Skip to main content
  • 117 Accesses

Abstract

Cancer is among the most frightful disorders worldwide and an issue of major concern. Both developed and developing countries are facing enormous challenges to manage the paradigms related to cancer. Conventional treatment of cancer mainly includes surgery and chemotherapy, which takes a toll on the health and pocket of cancer patients. Chemotherapeutics generate several side effects and their efficiency is often challenged by chemo-resistance. Hence, finding a better treatment option is the need of the hour. Plants are being used in traditional medicine since time immemorial. Researchers have hence started investigating plant extracts and phytoconstituents for their anticancerous properties. The present chapter discusses a number of phytoconstituents and their role in altering one or more hallmarks of cancer in order to generate therapeutic effects in various types of cancer.

Certain bioactive agents from plants show antiproliferative, anti-inflammatory and pro-apoptotic activities against cancer cells. Herein, five major hallmarks of cancer have been elaborated and explained how plant-derived constituents can be used to target them for chemoprevention and chemotherapeutic approaches. Also, to enhance the efficacy of currently available phytochemicals, novel methods for improvement in extraction, synthesis, and administration are also briefly discussed.

Finally, major anticancer phytoconstituents are summarized with their limitations, offering a broad spectrum of possibilities for scientists in this field, to develop novel methods for therapeutic regimens in cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmad R, Srivastava S, Ghosh S, Khare SKJC, Biointerfaces SB (2021) Phytochemical delivery through nanocarriers: a review. Colloids Surf B 197:111389

    Article  CAS  Google Scholar 

  • Ahmed SA, Parama D, Daimari E, Girisa S, Banik K, Harsha C et al (2021) Rationalizing the therapeutic potential of apigenin against cancer. Life Sci 267:118814

    Article  CAS  PubMed  Google Scholar 

  • Aqil F, Munagala R, Jeyabalan J, Vadhanam MV (2013) Bioavailability of phytochemicals and its enhancement by drug delivery systems. Cancer Lett 334(1):133–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arif JM, Kandimalla R, Aqil F (2022) Role of phytochemicals and structural analogs in cancer chemoprevention and therapeutics. Front Pharmacol 13:865619

    Article  PubMed  PubMed Central  Google Scholar 

  • Arruebo M, Vilaboa N, Sáez-Gutierrez B, Lambea J, Tres A, Valladares M et al (2011) Assessment of the evolution of cancer treatment therapies. Cancers (Basel) 3(3):3279–3330

    Article  CAS  PubMed  Google Scholar 

  • Ashrafizadeh M, Bakhoda MR, Bahmanpour Z, Ilkhani K, Zarrabi A, Makvandi P et al (2020) Apigenin as tumor suppressor in cancers: biotherapeutic activity, nanodelivery, and mechanisms with emphasis on pancreatic cancer. Front Chem 8:829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Auyeung KK-W, Mok N-L, Wong C-M, Cho C-H, Ko JK (2010) Astragalus saponins modulate mTOR and ERK signaling to promote apoptosis through the extrinsic pathway in HT-29 colon cancer cells. Int J Mol Med 26(3):341–349

    CAS  PubMed  Google Scholar 

  • Banik K, Khatoon E, Harsha C, Rana V, Parama D, Thakur KK et al (2022) Wogonin and its analogs for the prevention and treatment of cancer: a systematic review. Phytother Res 36:1854

    Article  CAS  PubMed  Google Scholar 

  • Begum SN, Ray AS, Rahaman CH (2022) A comprehensive and systematic review on potential anticancer activities of eugenol: from pre-clinical evidence to molecular mechanisms of action. Phytomedicine 107:154456

    Article  CAS  PubMed  Google Scholar 

  • Behera A, Padhi S (2020) Passive and active targeting strategies for the delivery of the camptothecin anticancer drug: a review. Environ Chem Lett 18(5):1557–1567

    Article  CAS  Google Scholar 

  • Bhuvaneswari V, Nagini S (2005) Lycopene: a review of its potential as an anticancer agent. Curr Med Chem Anticancer Agents 5(6):627–635

    Article  CAS  PubMed  Google Scholar 

  • Cao B, Chen H, Gao Y, Niu C, Zhang Y, Li L (2015) CIP-36, a novel topoisomerase II-targeting agent, induces the apoptosis of multidrug-resistant cancer cells in vitro. Int J Mol Med 35(3):771–776

    Article  CAS  PubMed  Google Scholar 

  • Cao H, Sethumadhavan K, Cao F, Wang TT (2021) Gossypol decreased cell viability and down-regulated the expression of a number of genes in human colon cancer cells. Sci Rep 11(1):1–16

    Google Scholar 

  • Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407(6801):249–257

    Article  CAS  PubMed  Google Scholar 

  • Colgate EC, Miranda CL, Stevens JF, Bray TM, Ho E (2007) Xanthohumol, a prenylflavonoid derived from hops induces apoptosis and inhibits NF-kappaB activation in prostate epithelial cells. Cancer Lett 246(1–2):201–209

    Article  CAS  PubMed  Google Scholar 

  • Compton C (2020) Cancer initiation, promotion, and progression and the acquisition of key behavioral traits. Springer, pp 25–48

    Google Scholar 

  • Cotter TG (2009) Apoptosis and cancer: the genesis of a research field. Nat Rev Cancer 9(7):501–507

    Article  CAS  PubMed  Google Scholar 

  • Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420(6917):860–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dajas F (2012) Life or death: neuroprotective and anticancer effects of quercetin. J Ethnopharmacol 143(2):383–396

    Article  CAS  PubMed  Google Scholar 

  • Del Follo-Martinez A, Banerjee N, Li X, Safe S, Mertens-Talcott S (2013) Resveratrol and quercetin in combination have anticancer activity in colon cancer cells and repress oncogenic microRNA-27a. Nutr Cancer 65(3):494–504

    Article  PubMed  Google Scholar 

  • Denny WA (2004) Emerging DNA topoisomerase inhibitors as anticancer drugs. Expert Opin Emerg Drugs 9(1):105–133

    CAS  PubMed  Google Scholar 

  • DePinho RA (2000) The age of cancer. Nature 408(6809):248–254

    Article  CAS  PubMed  Google Scholar 

  • Dhupal M, Chowdhury D (2020) Phytochemical-based nanomedicine for advanced cancer theranostics: perspectives on clinical trials to clinical use. Int J Nanomedicine 15:9125–9157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dugasani S, Pichika MR, Nadarajah VD, Balijepalli MK, Tandra S, Korlakunta JN (2010) Comparative antioxidant and anti-inflammatory effects of [6]-gingerol,[8]-gingerol,[10]-gingerol and [6]-shogaol. J Ethnopharm 127(2):515–520

    Article  CAS  Google Scholar 

  • Fallah M, Davoodvandi A, Nikmanzar S, Aghili S, Mirazimi SMA, Aschner M et al (2021) Silymarin (milk thistle extract) as a therapeutic agent in gastrointestinal cancer. Biomed Pharm 142:112024

    Article  CAS  Google Scholar 

  • Farina HG, Pomies M, Alonso DF, Gomez DE (2006) Antitumor and antiangiogenic activity of soy isoflavone genistein in mouse models of melanoma and breast cancer. Oncol Rep 16(4):885–891

    CAS  PubMed  Google Scholar 

  • Ferlay J, Colombet M, Soerjomataram I, Parkin DM, Piñeros M, Znaor A et al (2021) Cancer statistics for the year 2020: an overview. Int J Cancer 149(4):778–789

    Article  CAS  Google Scholar 

  • Ferraresi A, Phadngam S, Morani F, Galetto A, Alabiso O, Chiorino G et al (2017) Resveratrol inhibits IL-6-induced ovarian cancer cell migration through epigenetic up-regulation of autophagy. Mol Carcinog 56(3):1164–1181

    Article  CAS  PubMed  Google Scholar 

  • Folkman J (1984) Angiogenesis:412–428

    Google Scholar 

  • Fu J, Zeng W, Chen M, Huang L, Li S, Li Z et al (2022) Apigenin suppresses tumor angiogenesis and growth via inhibiting HIF-1α expression in non-small cell lung carcinoma. Chem Biol Interact 361:109966

    Article  CAS  PubMed  Google Scholar 

  • Galluzzi L, Senovilla L, Zitvogel L, Kroemer G (2012) The secret ally: immunostimulation by anticancer drugs. Nat Rev Drug Discov 11(3):215–233

    Article  CAS  PubMed  Google Scholar 

  • Georgakopoulos-Soares I, Chartoumpekis DV, Kyriazopoulou V, Zaravinos A (2020) EMT factors and metabolic pathways in cancer. Front Oncol 10:499

    Article  PubMed  PubMed Central  Google Scholar 

  • Graham J, Quinn M, Fabricant D, Farnsworth NR (2000) Plants used against cancer–an extension of the work of Jonathan Hartwell. J Ethnopharmacol 73(3):347–377

    Article  CAS  PubMed  Google Scholar 

  • Hamsa TP, Kuttan G (2011) Harmine activates intrinsic and extrinsic pathways of apoptosis in B16F-10 melanoma. Chin Med 6(1):1–8

    Article  Google Scholar 

  • Han Q, Yuan Q, Meng X, Huo J, Bao Y, Xie G (2017) 6-Shogaol attenuates LPS-induced inflammation in BV2 microglia cells by activating PPAR-γ. Oncotarget 8(26):42001

    Article  PubMed  PubMed Central  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  CAS  PubMed  Google Scholar 

  • Hartwell JL (1967) A survey for plants used against cancer. Lloydia 30:379–436

    Google Scholar 

  • Hartwell JL (1971) Plants used against cancer. A survey. Lloydia 34(1):103–160

    CAS  PubMed  Google Scholar 

  • Henrique T, Zanon CF, Girol AP, Stefanini ACB, Contessoto NSA, da Silveira NJ et al (2020) Biological and physical approaches on the role of piplartine (piperlongumine) in cancer. Sci Rep 10(1):1–14

    Article  Google Scholar 

  • Hertzberg RP, Caranfa MJ, Hecht SM (1989) On the mechanism of topoisomerase I inhibition by camptothecin: evidence for binding to an enzyme-DNA complex. Biochemistry 28(11):4629–4638

    Article  CAS  PubMed  Google Scholar 

  • Ho H-H, Chang C-S, Ho W-C, Liao S-Y, Lin W-L, Wang C-J et al (2013) Gallic acid inhibits gastric cancer cells metastasis and invasive growth via increased expression of RhoB, downregulation of AKT/small GTPase signals and inhibition of NF-κB activity. Toxicol Appl Pharmacol 266(1):76–85

    Article  CAS  PubMed  Google Scholar 

  • Imran M, Saeed F, Gilani SA, Shariati MA, Imran A, Afzaal M et al (2021) Fisetin: an anticancer perspective. Food Sci Nutr 9(1):3–16

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa H, Akedo I, Suzuki T, Narahara H, Otani T (1997) Adverse effects of sulindac used for prevention of colorectal cancer. J Natl Cancer Inst 89(18):1381

    Article  CAS  PubMed  Google Scholar 

  • Issa AY, Volate SR, Wargovich MJ (2006) The role of phytochemicals in inhibition of cancer and inflammation: new directions and perspectives. J Food Compost Anal 19(5):405–419

    Article  CAS  Google Scholar 

  • Jangid AK, Patel K, Jain P, Patel S, Medicherla K, Pooja D et al (2021) Carrier-free resveratrol nanoparticles: formulation development, in-vitro anticancer activity, and oral bioavailability evaluation. Mat Lett 302:130340

    Article  CAS  Google Scholar 

  • Jangid AK, Solanki R, Patel S, Pooja D, Kulhari H (2022) Genistein encapsulated inulin-stearic acid bioconjugate nanoparticles: formulation development, characterization and anticancer activity. Int J Biol Macromol 206:213–221

    Article  CAS  PubMed  Google Scholar 

  • Jeda AS, Ghabeshi S, Jazaeri EO, Araiinejad M, Sheikholeslami F, Abdoli M et al (2022) Autophagy modulation and cancer combination therapy: a smart approach in cancer therapy. Cancer Treat Res Commun 1:100512

    Article  Google Scholar 

  • Jha AK, Sit N (2021) Extraction of bioactive compounds from plant materials using combination of various novel methods: a review. Trends Food Sci Technol 119:579

    Article  Google Scholar 

  • Ji Q, Liu X, Fu X, Zhang L, Sui H, Zhou L et al (2013) Resveratrol inhibits invasion and metastasis of colorectal cancer cells via MALAT1 mediated Wnt/β-catenin signal pathway. PloS One 8(11):e78700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kashyap D, Garg VK, Tuli HS, Yerer MB, Sak K, Sharma AK et al (2019) Fisetin and quercetin: promising flavonoids with chemopreventive potential. Biomolecules 9(5):174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kasibhatla S, Tseng B (2003) Why target apoptosis in cancer treatment? Mol Cancer Ther 2(6):573–580

    CAS  PubMed  Google Scholar 

  • Klionsky DJ (2005) Autophagy. Curr Biol 15(8):R282–R2R3

    Article  CAS  PubMed  Google Scholar 

  • Lamouille S, Xu J, Derynck R (2014) Molecular mechanisms of epithelial–mesenchymal transition. Nat Rev Mol Cell Biol 15(3):178–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levine B (2007) Autophagy and cancer. Nature 446(7137):745–747

    Article  CAS  PubMed  Google Scholar 

  • Li W, Ma J, Ma Q, Li B, Han L, Liu J et al (2013) Resveratrol inhibits the epithelial-mesenchymal transition of pancreatic cancer cells via suppression of the PI-3K/Akt/NF-κB pathway. Curr Med Chem 20(33):4185–4194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Chong T, Wang Z, Chen H, Li H, Cao J et al (2014) A novel anti-cancer effect of resveratrol: reversal of epithelial-mesenchymal transition in prostate cancer cells. Mol Med Rep 10(4):1717–1724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lima APB, Almeida TC, Barros TMB, Rocha LCM, Garcia CCM, da Silva GN (2020) Toxicogenetic and antiproliferative effects of chrysin in urinary bladder cancer cells. Mutagenesis 35(5):361–371

    Article  CAS  Google Scholar 

  • Liu RH (2004) Potential synergy of phytochemicals in cancer prevention: mechanism of action. J Nutr 134(12):3479S–3485S

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Li M, Wang Y, Luo J (2017) Curcumin sensitizes prostate cancer cells to radiation partly via epigenetic activation of miR-143 and miR-143 mediated autophagy inhibition. J Drug Target 25(7):645–652

    Article  CAS  PubMed  Google Scholar 

  • Lowe SW, Lin AW (2000) Apoptosis in cancer. Carcinogenesis 21(3):485–495

    Article  CAS  PubMed  Google Scholar 

  • Mani R, Natesan V (2018) Chrysin: sources, beneficial pharmacological activities, and molecular mechanism of action. Phytochemistry 145:187–196

    Article  CAS  PubMed  Google Scholar 

  • Martino E, Casamassima G, Castiglione S, Cellupica E, Pantalone S, Papagni F et al (2018) Vinca alkaloids and analogues as anti-cancer agents: looking back, peering ahead. Bioorg Med Chem Lett 28(17):2816–2826

    Article  PubMed  Google Scholar 

  • Masuda M, Suzui M, Lim JT, Deguchi A, Soh JW, Weinstein IB et al (2002) Epigallocatechin-3-gallate decreases VEGF production in head and neck and breast carcinoma cells by inhibiting EGFR-related pathways of signal transduction. J Exp Ther Oncol 2(6):350–359

    Article  CAS  PubMed  Google Scholar 

  • Melstrom LG, Salabat MR, Ding X-Z, Strouch MJ, Grippo PJ, Mirzoeva S et al (2011) Apigenin down-regulates the hypoxia response genes: HIF-1α, GLUT-1, and VEGF in human pancreatic cancer cells. J Surg Res 167(2):173–181

    Article  CAS  PubMed  Google Scholar 

  • Mertens-Talcott SU, Percival SS (2005) Ellagic acid and quercetin interact synergistically with resveratrol in the induction of apoptosis and cause transient cell cycle arrest in human leukemia cells. Cancer Lett 218(2):141–151

    Article  CAS  PubMed  Google Scholar 

  • Miller PE, Snyder DC (2012) Phytochemicals and cancer risk: a review of the epidemiological evidence. Nutr Clin Pract 27(5):599–612

    Article  PubMed  Google Scholar 

  • Mizushima N (2007) Autophagy: process and function. Genes Dev 21(22):2861–2873

    Article  CAS  PubMed  Google Scholar 

  • Murakami M, Hirano T (2012) The molecular mechanisms of chronic inflammation development. Front Immunol 3:323

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakagawa H, Yamamoto D, Kiyozuka Y, Tsuta K, Uemura Y, Hioki K et al (2000) Effects of genistein and synergistic action in combination with eicosapentaenoic acid on the growth of breast cancer cell lines. J Cancer Res Clin Oncol 126(8):448–454

    Article  CAS  PubMed  Google Scholar 

  • Nishida N, Yano H, Nishida T, Kamura T, Kojiro M (2006) Angiogenesis in cancer. Vasc Health Risk Manag 2(3):213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nussbaumer S, Bonnabry P, Veuthey J-L, Fleury-Souverain S (2011) Analysis of anticancer drugs: a review. Talanta 85(5):2265–2289

    Article  CAS  PubMed  Google Scholar 

  • Nygren P (2001) What is cancer chemotherapy? Acta Oncol 40(2–3):166–174

    Article  CAS  PubMed  Google Scholar 

  • Oudard S, Fizazi K, Sengeløv L, Daugaard G, Saad F, Hansen S et al (2017) Cabazitaxel versus docetaxel as first-line therapy for patients with metastatic castration-resistant prostate cancer: a randomized phase III trial—FIRSTANA. J Clin Oncol 35(28):3189–3197

    Article  CAS  PubMed  Google Scholar 

  • Pal HC, Sharma S, Strickland LR, Katiyar SK, Ballestas ME, Athar M et al (2014) Fisetin inhibits human melanoma cell invasion through promotion of mesenchymal to epithelial transition and by targeting MAPK and NFκB signaling pathways. PLoS One 9(1):e86338

    Article  PubMed  PubMed Central  Google Scholar 

  • Pan MH, Hsieh MC, Hsu PC, Ho SY, Lai CS, Wu H et al (2008) 6-Shogaol suppressed lipopolysaccharide-induced up-expression of iNOS and COX-2 in murine macrophages. Mol Nutr Food Res 52(12):1467–1477

    Article  CAS  PubMed  Google Scholar 

  • Panda M, Tripathi SK, Zengin G, Biswal BK (2022) Evodiamine as an anticancer agent: a comprehensive review on its therapeutic application, pharmacokinetic, toxicity, and metabolism in various cancers. Cell Biol Toxicol 39:1–31

    Article  PubMed  Google Scholar 

  • Parama D, Rana V, Girisa S, Verma E, Daimary UD, Thakur KK et al (2021) The promising potential of piperlongumine as an emerging therapeutics for cancer. Explor Target Antitumor Ther 2(4):323

    CAS  PubMed  PubMed Central  Google Scholar 

  • Patra S, Mishra SR, Behera BP, Mahapatra KK, Panigrahi DP, Bhol CS et al (2020) Autophagy-modulating phytochemicals in cancer therapeutics: current evidences and future perspectives. In: Seminars in cancer biology. Elsevier, London

    Google Scholar 

  • Pavet V, Portal M, Moulin J, Herbrecht R, Gronemeyer H (2011) Towards novel paradigms for cancer therapy. Oncogene 30(1):1–20

    Article  CAS  PubMed  Google Scholar 

  • Pooja T, Karunagaran D (2014) Emodin suppresses Wnt signaling in human colorectal cancer cells SW480 and SW620. Eur J Pharmacol 742:55–64

    Article  CAS  PubMed  Google Scholar 

  • Ralhan R, Kaur J (2007) Alkylating agents and cancer therapy. Expert Opin Ther Pat 17(9):1061–1075

    Article  CAS  Google Scholar 

  • Rebecca V, Amaravadi RK (2016) Emerging strategies to effectively target autophagy in cancer. Oncogene 35(1):1–11

    Article  CAS  PubMed  Google Scholar 

  • Roche J (2018) The epithelial-to-mesenchymal transition in cancer. Cancers 10:52

    Article  PubMed  PubMed Central  Google Scholar 

  • Sartippour MR, Heber D, Ma J, Lu Q, Liang Go V, Nguyen M et al (2001) Green tea and its catechins inhibit breast cancer xenografts. Nutr Cancer 40(2):149–156

    Article  CAS  PubMed  Google Scholar 

  • Schmidt BM, Ribnicky DM, Lipsky PE, Raskin I (2007) Revisiting the ancient concept of botanical therapeutics. Nat Chem Biol 3(7):360–366

    Article  CAS  PubMed  Google Scholar 

  • Seo H-S, Choi H-S, Kim S-R, Choi YK, Woo S-M, Shin I et al (2012) Apigenin induces apoptosis via extrinsic pathway, inducing p53 and inhibiting STAT3 and NFκB signaling in HER2-overexpressing breast cancer cells. Mol Cell Biochem 366(1):319–334

    Article  CAS  PubMed  Google Scholar 

  • Shacter E, Weitzman SA (2002) Chronic inflammation and cancer. Oncology (Williston Park, NY) 16(2):217–226, 29; discussion 30

    Google Scholar 

  • Shao ZM, Shen ZZ, Liu CH, Sartippour MR, Go VL, Heber D et al (2002) Curcumin exerts multiple suppressive effects on human breast carcinoma cells. Int J Cancer 98(2):234–240

    Article  CAS  PubMed  Google Scholar 

  • Shewach DS, Kuchta RD (2009) Introduction to cancer chemotherapeutics. Chem Rev 109(7):2859–2861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin S-A, Moon SY, Kim W-Y, Paek S-M, Park HH, Lee CS (2018) Structure-based classification and anti-cancer effects of plant metabolites. Int J Mol Sci 19(9):2651

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh S, Sharma B, Kanwar SS, Kumar A (2016) Lead phytochemicals for anticancer drug development. Front Plant Sci 7:1667

    Article  PubMed  PubMed Central  Google Scholar 

  • Soerjomataram I, Bray F (2021) Planning for tomorrow: Global cancer incidence and the role of prevention 2020–2070. Nat Rev Clin Oncol 18(10):663–672

    Article  PubMed  Google Scholar 

  • Solanki R, Jodha B, Prabina KE, Aggarwal N, Patel S (2022) Recent advances in phytochemical based nano-drug delivery systems to combat breast cancer: a review. J Drug Deliv Sci Technol 103832:103832

    Article  Google Scholar 

  • Sporn MB (1996) The war on cancer. Lancet 347(9012):1377–1381

    Article  CAS  PubMed  Google Scholar 

  • Subramanian A, John A, Vellayappan M, Balaji A, Jaganathan S, Supriyanto E et al (2015) Gallic acid: prospects and molecular mechanisms of its anticancer activity. Rsc Adv 5(45):35608–35621

    Article  CAS  Google Scholar 

  • Subramanian A, Jaganathan S, Manikandan A, Pandiaraj K, Gomathi N, Supriyanto E (2016) Recent trends in nano-based drug delivery systems for efficient delivery of phytochemicals in chemotherapy. RSC Adv 6(54):48294–48314

    Article  CAS  Google Scholar 

  • Suganuma M, Okabe S, Kai Y, Sueoka N, Sueoka E, Fujiki H (1999) Synergistic effects of (−)-epigallocatechin gallate with (−)-epicatechin, sulindac, or tamoxifen on cancer-preventive activity in the human lung cancercell line PC-9. Cancer Res 59(1):44–47

    CAS  PubMed  Google Scholar 

  • Sultana S, Munir N, Mahmood Z, Riaz M, Akram M, Rebezov M et al (2021) Molecular targets for the management of cancer using Curcuma longa Linn. Phytoconstituents: a review. Biomed Pharm 135:111078

    Article  CAS  Google Scholar 

  • Sun L, Wang X (2003) Effects of allicin on both telomerase activity and apoptosis in gastric cancer SGC-7901 cells. World J Gastroenterol 9(9):1930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A et al (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71(3):209–249

    Article  PubMed  Google Scholar 

  • Tabassum DP, Polyak K (2015) Tumorigenesis: it takes a village. Nat Rev Cancer 15(8):473–483

    Article  CAS  PubMed  Google Scholar 

  • Tan H, Wang N, Man K, Tsao S, Che C, Feng Y et al (2015) Autophagy-induced RelB/p52 activation mediates tumour-associated macrophage repolarisation and suppression of hepatocellular carcinoma by natural compound baicalin. Cell Death Dis 6(10):e1942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thayyullathil F, Chathoth S, Hago A, Patel M, Galadari S (2008) Rapid reactive oxygen species (ROS) generation induced by curcumin leads to caspase-dependent and-independent apoptosis in L929 cells. Free Radic Biol Med 45(10):1403–1412

    Article  CAS  PubMed  Google Scholar 

  • Thomas R, Butler E, Macchi F, Williams M (2015) Phytochemicals in cancer prevention and management. Br J Med Pract 8(2):1–8

    Google Scholar 

  • Tuli HS, Tuorkey MJ, Thakral F, Sak K, Kumar M, Sharma AK et al (2019) Molecular mechanisms of action of genistein in cancer: recent advances. Front Pharm 10:1336

    Article  CAS  Google Scholar 

  • Ulusoy HG, Sanlier N (2020) A minireview of quercetin: from its metabolism to possible mechanisms of its biological activities. Crit Rev Food Sci Nutr 60(19):3290–3303

    Article  CAS  PubMed  Google Scholar 

  • Vervandier-Fasseur D, Latruffe N (2019) The potential use of resveratrol for cancer prevention. Molecules 24(24):4506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vincent TL, Gatenby RA (2008) An evolutionary model for initiation, promotion, and progression in carcinogenesis. Int J Oncol 32(4):729–737

    CAS  PubMed  Google Scholar 

  • Wang K, Liu R, Li J, Mao J, Lei Y, Wu J et al (2011) Quercetin induces protective autophagy in gastric cancer cells: involvement of Akt-mTOR-and hypoxia-induced factor 1α-mediated signaling. Autophagy 7(9):966–978

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Zhang H, Tang L, Chen H, Wu C, Zhao M et al (2013) Resveratrol inhibits TGF-β1-induced epithelial-to-mesenchymal transition and suppresses lung cancer invasion and metastasis. Toxicology 303:139–146

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Liu Y, Du X, Ma H, Yao J (2020) The anti-cancer mechanisms of berberine: a review. Cancer Manag Res 12:695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong RS (2011) Apoptosis in cancer: from pathogenesis to treatment. J Exp Clin Cancer Re 30(1):1–14

    Google Scholar 

  • Xiao Q, Qu Z, Zhao Y, Yang L, Gao P (2017) Orientin ameliorates LPS-induced inflammatory responses through the inhibitory of the NF-κB pathway and NLRP3 inflammasome. Evid Based Complement Altern Med 2017:1

    Article  Google Scholar 

  • Yang B, Huang J, Xiang T, Yin X, Luo X, Huang J et al (2014) Chrysin inhibits metastatic potential of human triple-negative breast cancer cells by modulating matrix metalloproteinase-10, epithelial to mesenchymal transition, and PI3K/Akt signaling pathway. J Appl Toxicol 34(1):105–112

    Article  PubMed  Google Scholar 

  • Yang L, Li X, Huang W, Rao X, Lai Y (2022) Pharmacological properties of indirubin and its derivatives. Biomed Pharmacother 151:113112

    Article  CAS  PubMed  Google Scholar 

  • Yin Z, Zhang J, Chen L, Guo Q, Yang B, Zhang W et al (2020) Anticancer effects and mechanisms of action of plumbagin: review of research advances. Biomed Res Int 2020:6940953

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoon H, Liu RH (2007) Effect of selected phytochemicals and apple extracts on NF-κB activation in human breast cancer MCF-7 cells. J Agric Food Chem 55(8):3167–3173

    Article  CAS  PubMed  Google Scholar 

  • Zari AT, Zari TA, Hakeem KR (2021) Anticancer properties of eugenol: a review. Molecules 26(23):7407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Weinberg RA (2018) Epithelial-to-mesenchymal transition in cancer: complexity and opportunities. Front Med 12(4):361–373

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Ha M, Gong Y, Xu Y, Dong N, Yuan Y (2010) Allicin induces apoptosis in gastric cancer cells through activation of both extrinsic and intrinsic pathways. Oncol Rep 24(6):1585–1592

    CAS  PubMed  Google Scholar 

  • Zhang L, Li D, Yu S (2020) Pharmacological effects of harmine and its derivatives: a review. Arch Pharm Res 43(12):1259–1275

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Yu Y, Lv H, Zhang H, Liang T, Zhou G et al (2022) Apigenin in cancer therapy: from mechanism of action to nano-therapeutic agent. Food Chem Toxicol 1:113385

    Article  Google Scholar 

  • Zhu B-H, Zhan W-H, Li Z-R, Wang Z, He Y-L, Peng J-S et al (2007) (−)-Epigallocatechin-3-gallate inhibits growth of gastric cancer by reducing VEGF production and angiogenesis. World J Gastroenterol 13(8):1162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Author Bhavana Jodha thanks UGC for the Non-NET fellowship, and Dr. Sunita Patel acknowledges the Central University of Gujarat for providing the infrastructure and all necessary facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunita Patel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jodha, B., Patel, S. (2024). Therapeutic Phytoconstituents-II. In: Pooja, D., Kulhari, H. (eds) Nanotechnology Based Delivery of Phytoconstituents and Cosmeceuticals. Springer, Singapore. https://doi.org/10.1007/978-981-99-5314-1_3

Download citation

Publish with us

Policies and ethics