Skip to main content

Pharmacology of Natural and Synthetic Phytoprotectants: Application and Consequences in Cancer Therapies

  • Chapter
  • First Online:
Photoprotective Green Pharmacology: Challenges, Sources and Future Applications

Abstract

Cancer represents one of the most fatal health issues, claiming the lives of millions of people each year. Tumorous growths can develop in almost any portion of the body and migrate to different parts. There are numerous treatment approaches available for cancer such as radiation therapy, photodynamic therapy, and cancer vaccinations. However, in most cases, they have adverse side effects. Thus, anticancer medications with higher efficiency and fewer side effects are desperately needed. Plants are a prospective source of such compounds. Natural plant bioactive substances have been used in traditional medicine since the dawn of humanity. These metabolites have also been implicated in providing protection to plants under various environmental influences, such as the influence of UV-B. Plant-based natural secondary metabolites/phytochemicals and their derivatives have great potential in the suppression of cancer development and metastasis. These biologically active compounds can be isolated from various plant parts, such as leaves, stems, barks, flowers, rhizomes, roots, and seeds. The natural bioactive compounds produced by plants during secondary metabolism have great pharmacological importance, especially as anticancer agents. Therefore, this chapter is an attempt to summarize the importance of various plant-derived compounds and their mechanism of action, which can be used in cancer therapies as anticancer agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Bakshi H, Sam S, Rozati R, Sultan P, Islam T, Rathore B, Lone Z, Sharma M, Triphati J, Saxena RC (2010) DNA fragmentation and cell cycle arrest: a hallmark of apoptosis induced by crocin from Kashmiri saffron in a human pancreatic cancer cell line. Asian Pac J Cancer Prev 11(3):675–679

    PubMed  Google Scholar 

  • Balachandran P, Govindarajan R (2005) Cancer—an ayurvedic perspective. Pharmacol Res 51(1):19–30

    Article  PubMed  Google Scholar 

  • Barreca M, Spanò V, Raimondi MV, Tarantelli C, Spriano F, Bertoni F, Barraja P, Montalbano A (2021) Recurrence of the oxazole motif in tubulin colchicine site inhibitors with anti-tumor activity. Eur J Med Chem Rep 1:100004

    CAS  Google Scholar 

  • Bennett JW, Bentley R (1989) What’s in a name?—microbial secondary metabolism. Adv Appl Microbiol 34:1–28

    Article  CAS  Google Scholar 

  • Bernard MM, McConnery JR, Hoskin DW (2017) [10]-Gingerol, a major phenolic constituent of ginger root, induces cell cycle arrest and apoptosis in triple-negative breast cancer cells. Exp Mol Pathol 102(2):370–376

    Article  CAS  PubMed  Google Scholar 

  • Bhandari M, Ravipati AS, Reddy N, Koyyalamudi SR (2015) Traditional ayurvedic medicines: pathway to develop anti-cancer drugs. J Mol Pharm Organ Process Res

    Google Scholar 

  • Cencic R, Carrier M, Galicia-Vázquez G, Bordeleau ME, Sukarieh R, Bourdeau A, Brem B, Teodoro JG, Greger H, Tremblay ML, Porco JA Jr (2009) Antitumor activity and mechanism of action of the cyclopenta [b] benzofuran, silvestrol. PLoS One 4(4):e5223

    Article  PubMed  PubMed Central  Google Scholar 

  • Chaudhary A, Pandeya SN, Kumar P, Sharma PP, Gupta S, Soni N, Verma KK, Bhardwaj G (2007) Combretastatin A-4 analogs as anticancer agents. Mini Rev Med Chem 7(12):1186–1205

    Article  CAS  PubMed  Google Scholar 

  • Constantinou C, Papas A, Constantinou AI (2008) Vitamin E and cancer: an insight into the anticancer activities of vitamin E isomers and analogs. Int J Cancer 123(4):739–752

    Article  CAS  PubMed  Google Scholar 

  • Coutinho EM (2002) Gossypol: a contraceptive for men. Contraception 65(4):259–263

    Article  CAS  PubMed  Google Scholar 

  • Creemers GJ, Bolis G, Gore M, Scarfone G, Lacave AJ, Guastalla JP, Despax R, Favalli G, Kreinberg R, Van Belle S, Hudson I (1996) Topotecan, an active drug in the second-line treatment of epithelial ovarian cancer: results of a large European phase II study. J Clin Oncol 14(12):3056–3061

    Article  CAS  PubMed  Google Scholar 

  • Dai SX, Li WX, Han FF, Guo YC, Zheng JJ, Liu JQ, Wang Q, Gao YD, Li GH, Huang JF (2016) In silico identification of anti-cancer compounds and plants from traditional Chinese medicine database. Sci Rep 6(1):1–11

    Article  Google Scholar 

  • Das T, Anand U, Pandey SK, Ashby CR Jr, Assaraf YG, Chen ZS, Dey A (2021) Therapeutic strategies to overcome taxane resistance in cancer. Drug Resist Updat 55:100754

    Article  CAS  PubMed  Google Scholar 

  • Ekor M (2014) The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Front Pharmacol 4:177

    Article  PubMed  PubMed Central  Google Scholar 

  • Enzell CR (1969) Mass spectrometric studies of carotenoids. Pure Appl Chem 20(4):497–516

    Article  CAS  PubMed  Google Scholar 

  • Fridlender M, Kapulnik Y, Koltai H (2015) Plant derived substances with anti-cancer activity: from folklore to practice. Front Plant Sci 6:799

    Article  PubMed  PubMed Central  Google Scholar 

  • Gaba S, Saini A, Singh G, Monga V (2021) An insight into the medicinal attributes of berberine derivatives: a review. Bioorg Med Chem 38:116143

    Article  CAS  PubMed  Google Scholar 

  • Gordaliza M, Garcıa PA, Del Corral JM, Castro MA, Gómez-Zurita MA (2004) Podophyllotoxin: distribution, sources, applications and new cytotoxic derivatives. Toxicon 44(4):441–459

    Article  CAS  PubMed  Google Scholar 

  • Gutheil WG, Reed G, Ray A, Anant S, Dhar A (2012) Crocetin: an agent derived from saffron for prevention and therapy for cancer. Curr Pharm Biotechnol 13(1):173–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Habtemariam S, Lentini G (2018) Plant-derived anticancer agents: lessons from the pharmacology of geniposide and its aglycone, genipin. Biomedicine 6(2):39

    Google Scholar 

  • Harborne JB (1999) Classes and functions of secondary products from plants. Chem Plants 26:1–25

    Google Scholar 

  • Kamal-Eldin A, Appelqvist LÃ… (1996) The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids 31(7):671–701

    Article  CAS  PubMed  Google Scholar 

  • Khan N, Syed DN, Ahmad N, Mukhtar H (2013) Fisetin: a dietary antioxidant for health promotion. Antioxid Redox Signal 19(2):151–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim MJ, Kim H (2015) Anticancer effect of lycopene in gastric carcinogenesis. J Cancer Prev 20(2):92

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim S, Hwang BY, Su BN, Chai H, Mi Q, Kinghorn AD, Wild R, Swanson SM (2007) Silvestrol, a potential anticancer rocaglate derivative from Aglaia foveolata, induces apoptosis in LNCaP cells through the mitochondrial/apoptosome pathway without activation of executioner caspase-3 or-7. Anticancer Res 27(4B):2175–2183

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SH, Kaplan JA, Sun Y, Shieh A, Sun HL, Croce CM, Grinstaff MW, Parquette JR (2015) The self-assembly of anticancer camptothecin-dipeptide nanotubes: a minimalistic and high drug loading approach to increased efficacy. Chemistry 21(1):101–105

    Article  CAS  PubMed  Google Scholar 

  • Kimira M, Arai Y, Shimoi K, Watanabe S (1998) Japanese intake of flavonoids and isoflavonoids from foods. J Epidemiol 8(3):168–175

    Article  CAS  PubMed  Google Scholar 

  • Kovalchuk O, Kovalchuk I (2020) Cannabinoids as anticancer therapeutic agents. Cell Cycle 19(9):961–989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Chopra K, Mukherjee M, Pottabathini R, Dhull DK (2015) Current knowledge and pharmacological profile of berberine: an update. Eur J Pharmacol 761:288–297

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Sharma PR, Mondhe DM (2017) Potential anticancer role of colchicine-based derivatives: an overview. Anti-Cancer Drugs 28(3):250–262

    Article  CAS  PubMed  Google Scholar 

  • Lo CY, Hsu LC, Chen MS, Lin YJ, Chen LG, Kuo CD, Wu JY (2013) Synthesis and anticancer activity of a novel series of 9-O-substituted berberine derivatives: a lipophilic substitute role. Bioorg Med Chem Lett 23(1):305–309

    Article  CAS  PubMed  Google Scholar 

  • Mangal N, Erridge S, Habib N, Sadanandam A, Reebye V, Sodergren MH (2021) Cannabinoids in the landscape of cancer. J Cancer Res Clin Oncol 147(9):2507–2534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marzocco S, Singla RK, Capasso A (2021) Multifaceted effects of lycopene: a boulevard to the multitarget-based treatment for cancer. Molecules 26(17):5333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nafees S, Zafaryab M, Mehdi SH, Zia B, Rizvi MA, Khan MA (2021) Anti-cancer effect of gingerol in cancer prevention and treatment. Anticancer Agents Med Chem 21(4):428–432

    Article  CAS  PubMed  Google Scholar 

  • Nakhjavani M, Palethorpe HM, Tomita Y, Smith E, Price TJ, Yool AJ et al (2019) Stereoselective anti-cancer activities of ginsenoside Rg3 on triple negative breast cancer cell models. Pharmaceuticals 12(3):117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nirmala MJ, Samundeeswari A, Sankar PD (2011) Natural plant resources in anti-cancer therapy—a review. Res Plant Biol 1(3):01–14

    Google Scholar 

  • Nozhat Z, Heydarzadeh S, Memariani Z, Ahmadi A (2021) Chemoprotective and chemosensitizing effects of apigenin on cancer therapy. Cancer Cell Int 21(1):1–26

    Article  Google Scholar 

  • Ozbey U, Attar R, Romero MA, Alhewairini SS, Afshar B, Sabitaliyevich UY, Hanna-Wakim L, Ozcelik B, Farooqi AA (2019) Apigenin as an effective anticancer natural product: spotlight on TRAIL, WNT/β-catenin, JAK-STAT pathways, and microRNAs. J Cell Biochem 120(2):1060–1067

    Article  CAS  PubMed  Google Scholar 

  • Pathania S, Ramakrishnan SM, Bagler G (2015) Phytochemica: a platform to explore phytochemicals of medicinal plants. Database 2015

    Google Scholar 

  • Peng Y, Zhang R, Yang X, Zhang Z, Kang N, Bao L et al (2019) Ginsenoside Rg3 suppresses the proliferation of prostate cancer cell line PC3 through ROS-induced cell cycle arrest. Oncol Lett 17(1):1139–1145

    CAS  PubMed  Google Scholar 

  • Petzke TL, Shi QW, Sauriol F, Mamer O, Zamir LO (2004) Taxanes from rooted cuttings of Taxus canadensis. J Nat Prod 67(11):1864–1869

    Article  CAS  PubMed  Google Scholar 

  • Pfander H, Rychener M (1982) Separation of crocetin glycosyl esters by high-performance liquid chromatography. J Chromatogr A 234(2):443–447

    Article  CAS  Google Scholar 

  • Rodrigues FC, Kumar NA, Thakur G (2021) The potency of heterocyclic curcumin analogues: an evidence-based review. Pharmacol Res 166:105489

    Article  CAS  PubMed  Google Scholar 

  • Roja G, Rao PS (2000) Anticancer compounds from tissue cultures of medicinal plants. J Herbs Spices Med Plants 7(2):71–102

    Article  Google Scholar 

  • Salim AA, Garson MJ, Craik DJ (2004) New indole alkaloids from the roots of Ochrosia acuminata. J Nat Prod 67(10):1719–1721

    Article  CAS  PubMed  Google Scholar 

  • Salmela AL, Pouwels J, Varis A, Kukkonen AM, Toivonen P, Halonen PK, Perälä M, Kallioniemi O, Gorbsky GJ, Kallio MJ (2009) Dietary flavonoid fisetin induces a forced exit from mitosis by targeting the mitotic spindle checkpoint. Carcinogenesis 30(6):1032–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shankar E, Goel A, Gupta K, Gupta S (2017) Plant flavone apigenin: an emerging anticancer agent. Curr Pharmacol Rep 3(6):423–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharifi-Rad J, Ozleyen A, Boyunegmez Tumer T, Oluwaseun Adetunji C, El Omari N, Balahbib A, Taheri Y, Bouyahya A, Martorell M, Martins N, Cho WC (2019) Natural products and synthetic analogs as a source of antitumor drugs. Biomol Ther 9(11):679

    CAS  Google Scholar 

  • Shelley MD, Hartley L, Groundwater PW, Fish RG (2000) Structure-activity studies on gossypol in tumor cell lines. Anti-Cancer Drugs 11(3):209–216

    Article  CAS  PubMed  Google Scholar 

  • Smolarek AK, Suh N (2011) Chemopreventive activity of vitamin E in breast cancer: a focus on γ-and δ-tocopherol. Nutrients 3(11):962–986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spencer CM, Faulds D (1994) Paclitaxel. Drugs 48(5):794–847

    Article  CAS  PubMed  Google Scholar 

  • Stiborova M, Rupertova M, Schmeiser HH, Frei E (2006) Molecular mechanisms of antineoplastic action of an anticancer drug ellipticine. Biomed Pap Palacky Univ Olomouc 150(1):13

    Article  CAS  Google Scholar 

  • Sun S, Qi LW, Du GJ, Mehendale SR, Wang CZ, Yuan CS (2011) Red notoginseng: higher ginsenoside content and stronger anticancer potential than Asian and American ginseng. Food Chem 125(4):1299–1305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71(3):209–249

    Article  PubMed  Google Scholar 

  • Thomas DR, Penney CA, Majumder A, Walmsley AM (2011) Evolution of plant-made pharmaceuticals. Int J Mol Sci 12(5):3220–3236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uesato S, Ueda S, Kobayashi K, Miyauchi M, Itoh H, Inouye H (1986) Intermediacy of 8-epiiridodial in the biosynthesis of iridoid glucosides by Gardenia jasminoides cell cultures. Phytochemistry 25(10):2309–2314

    Article  CAS  Google Scholar 

  • Van Wyk BE, Wink M (2018) Medicinal plants of the world. CABI

    Google Scholar 

  • Wang CY, Bai XY, Wang CH (2014) Traditional Chinese medicine: a treasured natural resource of anticancer drug research and development. Am J Chin Med 42(03):543–559

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Zhang C, Yan X, Lan B, Wang J, Wei C, Cao X, Wang R, Yao J, Zhou T, Zhou M (2016) A novel bioavailable BH3 mimetic efficiently inhibits colon cancer via cascade effects of mitochondria. Clin Cancer Res 22(6):1445–1458

    Article  CAS  PubMed  Google Scholar 

  • Xiao J, Gao M, Sun Z, Diao Q, Wang P, Gao F (2020) Recent advances of podophyllotoxin/epipodophyllotoxin hybrids in anticancer activity, mode of action, and structure-activity relationship: an update (2010-2020). Eur J Med Chem 208:112830

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Qi G, Wang W, Sun XS (2021) Advances in 3D peptide hydrogel models in cancer research. NPJ Sci Food 5(1):1–10

    Google Scholar 

  • Yahyazadeh R, Baradaran Rahimi V, Yahyazadeh A, Mohajeri SA, Askari VR (2021) Promising effects of gingerol against toxins: a review article. Biofactors 47:885

    Article  CAS  PubMed  Google Scholar 

  • Yan Z, Lai Z, Lin J (2017) Anticancer properties of traditional Chinese medicine. Comb Chem High Throughput Screen 20(5):423–429

    Article  PubMed  Google Scholar 

  • Zahiri M, Taghdisi SM, Abnous K, Ramezani M, Alibolandi M (2021) Fabrication of versatile targeted lipopolymersomes for improved camptothecin efficacy against colon adenocarcinoma in vitro and in vivo. Expert Opin Drug Deliv 18(9):1309–1322

    Article  CAS  PubMed  Google Scholar 

  • Zhao W, Cong Y, Li HM, Li S, Shen Y, Qi Q, Zhang Y, Li YZ, Tang YJ (2021) Challenges and potential for improving the druggability of podophyllotoxin-derived drugs in cancer chemotherapy. Nat Prod Rep 38(3):470–488

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Feng JH, Ding HX, Xiong Y, Cheng CH, Hao XJ et al (2006) Synthesis and cytotoxicity of racemic isodeoxypodophyllotoxin analogues with isoprene-derived side chains. J Nat Prod 69(8):1145–1152

    Article  CAS  PubMed  Google Scholar 

  • Zhou XJ, Rahmani R (1992) Preclinical and clinical pharmacology of vinca alkaloids. Drugs 44(4):1–16

    Article  CAS  PubMed  Google Scholar 

  • Zhu H, He YS, Ma J, Zhou J, Kong M, Wu CY, Mao Q, Lin G, Li SL (2021) The dual roles of ginsenosides in improving the anti-tumor efficiency of cyclophosphamide in mammary carcinoma mice. J Ethnopharmacol 265:113271

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, S., Saha, P., Rai, N., Kumari, S., Pandey-Rai, S. (2023). Pharmacology of Natural and Synthetic Phytoprotectants: Application and Consequences in Cancer Therapies. In: Kannaujiya, V.K., Sinha, R.P., Rahman, M.A., Sundaram, S. (eds) Photoprotective Green Pharmacology: Challenges, Sources and Future Applications. Springer, Singapore. https://doi.org/10.1007/978-981-99-0749-6_11

Download citation

Publish with us

Policies and ethics