: Mat Med 1:38–43

    Google Scholar 

  13. Makuch AM, Skalski KR (2018) Human cancellous bone mechanical properties and penetrator geometry in nanoindentation tests. Acta Bioeng Biomech 20:153–164

    Google Scholar 

  14. Kim DG, Jeong YH, Kosel E et al (2015) Regional variation of bone tissue properties at the human mandibular condyle. Bone 77:98–106

    Article  Google Scholar 

  15. Jaramillo-Isaza S, Mazeran PE, El-Kirat K et al (2014) Effects of bone density in the time-dependent mechanical properties of human cortical bone by nanoindentation. Comput Methods Biomech Biomed Engin 17(Suppl 1):34–35

    Article  Google Scholar 

  16. Fan Z, Rho JY (2003) Effects of viscoelasticity and time-dependent plasticity on nanoindentation measurements of human cortical bone. J Biomed Mater Res A 67:208–214

    Article  Google Scholar 

  17. Fan Z, Swadener JG, Rho JY et al (2002) Anisotropic properties of human tibial cortical bone as measured by nanoindentation. J Orthop Res 20:806–810

    Article  Google Scholar 

  18. Swadener JG, Rho JY, Pharr GM (2001) Effects of anisotropy on elastic moduli measured by nanoindentation in human tibial cortical bone. J Biomed Mater Res 57:108–112

    Article  Google Scholar 

  19. Zysset PK, Guo XE, Hoffler CE et al (1999) Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur. J Biomechanics 32:1005–1012

    Article  Google Scholar 

  20. Roy ME, Rho JY, Tsui TY et al (1999) Mechanical and morphological variation of the human lumbar vertebral cortical and trabecular bone. J Biomed Mater Res 44:191–197

    Article  Google Scholar 

  21. Turner CH, Rho J, Takano Y et al (1999) The elastic properties of trabecular and cortical bone tissues are similar: results from two microscopic measurement techniques. J Biomech 32:437–441

    Article  Google Scholar 

  22. Rho JY, Tsui TY, Pharr GM (1997) Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation. Biomaterials 18:1325–1330

    Article  Google Scholar 

  23. Waters NE (1980) Some mechanical physical properties of teeth. In: Vincent JFV, Currey JD (eds) Mechanical properties of biological materials. Cambridge University Press, Cambridge, pp 99–134

    Google Scholar 

  24. Arendts FJ, Sigolotto C (1990) Mechanical characteristics of the human mandible and study of in vivo behavior of compact bone tissue, a contribution to the description of biomechanics of the mandible—II. Biomed Technik 34:248–255

    Article  Google Scholar 

  25. Arendts FJ, Sigolotto C (1989) Standard measurements, elastic values and tensile strength behavior of the human mandible, a contribution to the biomechanics of the mandible—I. Biomed Technik 35:123–130

    Article  Google Scholar 

  26. Dechow PC, Nail GA, Schwartz-Dabney CL et al (1993) Elastic properties of human supraorbital and mandibular bone. Am J Phys Anthropol 90:291–306

    Article  Google Scholar 

  27. Carter R (1989) The elastic properties of the human mandible. Dissertation, Tulane University

    Google Scholar 

  28. Ashman RB, Van Buskirk WC (1987) The elastic properties of a human mandible. Adv Dent Res 1:64–67

    Article  Google Scholar 

  29. O’Mahony AM, Williams JL, Katz JO et al (2000) Anisotropic elastic properties of cancellous bone from a human edentulous mandible. Clin Oral Impl Res 11:415–421

    Article  Google Scholar 

  30. Hayes WC, Carter DR (1976) Postyield behavior of subchondral trabecular bone. J Biomed Res Symp 7:537–544

    Article  Google Scholar 

  31. Whitehouse WJ, Dyson ED, Jackson CK (1971) The scanning electron microscope in studies of trabecular bone from the human vertebral body. J Anat 108:481–496

    Google Scholar 

  32. Weaver JK, Chalmers J (1966) Cancellous bone: its strength and changes with ageing and an evaluation of some methods for measuring content—I. Age changes in cancellous bone. J Bone Jt Surg 48a:289–298

    Google Scholar 

  33. Zioupos P, Cook RB, Hutchinson JR (2008) Some basic relationships between density values in cancellous and cortical bone. J Biomech 41:1961–1968

    Article  Google Scholar 

  34. Müller R, Rüegsegger, (1996) Analysis of mechanical properties of cancellous bone under conditions of simulated bone atrophy. J Biomech 29:1053–1060

    Article  Google Scholar 

  35. Gibson LJ (1985) The mechanical behavior of cancellous bone. J Biomech 18:317–328

    Article  Google Scholar 

  36. Bensusan JS, Davy DT, Heiple KG et al (1983) Tensile, compressive and torsional testing of cancellous bone. Trans 29th Orthop Res Soc 8:132

    Google Scholar 

  37. Williams JL, Lewis JL (1982) Properties on an anisotropic model of cancellous bone from the proximal tibial epiphysis. J Biomech Engng 104:50–56

    Article  Google Scholar 

  38. Carter DR, Hayes WC (1977) The compressive behavior of bone as a two-phase porous material. J Bone Jt Surg 49:954–962

    Article  Google Scholar 

  39. Dechow PC, Schwartz-Dabney CL, Ashman RB (1992) Elastic properties of the human mandibular corpus. In: Goldstein SA, Carlson DS (eds) Bone biodynamics on orthodontic and orthopaedic treatment. University of Michigan, Michigan, Craniofacial growth series, pp 299–314

    Google Scholar 

  40. Schwartz-Dabney CL, Dechow C (1997) Variations in cortical material properties from throughout the human mandible. J Dent Res 76:249

    Google Scholar 

  41. Schwartz-Dabney CL, Dechow C, Ashman RB (1991) Elastic properties of human mandibular symphysis. J Dent Res 70:518

    Google Scholar 

  42. Kingsmill VJ, Boyde A (1998) Mineralisation density of human mandibular bone: quantitative backscattered electron image analysis. J Anat 192:245–256

    Article  Google Scholar 

  43. Kingsmill VJ, Boyde A (1998) Variation in the apparent density of human mandibular bone with age and dental status. J Anat 192:233–244

    Article  Google Scholar 

  44. Einhorn TA, Gerstenfeld LC (2015) Fracture healing: mechanisms and interventions. Nat Rev Rheumatol 11:45–54

    Article  Google Scholar 

  45. Claes LE, Recknagel S, Ignatius A (2012) Fracture healing under healthy and inflammatory conditions. Nat Rev Rheumatol 8:133–143

    Article  Google Scholar 

  46. Ansari M (2019) Bone tissue regeneration: biology, strategies and interface studies. Prog Biomater 8:233–237

    Article  Google Scholar 

  47. Ghimire S, Miramini S, Edwards G et al (2020) The investigation of bone fracture healing under intramembranous and endochondral ossification. Bone Rep 14:100740. https://doi.org/10.1016/j.bonr.2020.100740

    Article  Google Scholar 

  48. McKibbin B (1978) The biology of fracture healing in long bones. J Bone Joint Surg Br 60-B:150–162

    Google Scholar 

  49. Doblaré M, Garcı́a JM, Gómez MJ, (2004) Modelling bone tissue fracture and healing: a review. Eng Fract Mech 71:1809–1840

    Article  Google Scholar 

  50. Marsell R, Einhorn TA (2011) The biology of fracture healing. Injury 42:551–555

    Article  Google Scholar 

  51. Ghiasi MS, Chen J, Vaziri A et al (2017) Bone fracture healing in mechanobiological modeling: a review of principles and methods. Bone Rep 6:87–100

    Article  Google Scholar 

  52. Florencio-Silva R, Sasso GR, Sasso-Cerri E et al (2015) Biology of bone tissue: structure, function, and factors that influence bone cells. Biomed Res Int 2015:421746. https://doi.org/10.1155/2015/421746

    Article  Google Scholar 

  53. Boyle WJ, Simonet WS, Lacey DL (2003) Osteoclast differentiation and activation. Nature 423:337–342

    Article  Google Scholar 

  54. Hadjidakis DJ, Androulakis II (2006) Bone remodeling. Ann N Y Acad Sci 1092:385–396

    Article  Google Scholar 

  55. Bianco P, Riminucci M, Gronthos S et al (2001) Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells 19:180–192

    Article  Google Scholar 

  56. Teitelbaum SL (2000) Bone resorption by osteoclasts. Science 289:1504–1508

    Article  Google Scholar 

  57. Choi AH, Ben-Nissan B (2018) Anatomy, modeling and biomaterial fabrication for dental and maxillofacial applications. Bentham Science Publishers, United Arab Emirates

    Book  Google Scholar 

  58. Choi AH, Conway RC, Ben-Nissan B (2014) Finite-element modeling and analysis in nanomedicine and dentistry. Nanomedicine 9:1681–1695

    Article  Google Scholar 

  59. Axelrad TW, Einhorn TA (2011) Use of clinical assessment tools in the evaluation of fracture healing. Injury 42:301–315

    Article  Google Scholar 

  60. Morgan EF, Unnikrisnan GU, Hussein AI (2018) Bone mechanical properties in healthy and diseased states. Annu Rev Biomed Eng 20:119–143

    Article  Google Scholar 

  61. Claes LE, Cunningham JL (2009) Monitoring the mechanical properties of healing bone. Clin Orthop Relat Res 467:1964–1971

    Article  Google Scholar 

  62. Oksztulska-Kolanek E, Znorko B, Michałowska M et al (2016) The biomechanical testing for the assessment of bone quality in an experimental model of chronic kidney disease. Nephron 132:51–58

    Article  Google Scholar 

  63. Watanabe Y, Takai S, Arai Y et al (2001) Prediction of mechanical properties of healing fractures using acoustic emission. J Orthop Res 19:548–553

    Article  Google Scholar 

  64. Hirasawa Y, Takai S, Kim WC et al (2002) Biomechanical monitoring of healing bone based on acoustic emission technology. Clin Orthop Relat Res 402:236–244

    Article  Google Scholar 

  65. Morgan EF, Mason ZD, Chien KB et al (2009) Micro-computed tomography assessment of fracture healing: relationships among callus structure, composition, and mechanical function. Bone 44:335–344

    Article  Google Scholar 

  66. Suzuki T, Matsuura Y, Yamazaki T et al (2020) Biomechanics of callus in the bone healing process, determined by specimen-specific finite element analysis. Bone 132:115212. https://doi.org/10.1016/j.bone.2019.115212

    Article  Google Scholar 

  67. Shefelbine SJ, Simon U, Claes L et al (2005) Prediction of fracture callus mechanical properties using micro-CT images and voxel-based finite element analysis. Bone 36:480–488

    Article  Google Scholar 

  68. Li J, Kacena MA, Stocum DL (2019) Fracture healing. In: Burr DB, Allen MR (eds) Basic and applied bone biology, 2nd edn. Academic Press, Massachusetts, pp 235–253

    Chapter  Google Scholar 

  69. van Gaalen SM, Kruyt MC, Geuze RE et al (2010) Use of fluorochrome labels in in vivo bone tissue engineering research. Tissue Eng Part B Rev 16:209–217

    Article  Google Scholar 

  70. Schmidt-Bleek K, Schell H, Schulz N et al (2012) Inflammatory phase of bone healing initiates the regenerative healing cascade. Cell Tissue Res 347:567–573

    Article  Google Scholar 

  71. Xie Y, Zhang L, Xiong Q et al (2019) Bench-to-bedside strategies for osteoporotic fracture: From osteoimmunology to mechanosensation. Bone Res 7:25

    Article  Google Scholar 

  72. Könnecke I, Serra A, El Khassawna T et al (2014) T and B cells participate in bone repair by infiltrating the fracture callus in a two-wave fashion. Bone 64:155–165

    Article  Google Scholar 

  73. Szczesny G, Olszewski WL, Gewartowska M et al (2007) The healing of tibial fracture and response of the local lymphatic system. J Trauma 63:849–854

    Google Scholar 

  74. Szczesny G, Olszewski WL, Gorecki A (2005) Lymphoscintigraphic monitoring of the lower limb lymphatic system response to bone fracture and healing. Lymphat Res Biol 3:137–145

    Article  Google Scholar 

  75. Szczesny G, Olszewski WL, Zaleska M (2004) Limb lymph node response to bone fracture. Lymphat Res Biol 2:155–164

    Article  Google Scholar 

  76. Kolar P, Schmidt-Bleek K, Schell H et al (2010) The early fracture hematoma and its potential role in fracture healing. Tissue Eng Part B Rev 16:427–434

    Article  Google Scholar 

  77. Claes LE, Heigele CA, Neidlinger-Wilke C et al (1998) Effects of mechanical factors on the fracture healing process. Clin Orthop Relat Res 355(Suppl):S132–S147

    Article  Google Scholar 

  78. Claes LE, Augat P, Suger G et al (1997) Influence of size and stability of the osteotomy gap on the success of fracture healing. J Orthop Res 15:577–584

    Article  Google Scholar 

  79. Lacroix D, Prendergast PJ (2002) A mechano-regulation model for tissue differentiation during fracture healing: analysis of gap size and loading. J Biomech 35:1163–1171

    Article  Google Scholar 

  80. Gómez-Benito MJ, García-Aznar JM, Kuiper JH et al (2005) Influence of fracture gap size on the pattern of long bone healing: a computational study. J Theor Biol 235:105–119

    Article  MathSciNet  MATH  Google Scholar 

  81. Ghiasi MS, Chen JE, Rodriguez EK et al (2019) Computational modeling of human bone fracture healing affected by different conditions of initial healing stage. BMC Musculoskelet Disord 20:562

    Article  Google Scholar 

  82. Andreykiv A, van Keulen F, Prendergast PJ (2008) Simulation of fracture healing incorporating mechanoregulation of tissue differentiation and dispersal/proliferation of cells. Biomech Model Mechanobiol 7:443–461

    Article  Google Scholar 

  83. Byrne DP, Lacroix D, Prendergast PJ (2011) Simulation of fracture healing in the tibia: mechanoregulation of cell activity using a lattice modeling approach. J Orthop Res 29:1496–1503

    Article  Google Scholar 

  84. Isaksson H, van Donkelaar CC, Huiskes R et al (2008) A mechano-regulatory bone-healing model incorporating cell-phenotype specific activity. J Theor Biol 252:230–246

    Article  MathSciNet  MATH  Google Scholar 

  85. Alierta JA, Pérez MA, García-Aznar JM (2014) An interface finite element model can be used to predict healing outcome of bone fractures. J Mech Behav Biomed Mater 29:328–338

    Article  Google Scholar 

  86. García-Aznar JM, Kuiper JH, Gómez-Benito MJ et al (2007) Computational simulation of fracture healing: influence of interfragmentary movement on the callus growth. J Biomechanics 40:1467–1476

    Article  Google Scholar 

  87. Comiskey D, MacDonald BJ, McCartney WT et al (2013) Predicting the external formation of callus tissues in oblique bone fractures: idealised and clinical case studies. Biomech Model Mechanobiol 12:1277–1282

    Article  Google Scholar 

  88. Grivas KN, Vavva MG, Sellountos EJ et al (2013) A meshless Local Boundary Integral Equation (LBIE) method for cell proliferation predictions in bone healing. Annu Int Conf IEEE Eng Med Biol Soc 2013:2676–2679

    Google Scholar 

  89. Isaksson H (2012) Recent advances in mechanobiological modeling of bone regeneration. Mech Res Commun 42:22–31

    Article  Google Scholar 

  90. Orassi V, Fischer H, Duda GN et al (2022) In silico biomechanical evaluation of WE43 magnesium plates for mandibular fracture fixation. Front Bioeng Biotechnol 9:803103. https://doi.org/10.3389/fbioe.2021.803103

    Article  Google Scholar 

  91. Liu YF, Fan YY, Jiang XF et al (2017) A customized fixation plate with novel structure designed by topological optimization for mandibular angle fracture based on finite element analysis. Biomed Eng Online 16:131

    Article  Google Scholar 

  92. Wang R, Liu Y, Wang JH et al (2017) Effect of interfragmentary gap on the mechanical behavior of mandibular angle fracture with three fixation designs: a finite element analysis. J Plast Reconstr Aesthet Surg 70:360–369

    Article  Google Scholar 

  93. Pituru TS, Bucur A, Gudas C et al (2016) New miniplate for osteosynthesis of mandibular angle fractures designed to improve formation of new bone. J Craniomaxillofac Surg 44:500–505

    Article  Google Scholar 

  94. Murakami K, Yamamoto K, Sugiura T et al (2015) Biomechanical analysis of poly-L-lactic acid and titanium plates fixated for mandibular symphyseal fracture with a conservatively treated unilateral condylar fracture using the three-dimensional finite element method. Dent Traumatol 31:396–402

    Article  Google Scholar 

  95. Joshi U, Kurakar M (2014) Comparison of stability of fracture segments in mandible fracture treated with different designs of mini-plates using FEM analysis. J Maxillofac Oral Surg 13:310–319

    Article  Google Scholar 

  96. Vajgel A, Camargo IB, Willmersdorf RB et al (2013) Comparative finite element analysis of the biomechanical stability of 2.0 fixation plates in atrophic mandibular fractures. J Oral Maxillofac Surg 71:335–342. https://doi.org/10.1016/j.joms.2012.09.019. PMID: 23351762

    Article  Google Scholar 

  97. Kimsal J, Baack B, Candelaria L et al (2011) Biomechanical analysis of mandibular angle fractures. J Oral Maxillofac Surg 69:3010–3014

    Article  Google Scholar 

  98. Claes LE, Eckert-Hübner K, Augat P (2003) The fracture gap size influences the local vascularization and tissue differentiation in callus healing. Langenbecks Arch Surg 388:316–322

    Article  Google Scholar 

  99. Claes LE, Eckert-Hübner K, Augat P (2002) The effect of mechanical stability on local vascularization and tissue differentiation in callus healing. J Orthop Res 20:1099–1105

    Article  Google Scholar 

  100. Perren SM (1979) Physical and biological aspects of fracture healing with special reference to internal fixation. Clin Orthop Relat Res 138:175–196

    Google Scholar 

  101. Claes LE, Heigele CA (1999) Magnitudes of local stress and strain along bony surfaces predict the course and type of fracture healing. J Biomech 32:255–266

    Article  Google Scholar 

  102. Tanaka E, Yamamoto S, Nishida T et al (1999) A mathematical model of bone remodeling under overload and its application to evaluation of bone resorption around dental implants. Acta Bioeng Biomech 1:117–121

    Google Scholar 

  103. Frost HM (2003) Bone’s mechanostat: a 2003 update. Anat Rec 275A:1081–1101

    Article  Google Scholar 

  104. Frost HM (1987) Bone “mass” and the “mechanostat”: a proposal. Anat Rec 219:1–9

    Article  Google Scholar 

  105. Clarke B (2008) Normal bone anatomy and physiology. Clin J Am Soc Nephrol 3:S131–S139

    Article  Google Scholar 

  106. Elsayed MD (2019) Biomechanical factors that influence the bone-implant-interface. Res Rep Oral Maxillofac Surg 3:023. https://doi.org/10.23937/iaoms-2017/1710023

  107. Chang M, Chronopoulos V, Mattheos N (2013) Impact of excessive occlusal load on successfully-osseointegrated dental implants: a literature review. J Investig Clin Dent 4:142–150

    Article  Google Scholar 

  108. Huiskes R (1997) Validation of adaptive bone-remodeling simulation models. Stud Health Technol Inform 40:33–48

    Google Scholar 

  109. Huiskes R, Weinans H, Grootenboer HJ et al (1987) Adaptive bone-remodeling theory applied to prosthetic-design analysis. J Biomech 20:1135–1150

    Article  Google Scholar 

  110. Carter DR (1984) Mechanical loading histories and cortical bone remodeling. Calcif Tissue Int 36:S19–S24

    Article  Google Scholar 

  111. Christen P, Ito K, Ellouz RETAL (2014) Bone remodelling in humans is load-driven but not lazy. Nat Commun 5:4855. https://doi.org/10.1038/ncomms5855

    Article  Google Scholar 

  112. Su K, Yuan L, Yang J et al (2019) Numerical simulation of mandible bone remodeling under tooth loading: a parametric study. Sci Rep 9:14887

    Article  Google Scholar 

  113. Mellal A, Wiskott HW, Botsis J et al (2004) Stimulating effect of implant loading on surrounding bone. comparison of three numerical models and validation by in vivo data. Clin Oral Implants Res 15:239–248

    Article  Google Scholar 

  114. Li J, Li H, Shi L et al (2007) A mathematical model for simulating the bone remodeling process under mechanical stimulus. Dent Mater 23:1073–1078

    Article  Google Scholar 

  115. Weinans H, Huiskes R, Grootenboer HJ (1992) The behavior of adaptive bone-remodeling simulation models. J Biomech 25:1425–1441

    Article  Google Scholar 

  116. Lian Z, Guan H, Ivanovski S et al (2011) Finite element simulation of bone remodelling in the human mandible surrounding dental implant. Acta Mech 217:335–345

    Article  MATH  Google Scholar 

  117. Lin D, Li Q, Li W et al (2010) Mandibular bone remodeling induced by dental implant. J Biomech 43:287–293

    Article  Google Scholar 

  118. Nuţu E (2018) Role of initial density distribution in simulations of bone remodeling around dental implants. Acta Bioeng Biomech 20:23–31

    Google Scholar 

  119. Lian Z, Guan H, Ivanovski S et al (2010) Effect of bone to implant contact percentage on bone remodelling surrounding a dental implant. Int J Oral Maxillofac Surg 39:690–698

    Article  Google Scholar 

  120. Rungsiyakull C, Rungsiyakull P, Li Q et al (2011) Effects of occlusal inclination and loading on mandibular bone remodeling: a finite element study. Int J Oral Maxillofac Implants 26:527–537

    Google Scholar 

  121. Lee WT, Koak JY, Lim YJ et al (2012) Stress shielding and fatigue limits of poly-ether-ether-ketone dental implants. J Biomed Mater Res B Appl Biomater 100:1044–1052

    Article  Google Scholar 

  122. Poovarodom P, Rungsiyakull C, Suriyawanakul J et al (2022) Effect of implant placement depth on bone remodeling on implant-supported single zirconia abutment crown: a 3D finite element study. J Prosthodont Res. https://doi.org/10.2186/jpr.JPR_D_22_00054

    Article  Google Scholar 

  123. Kung PC, Chien SS, Tsou NT (2020) A hybrid model for predicting bone healing around dental implants. Materials 13:2858

    Article  Google Scholar 

  124. Wang C, Li Q, McClean C et al (2013) Numerical simulation of dental bone remodeling induced by implant-supported fixed partial denture with or without cantilever extension. Int J Numer Method Biomed Eng 29:1134–1147

    Article  Google Scholar 

  125. Rungsiyakull C, Chen J, Rungsiyakull P et al (2015) Bone’s responses to different designs of implant-supported fixed partial dentures. Biomech Model Mechanobiol 14:403–411

    Article  Google Scholar 

  126. Li K, Xin H, Zhao Y et al (2016) Remodeling of the mandibular bone induced by overdentures supported by different numbers of implants. J Biomech Eng 138:051003. https://doi.org/10.1115/1.4032937

    Article  Google Scholar 

  127. Suenaga H, Chen J, Yamaguchi K et al (2015) Mechanobiological bone reaction quantified by positron emission tomography. J Dent Res 94:738–744

    Article  Google Scholar 

  128. Carter DR, Beaupré GS, Giori NJ et al (1998) A mechanobiology of skeletal regeneration. Clin Orthop Relat Res 355:S41–S55

    Article  Google Scholar 

  129. García-Aznar JM, Nasello G, Hervas-Raluy S et al (2021) Multiscale modeling of bone tissue mechanobiology. Bone 151:116032. https://doi.org/10.1016/j.bone.2021.116032

    Article  Google Scholar 

  130. Li Z, Müller R, Ruffoni D (2018) Bone remodeling and mechanobiology around implants: insights from small animal imaging. J Orthop Res 36:584–593

    Google Scholar 

  131. Prendergast J, Van Der Meulen MCH (2001) Mechanics of bone regeneration. In: Cowin SC (ed) Handbook of bone mechanics. CRC Press, Boca Raton, pp 1–13

    Google Scholar 

  132. van der Meulen MC, Huiskes R (2002) Why mechanobiology? a survey article. J Biomech 35:401–414

    Article  Google Scholar 

  133. Boccaccio A, Ballini A, Pappalettere C et al (2011) Finite element method (FEM), mechanobiology and biomimetic scaffolds in bone tissue engineering. Int J Biol Sci 7:112–132

    Article  Google Scholar 

  134. Bruder SP, Fink DJ, Caplan AI (1994) Mesenchymal stem cells in bone development, bone repair, and skeletal regeneration therapy. J Cell Biochem 56:283–294

    Article  Google Scholar 

  135. Caplan AI (1991) Mesenchymal stem cells. J Orthop Res 9:641–650

    Article  Google Scholar 

  136. Pauwels F (1960) A new theory on the influence of mechanical stimuli on the differentiation of supporting tissue. the tenth contribution to the functional anatomy and causal morphology of the supporting structure. Z Anat Entwicklungsgesch 121:478–515

    Article  Google Scholar 

  137. Hente RW, Perren SM (2021) Tissue deformation controlling fracture healing. J Biomech 125:110576. https://doi.org/10.1016/j.jbiomech.2021.110576

    Article  Google Scholar 

  138. Cheal EJ, Mansmann KA, DiGioia AM 3rd et al (1991) Role of interfragmentary strain in fracture healing: ovine model of a healing osteotomy. J Orthop Res 9:131–142

    Article  Google Scholar 

  139. Perren SM, Cordey J (1980) The concept of interfragmentary strain. In: Uhthoff HK, Stahl E (eds) Current concepts of internal fixation of fractures. Springer, New York, pp 63–77

    Google Scholar 

  140. Perren SM, Rahn BA (1980) Biomechanics of fracture healing. Can J Surg 23:228–232

    Google Scholar 

  141. Gardner TN, Stoll T, Marks L et al (2000) The influence of mechanical stimulus on the pattern of tissue differentiation in a long bone fracture–an FEM study. J Biomech 33:415–425

    Article  Google Scholar 

  142. Lacroix D, Prendergast PJ, Li G et al (2002) Biomechanical model to simulate tissue differentiation and bone regeneration: application to fracture healing. Med Biol Eng Comput 40:14–21

    Article  Google Scholar 

  143. Carter DR, Blenman PR, Beaupré GS (1988) Correlations between mechanical stress history and tissue differentiation in initial fracture healing. J Orthop Res 6:736–748

    Article  Google Scholar 

  144. Carter DR (1987) Mechanical loading history and skeletal biology. J Biomech 20:1095–1109

    Article  Google Scholar 

  145. McNamara LM, Prendergast PJ (2007) Bone remodelling algorithms incorporating both strain and microdamage stimuli. J Biomech 40:1381–1391

    Article  Google Scholar 

  146. Ojeda J, Martínez-Reina J, García-Aznar JM et al (2011) Numerical simulation of bone remodelling around dental implants. Proc Inst Mech Eng H 225:897–906

    Article  Google Scholar 

  147. Wang C, Wang L, Liu X et al (2014) Numerical simulation of the remodelling process of trabecular architecture around dental implants. Comput Methods Biomech Biomed Engin 17:286–295

    Article  Google Scholar 

  148. Carter DR, Hayes WC, Schurman DJ (1976) Fatigue life of compact bone–II. Effects of microstructure and density. J Biomech 9:211–218

    Article  Google Scholar 

  149. Cowin SC (1999) Bone poroelasticity. J Biomech 32:217–238

    Article  Google Scholar 

  150. Prendergast PJ, Huiskes R (1996) Finite element analysis of fibrous tissue morphogenesis—a study of the osteogenic index with a biphasic approach. Mech Compos Mater 32:144–150

    Article  Google Scholar 

  151. Prendergast PJ, Huiskes R, Søballe K (1997) ESB research award 1996. Biophysical stimuli on cells during tissue differentiation at implant interfaces. J Biomech 30:539–548

    Article  Google Scholar 

  152. Boccaccio A, Prendergast PJ, Pappalettere C et al (2008) Tissue differentiation and bone regeneration in an osteotomized mandible: a computational analysis of the latency period. Med Biol Eng Comput 46:283–298

    Article  Google Scholar 

  153. Chou HY, Müftü S (2013) Simulation of peri-implant bone healing due to immediate loading in dental implant treatments. J Biomech 46:871–878

    Article  Google Scholar 

  154. Irandoust S, Müftü S (2020) The interplay between bone healing and remodeling around dental implants. Sci Rep 10:4335. https://doi.org/10.1038/s41598-020-60735-7

    Article  Google Scholar 

  155. Li MJ, Kung PC, Chang YW et al (2020) Healing pattern analysis for dental implants using the mechano-regulatory tissue differentiation model. Int J Mol Sci 21:9205. https://doi.org/10.3390/ijms21239205

    Article  Google Scholar 

  156. Vanegas-Acosta JC, Landinez PNS, Garzón-Alvarado DA et al (2011) A finite element method approach for the mechanobiological modeling of the osseointegration of a dental implant. Comput Methods Programs Biomed 101:297–314

    Article  Google Scholar 

  157. Beaupré GS, Orr TE, Carter DR (1990) An approach for time-dependent bone modeling and remodeling–theoretical development. J Orthop Res 8:651–661

    Article  Google Scholar 

  158. Eser A, Tonuk E, Akca K et al (2013) Predicting bone remodeling around tissue- and bone-level dental implants used in reduced bone width. J Biomechanics 46:2250–2257

    Article  Google Scholar 

  159. Eser A, Tonuk E, Akca K et al (2010) Predicting time-dependent remodeling of bone around immediately loaded dental implants with different designs. Med Eng Phys 32:22–31

    Article  Google Scholar 

  160. Sotto-Maior BS, Mercuri EG, Senna PM et al (2016) Evaluation of bone remodeling around single dental implants of different lengths: a mechanobiological numerical simulation and validation using clinical data. Comput Methods Biomech Biomed Engin 19:699–706

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andy H. Choi .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Choi, A.H. (2023). Understanding Bone Structures. In: Bone Remodeling and Osseointegration of Implants. Tissue Repair and Reconstruction. Springer, Singapore. https://doi.org/10.1007/978-981-99-1425-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-1425-8_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-1424-1

  • Online ISBN: 978-981-99-1425-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics